
  

 
Figure 1. Artificial neural network. Microenvironmental variables 
(green) are in the input-layer and fed through the pathway (blue) and 
phenotype (orange), output layer. Connections between layers represent 
mapping from microenvironments to pathway and then pathway to 
phenotype. 
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Cancer is an evolving system subject to mutation and 
selection. Selection is driven by the microenvironment 
that the cancer cells are growing in and acts on the cell 
phenotype, which is in turn modulated by intracellular 
signaling pathways regulated by the cell genotype. 
Integrating all of these processes requires bridging 
different biological scales. We present a mathematical 
model that uses a neural network as a means to 
connecting these scales. In particular, we consider the 
mapping from intracellular pathway activity to 
phenotype under different microenvironmental 
conditions.  

I. BRIDGING SCALES IN CANCER: FROM PATHWAY TO 

PHENOTYPE  

Much effort has been made to define molecular 
characteristics of cancer progression. This has led to the 
development of targeted therapies that successfully control 
cancer initially. The success, however, is generally short 
lived as drug resistance eventually emerges (1), primarily due 
to the multiscale aspects of cancer (2) and heterogeneity (3). 
Understanding how the resistance develops and can be 
delayed is one of major focus of cancer research (4). A 
strategy to deal with this resistance is to consider 
combination therapies with existing drugs. To develop more 
effective strategies, it is required to understand how selection 
by drugs affects intracellular pathway signaling and how the 
altered signaling affects the cell phenotype under dynamic 
and heterogeneous microenvironments. 

 Understanding the relationship between different 
intracellular molecules and relating their interactions to a cell 
phenotype is an overwhelm task considering the vast number 
of simultaneous interactions occurring within a cancer cell. 
Mathematical modeling may be a way forward with its ability 
to integrate these dynamics and to describe both linear and 
non-linear feedback between interacting molecules (5). A 
number of previous studies have used mathematical models 
for describing intra-cellular dynamics, utilizing a spectrum of 
techniques including Boolean, logic, artificial neural 
networks, and ordinary differential equations (6-26). Here, 
we focus on a neural network modeling approach as a means 
to connecting intracellular pathway and phenotype scale 
under different microenvironmental conditions.  
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II. NEURAL NETWORK MODEL IN CANCER CELL SIGNALING   

We utilized a neural network modeling approach to 
determine cancer cell phenotypes affected by both the 
microenvironment and intracellular pathway activity (Fig. 1). 
Feeding the microenvironmental variables to the hidden 
intracellular pathway layer determines the output of the 
network, cell phenotype (Fig. 1). In order to capture the fact 
that proteins in signaling pathway regulate other proteins, we 
allow for regulatory feedback between proteins. This 
modeling approach and preliminary results have already been 
published (12).  

We model the mitogen-activated protein kinase (MAPK) 
pathway and the PI3K/AKT pathway (Fig. 1) since the 
pathways are known to mainly regulate cancer cell growth 
and death (27). Using the model, we first study normal 
signaling responses in different microenvironments, various 
concentrations of growth factors and death promoting signal. 
The normal cell network produces a profile of the proteins in 
Figure 2 in four different microenvironmental conditions, (i) 
low growth but high death, (ii) high growth and high death, 
(iii) high growth and low death, and (iv) low growth and low 
death. The predicted pro-growth outputs reflect different 
contexts. For example, the value is low in the 
micrioenvironment (i) and increases in growth favoring 
microenvironments (e.g., (iii)). The microenvironment (iv) 
pushes cells to an inactive state by decreasing all protein 
levels (Fig. 2).  
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Figure 2. A:  Changes of Weights from internal proteins to pro-growth output (proG) in a representative in silico cancer cell from cyclic, low, high growth 
factor microenvironment over 200 generations. B: Predicted protein activity and pro-growth output of normal cell in four different microenvironments 
indicated by the label on the top. C: Predicted protein activity as well as pro-growth output of normal and cancerous cell line (1-3) in microenvironment 
condition (iii), the high growth factor and low death factor condition. 

Next, we evolve the normal network under different 
microenvironmental constraints to derive a cancer-signaling 
network. The network is evolved in three different 
microenvironments ((i) cyclic, (ii) low growth/high death, 
(iii) high growth/low death) to generate three different in 
silico cancer cell lines (cell line 1- cell line 3).  We compare 
evolved weights of a representative in silico cancer cell from 
each microenvironment (Figure 2). The weights between 
internal proteins and pro-growth output seem to be 
increasing. We then compare the typical protein level of the 
normal network and three evolved cell lines (Fig. 2) in the 
high growth factor & low-death factor microenvironment 
(iii). Cell line 1 has a significantly lower than normal 
expression of the inhibitor protein (cyan) which suggests 
that it may harbor an inactivating mutation. Cell line 2 may 
have activating mutations in RAF and ERK as well as an 
inactivating mutation in PI3K. The expression of cell line 3 
is only slightly different from that of a normal cell. Since 
cell line 3 was evolved in the grow-promoting environment, 
only a slight change in the network was sufficient to satisfy 
the given criteria (i.e., high pro-growth output).  

III. QUICK GUIDE TO THE METHODS  

The network consists of two microenvironmental input 
nodes (growth factor and death signal), and two 
phenotype output nodes (pro-growth and pro-death), and 
several nodes that represent intra-cellular proteins. Only 
the internal nodes contain recurrent interactions. The rates 
of change of both protein level and phenotypes are 

determined as an additive linear combination of its 
neighbors weighted by interaction strength (W), which is 
described by   
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where � is a decay rate. The transfer function � was 

considered ���� � �

��	���
� to account for saturation 

effect. Of note, �� and �
 are external pro-growth and 
pro-death inputs.  

 To obtain a weight matrix, we use Monte Carlo 
simulation. A weight matrix is initialized with random 
numbers. With the initialized weight, we solve equation 
(1). Then we randomly select a weight element and 
perturb it. With this perturbed weight, equation (1) is 
solved again. The steady state solution with the perturbed 
weight and the one with the unperturbed weight are used 
to evaluate a pre-defined cost function. If the cost is closer 
smaller, the perturbation is accepted. Otherwise, the 
perturbation is discarded. The process is iterated until 
convergence.  

A. Derivation of normal cell weight matrix 

In a normal cell, we assumed that the phenotype of the 
cell is directly regulated by microenvironmental cues. In 



  

other words, for a normal cell in a growth promoting 
microenvironment, it is more likely to reproduce. In a 
growth inhibiting or death promoting environment, a cell is 
less likely to divide and will have a higher chance of cell 
death. We model these phenomena using a cost function � � ��� 
 ��� � |�
 
 ��|, where �� and �
 are given pro-
growth and pro-death inputs, respectively and �� and �� are 
pro-growth and pro-death outputs, respectively. 

B. Derivation of cancer cell weight matrix 

A mutation is modeled by randomly perturbing each 
element of the normal cell weight matrix. To model higher 
growth rate of a cancer cell, a new cost function � � 1 
 �� 
was employed. Cell line 1 is evolved in condition (i), cell 
line 2 in (ii), and cell line 3 is evolved in the condition (iii).  

IV. OTHER APPLICATIONS  

Artificial neural networks have been used as a machine 
learning approach for the detection of heart abnormalities 
(28-30) and cancer prediction (31-41). Our approach was 
also previously used to investigate the impact of the 
microenvironment on cancer growth and evolution (42-46), 
where the neural networks were embedded into an individual 
cell based model, hybrid cellular automata model, which 
allows for mutation in the cancer cells and subsequent 
selection by the microenvironment. A recent study utilizing 
similar approach highlighted the impact of targeted therapy 
on cell signaling heterogeneity (47). 
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