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ABSTRACT 

The locations of active DNA replication origins in the human genome, and the 

determinants of origin activation, remain controversial. Additionally, neither the 

predominant sites of replication termination nor the impact of transcription on 

replication-fork mobility have been defined. We demonstrate that replication initiation 

occurs preferentially in the immediate vicinity of the transcription start site of genes 

occupied by high levels of RNA polymerase II, ensuring co-directional replication of the 

most highly transcribed genes. Further, we demonstrate that dormant replication origin 

firing represents the global activation of pre-existing origins. We also show that DNA 

replication naturally terminates at the polyadenylation site of transcribed genes. During 

replication stress, termination is redistributed to gene bodies, generating a global re-

orientation of replication relative to transcription. Our analysis provides a unified model 

for the coupling of transcription with replication initiation and termination in human cells. 
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INTRODUCTION 

Since the identification of cis-acting sequences responsible for the definition of replication 

origins in S. cerevisiae (Stinchcomb et al., 1979), significant effort has been applied to identify 

analogous determinants of replication initiation in human cells (Hyrien, 2015; Prioleau and 

MacAlpine, 2016). However, although origins have been observed via several independent 

techniques to be enriched close to transcribed genes and a range of other chromatin features 

(Besnard et al., 2012; Dellino et al., 2013; Langley et al., 2016; Petryk et al., 2016), a coherent 

model that encompasses both origin specification and activation has not emerged. Throughout 

eukaryotes, many more replication origins are licensed by MCM2-7 loading in G1 than are 

required to complete S-phase (Donovan et al., 1997; Edwards et al., 2002). The pool of excess 

MCMs is required for survival when dNTPs are depleted by the ribonucleotide reductase 

inhibitor hydroxyurea (HU) (Ge et al., 2007), and has been proposed to allow the firing of 

‘dormant’ replication origins that rescue genome replication after replication fork stalling. The 

identities of these dormant origins, and how they differ from constitutive origins, have not been 

defined. 

 

DNA is a one-dimensional template that can be simultaneously acted upon by the replication 

and transcription machineries. The orientation of essential genes in prokaryotes is biased to 

avoid head-on collisions between these two processes (Rocha, 2003); among eukaryotes, 

budding yeast and C. elegans show statistical orientation bias of the most highly transcribed 

genes to the co-directional orientation (Osmundson et al., 2017; Pourkarimi et al., 2016), and 

significant co-orientation of transcribed genes has been noted in human cells (Hamperl et al., 

2017; Petryk et al., 2016). Head-on replication-transcription conflicts are deleterious in 

eukaryotes, leading to increased DNA damage (Hamperl et al., 2017) and genomic 

rearrangements (Tran et al., 2017). The mechanisms by which origin location is specified to co-
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orient replication with transcription in diverse human cell types, and the impact of co-directional 

transcription on replication-fork progression through genes, remain speculative. 

 

Here, by using Okazaki fragment sequencing (Ok-seq) to infer the direction of replication-fork 

movement, we define transcription initiation efficiency and gene length as independent 

determinants of replication origin location and firing efficiency, and show that origin firing occurs 

close to the transcription start site (TSS), ensuring co-oriented replication of the most highly 

transcribed genes. We additionally show that dormant origins correspond to constitutive origins. 

Further, we determine the existence of widespread replication-fork stalling due to co-oriented 

replication-transcription conflicts at transcription termination sites (TTS) under unperturbed 

conditions, and in gene bodies during replication stress.  

 

RESULTS 

Using Ok-seq, we and others have reported on replication initiation (McGuffee et al., 2013; 

Petryk et al., 2016; Pourkarimi et al., 2016), replication elongation (Osmundson et al., 2017)  

and lagging-strand processing (Osmundson et al., 2017; Smith and Whitehouse, 2012). To 

investigate replication initiation and termination in untransformed human cells, we performed 

Ok-seq (Petryk et al., 2016) on hTERT-immortalized RPE-1 cells. Previous genome-wide 

studies of metazoan replication show limited agreement in origin calls (Hyrien, 2015; Prioleau 

and MacAlpine, 2016), with the exception that all identify significant enrichment of origins close 

to transcribed genes. Therefore, instead of aiming to identify all potential sites at which 

replication can possibly initiate in the human genome, we focused our analysis on the efficiency 

of replication initiation and termination in transcribed regions. 

 

Replication initiates in the immediate vicinity of high-conflict transcription start sites 
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Rightward-moving replication forks generate Okazaki fragments (OFs) that map to the Crick 

strand, while leftward-moving forks generate Watson-strand fragments (Fig. 1A). Therefore, a 

replication origin will manifest as an increase in the proportion of OFs mapping to the Crick 

strand: the efficiency and spatial localization of origin firing will impact the magnitude and 

gradient of this transition, respectively (Fig. 1B).  OFs showed no strand bias around random 

genomic loci (Fig. S1). Consistent with global origin activity at TSS, meta-analysis of OF Crick 

strand bias over a 50 kb window surrounding all 17920 annotated TSS showed a symmetrical 

transition from predominantly leftward- to predominantly rightward-moving forks (Fig. 1C). 

However, separate analysis of Watson- and Crick-strand genes revealed a profound asymmetry 

based on gene orientation (Fig. 1D). Therefore, for all subsequent analyses we considered OF 

strand bias relative to gene orientation, such that transcription occurs from left to right and OF 

polarity is computationally reversed for Crick-strand genes. All data for TSS analysis were highly 

reproducible across two biological replicates (Fig. S2). 

 

By analyzing the first derivative of replication direction, we can directly infer the extent of 

replication initiation at each position relative to the meta-TSS. We observe that, while 

individually low but cumulatively high levels of initiation occur over a wide region upstream of 

TSS, initiation is strongly biased to a ~5 kb region immediately adjacent to the TSS itself and is 

under-represented or absent in gene bodies (Fig. 1E, schematic in Fig. 1F).  

 

To investigate the effect of transcription on TSS-proximal replication initiation, we separated 

genes into quartiles based on RNA-seq read density (FPKM, Fragments Per Kilobase of 

transcript per Million mapped reads) across the gene body in RPE-1 cells (Harenza et al., 

2017). TSS of genes with higher FPKM showed significantly greater change in strand bias than 

TSS of weakly or non-transcribed genes (Fig. 1G). However, we also observed a significant 
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length dependence in this effect, such that short genes have weaker origin activity than long 

genes with equivalent RNA-seq read density (Fig. 1H). Gene length and FPKM are not 

correlated in RPE-1 cells (r = -0.044): therefore, gene length and transcript number 

independently correlate with origin firing efficiency. While (assuming equal RNA decay rates) 

FPKM reports the number of RNA molecules synthesized, the number of RNA polymerases 

occupying a gene for a given FPKM is linearly related to the length of the gene – i.e. a 50 kb 

gene producing one transcript per minute will be occupied by ten times as many polymerases 

as a similarly transcribed 5 kb gene. We therefore analyzed OF strand bias around TSS 

separated by transcriptional volume (FPKM x gene length). Origin activity was strongly 

correlated with high transcriptional volume (Fig. 1I). All data from Fig. 1 were reproducible in 

previously published Ok-seq data from HeLa cells (Petryk et al., 2016) (Fig. S3). We note that 

the distance to the nearest downstream TSS or transcription termination site (TTS) – both of 

which are intrinsically dependent on gene length – are substantially stronger predictors of origin 

efficiency than the distance to the nearest upstream TSS or TTS, which are independent of 

gene length (Fig. S4). Therefore, the effect of gene length on origin efficiency does not simply 

reflect decreased passive replication from nearby ‘competitor’ origins.  We conclude that, in 

unperturbed human cells, the initiation of DNA replication is strongly biased towards the 

immediate vicinity of TSS that drive transcription of genes with high RNA polymerase II 

(RNAP2) occupancy. Thus, while transcription inherently creates conflicts with replication, the 

coupling of origin firing to RNAP2 occupancy ensures that these conflicts are in the co-

directional orientation.  

 

Modulation of constitutive origin efficiency during replication stress  

In response to replication stress, origin firing increases: this is generally interpreted as the 

activation of dormant origins (Blow et al., 2011). However, firing events during growth in 
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hydroxyurea (HU) have previously been reported to occur in the vicinity of transcribed genes 

(Karnani and Dutta, 2011). To analyze origin firing efficiency at TSS in the context of increased 

or decreased dormant origin usage, we treated cells with 0.2 mM HU for 4h before OF 

collection, and additionally depleted either of the Fanconi Anemia (FA) effector proteins, 

(Ceccaldi et al., 2016; Michl et al., 2016) FANCD2 or FANCI, by RNAi. This HU treatment 

regime has previously been shown to decrease average inter-origin distance without activating 

the checkpoint (Ge et al., 2007): we previously showed that knockdown of FANCI increases 

inter-origin distance in HU, reflecting reduced origin firing, while knockdown of FANCD2 weakly 

stimulates origin firing under the same conditions (Chen et al., 2015). In the absence of HU, 

knockdown of either FANCI or FANCD2 have little or no measureable effect on origin firing, cell 

cycle progression, or cell doubling (Chen et al., 2015). OF distributions around TSS showed a 

greater change in strand bias adjacent to high-volume TSS for HU-treated cells relative to 

untreated (Fig. 2A), consistent with further increased firing efficiency of efficient origins. The 

rapid decrease in strand bias downstream of the TSS can be explained by increased intragenic 

fork stalling and is addressed below (Fig. 3). Knockdown of FANCI in HU-treated cells reduced 

strand bias around high-volume TSS, while knockdown of FANCD2 very slightly increased it 

(Fig. 2B & S2C). Both short and long genes were affected (Fig. S5). Therefore, under conditions 

of globally increased or decreased origin firing, we find that the firing efficiency of the most 

active origins is the most strongly affected. Our data suggest that intragenic replication origins 

are not required for widespread dormant origin firing, and that dormant origins are in fact 

constitutive origins with altered firing efficiency. 

 

Replication terminates at transcription termination sites 

We reasoned that the loss of OF strand bias observed at a gene-length-dependent distance 

downstream of the TSS (Fig. 1H) might result from replication termination at or near the 3’ ends 
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of transcribed genes. To test this, we queried OF distributions around the annotated gene 3’ end 

(hereafter referred to as the TTS). The TTS corresponds to the site of pre-mRNA cleavage and 

polyadenylation, and may not directly reflect the site of RNAP2 dissociation for genes that rely 

on Xrn2-mediated transcriptional termination (Proudfoot, 2016). The number of RNA 

polymerases terminating transcription should equal the number initiating at the TSS; therefore, 

we analyzed OF strand bias around the TTS of genes separated by quartiles based on FPKM, 

which serves as a proxy for initiation frequency. Consistent with widespread replication 

termination at the TTS of transcribed genes, we observed a dramatic, transcription-dependent 

reduction in replication forks moving in the direction of transcription through the gene body, 

occurring precisely at the TTS (Fig. 3A). This termination signal was surrounded by an increase 

in left-to-right polarity, consistent with diffuse origin firing occurring a variable distance away at 

nearby TSS (Fig. 3B).  

 

Because RNA-DNA hybrids (R-loops) have been proposed to modulate both replication-fork 

stalling and DNA damage, we analyzed genes separately based on their likely levels of R-loop 

formation at TTS in RPE cells. Most differences in R-loop formation between cell types and 

even species can be attributed to differences in transcription (Sanz et al., 2016): therefore, we 

separated genes with FPKM above the median level in RPE cells into two bins based on the 

DRIP-seq signal observed ±10 kb from their TTS in HeLa cells (Hamperl et al., 2017), to obtain 

high- and low-DRIP TTS gene sets (Fig. 3C). We note that the genes in our high-DRIP set are 

significantly shorter than those in our low-DRIP set (Fig. 3D), possibly reflecting some 

contribution of signal from TSS-proximal R-loops in short genes. Analysis of OF strand bias 

around the TTS of high- and low-DRIP genes indicated equivalent replication termination 

regardless of the propensity to form R-loops (Fig. 3E). The upward gradient observed upstream 

of the TTS for high-DRIP genes is due to origin firing at TSS, which are closer to TTS due to the 
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length difference observed in Fig. 3D. Data from Fig. 3 A-E were reproducible in previously 

published Ok-seq data from HeLa cells (Petryk et al., 2016) (Fig. S6), and are therefore not 

attributable to differences in R-loop formation between cell types. Thus, we conclude that 

replication naturally terminates at the 3’ end of transcribed genes, and that termination is 

independent of R-loop formation. Replication origins are located at variable distances from TTS: 

therefore, this effect must be driven by replication-fork stalling or arrest as opposed to simply by 

replication initiation kinetics (McGuffee et al., 2013). 

 

We next analyzed replication-fork mobility around TTS in the context of growth in 0.2 mM HU 

(Fig. 3F, schematic in Fig. 3G). All data for TTS were again reproducible across replicate 

datasets (Fig. S7). We observed both an increase in the overall level of gene-associated 

replication termination, and a change in the predominant location of termination from the TTS to 

the gene body. Consistent with this observation, analysis of OF strand bias around TSS 

indicates that the proportion of replication forks moving co-directionally through gene bodies 

decreases more rapidly in the presence than the absence of 0.2 mM HU (Fig. 2A), but is 

unaffected by knockdown of FANCI or FANCD2 (Fig. 2B). Thus, replication termination is 

significantly altered by 0.2 mM HU: we propose that replication forks normally stall upon 

encountering RNAP2 paused at the TTS, but that intragenic replication-transcription conflicts 

become the predominant cause of replication-fork stalling under replication stress.  

 

DISCUSSION 

Co-orientation of replication and transcription in multicellular eukaryotes 

Our data suggest that DNA replication initiation is inherently coupled to transcription initiation, 

such that replication preferentially initiates immediately adjacent to the TSS of genes with high 

RNAP2 occupancy during S-phase (model, Fig. S8). Spatially limiting initiation in transcribed 
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genomic regions to the TSS of the most highly transcribed genes ensures that these show the 

strongest bias towards co-directional replication in any proliferative cell type, regardless of its 

transcriptional profile. Activation of additional genes, for example during differentiation or 

oncogenesis (Macheret and Halazonetis, 2018), would concurrently change the replication 

profile of the cell to mitigate conflicts with transcription. Many unicellular organisms, including 

prokaryotes and S. cerevisiae define replication origins via the use of cis-acting sequences: in 

these organisms, the orientation of conflict-prone genes has been biased by evolution (Merrikh, 

2017; Osmundson et al., 2017; Paul et al., 2013), presumably as a result of damage induced by 

head-on collisions followed by re-orientation (Srivatsan et al., 2010). However, the use of such 

cis-acting sequences in an organism with many transcriptionally distinct proliferative cell types 

would be problematic because it would enforce deleterious head-on replication-transcription 

conflicts in a cell-type-specific fashion. Thus, while unicellular organisms can co-orient 

transcription with replication by genome evolution, the alternative strategy – to co-orient 

replication with transcription – is more robust for organisms with many distinct transcriptomes. 

  

 A simple mechanism to explain the increased replication origin activity of the genes occupied 

by the most RNAP2 is that chromatin accessibility independently determines both MCM2-7 

loading and the recruitment of replisome components to these licensed replication origins. We 

note that chromatin accessibility, as opposed to RNA-seq read density, has previously been 

reported as the best correlate of replication timing (Hansen et al., 2009). Under conditions of 

global origin activation or repression, a proportionally similar activation/repression of all origins 

will lead to the greatest change in origin efficiency occurring at origins with intrinsically high 

firing efficiencies (Fig. 2). Thus, dormant origin firing globally maintains co-orientation of 

replication and transcription, and can simply be considered as a change in average origin 

efficiency as opposed to the specific regulation of distinct classes of origin.  
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There are fewer actively transcribed genes than the number of origins required to replicate the 

human genome.  Inactive regions of the genome lack both spatially localized regions of highly 

accessible chromatin and a requirement to co-orient replication with transcription: therefore, 

specifically localized replication origins would serve no biological purpose in these regions. 

Transient chromatin opening, likely driven by low-levels of pervasive transcription factor binding 

and/or transcription, could ensure a sufficient density of MCM2-7 loading and activation to 

support genome duplication in these regions through a distribution of origin firing events that 

largely disfavors initiation at specific individual sites. We speculate that the poor overlap 

between genome-wide origin mapping studies (Prioleau and MacAlpine, 2016) is due to a lack 

of localized origin firing outside highly transcribed regions as opposed to an intrinsic flaw with 

any origin detection approach. 

 

Intuitively, replication-fork initiation at TSS followed by stalling or arrest at TTS might impair the 

replication of intragenic regions flanked by convergent, highly transcribed genes. However, the 

ability of both RNA polymerases (Gros et al., 2014; Gros et al., 2015) and the replicative 

helicase (Douglas et al., 2018) to push loaded MCM2-7 double hexamers would lead to a 

gradual redistribution of un-fired origins towards these intragenic regions, where they could 

serve as a pool of licensed ‘rescue’ origins. 

 

Re-orientation of replication-transcription conflicts during replication stress 

Although DNA replication and transcription are, on average, co-oriented throughout the actively 

transcribed regions of the genome, we observe a robust replication termination signal at the 

TTS of transcribed genes (Fig. 3). Therefore, co-oriented collisions between the replication and 

transcription machineries are highly prevalent, and RNAP paused at the 3’ ends of genes acts 
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as a physical barrier to even co-directional replication-fork progression. Replication-fork stalling 

due to co-oriented collisions with RNA polymerase at gene 3’ ends has previously been 

observed in prokaryotes (Mirkin et al., 2006)  but not, to our knowledge, in eukaryotes. Unlike in 

prokaryotes (Lang et al., 2017), but similarly to replication-fork arrest at tRNA genes in yeast 

(Osmundson et al., 2017), R-loops do not appear to impede replisome mobility despite their 

impact on the ultimate outcome of collisions (Tran et al., 2017; Hamperl et al., 2017; Paulsen et 

al., 2009; Stirling et al., 2011). We note that independent screens in HeLa cells (Paulsen et al., 

2009) and S. cerevisiae (Stirling et al., 2011) identified RNA splicing and 3’ end formation 

factors as preventative against DNA damage. It will be interesting to determine the relative 

contributions of R-loop modulation and replisome mobility to the increased damage when RNA 

processing is impaired. 

 

The locations of replication origins are minimally affected by hydroxyurea-mediated dNTP 

depletion, but the progression of replication forks through genes is severely impeded (Fig. 2A, 

3F). We propose that, during replication stress, co-directional replication-transcription conflicts 

within the gene body become more frequent due to reduced replisome speed, leading to 

intragenic replisome stalling. Under these conditions, replication of gene 3’ ends must be 

rescued by a head-on fork. Such a global re-orientation of replication-transcription conflicts 

towards the head-on orientation would greatly increase DNA damage and ATR signaling, which 

are strongly orientation-dependent (Hamperl et al., 2017). Therefore, we propose that conflict 

re-orientation, as opposed to unscheduled dormant origin firing or impaired replication fork 

movement per se due to replication-transcription conflicts, underlies the toxic effects of 

replication stress and the transcription-dependent fragility of long genes (Helmrich et al., 2011).  
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METHODS 

Cell Culture/EdU labeling 

hTERT immortalized RPE-1 cells (ATCC) were grown in Dulbecco's modified Eagle's medium: 

Nutrient Mixture F-12 (DMEM/F-12) media (Life Technologies) supplemented with 10% fetal 
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bovine serum (FBS), 3% sodium bicarbonate and 1% Pen-Strep. In brief, exponentially growing 

cells of 50-60% confluency were plated in 150mm dishes (approximately 15-20 plates per 

sample/replicate). siRNA transfections were done according to (Chen et al., 2015). EdU labeling 

was done for 2 min (4 min for low-dose HU) at 20 µM final concentration. Cells were either 

untreated or treated with low-dose HU (200 µM final concentration). 

Ok-seq 

Okazaki fragments were purified and libraries generated essentially as described (Petryk et al., 

2016), with the most major modification being the use of gel-purified adaptor duplexes from 

(Smith and Whitehouse, 2012). Libraries were sequenced using the HiSeq-2500 platform and 

reads were aligned to the hg19 build of the human genome. 

 

Data analysis 

TSS and TTS locations were obtained from the UCSC genome browser http://genome.ucsc.edu 

– genes devoid of uniquely mapping OF reads on both the Watson and Crick strand through the 

entire gene body were excluded from analysis. Genes were separated by RNA-seq read density 

in RPE-1 cells, length or DRIP-seq read density in HeLa cells as described in the main text.  
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FIGURE LEGENDS  

 

Figure 1. Replication initiates preferentially at the TSS of long, transcribed genes: 

transcriptional volume predicts replication origin efficiency 

 

(A) The relationship between replication direction and Okazaki fragment (OF) strand.  

(B) Expected OF distributions around replication origins.  

(C) Percent of OFs mapping to the Crick strand across a ±50 kb window around all transcription 

start sites (TSS) in the human genome. All data in figures 1-3 are from asynchronously dividing 

hTERT-immortalized RPE-1 cells, and are displayed using 1 kb bins.  

(D) Percentage of OFs mapping to the Crick strand around the TSS of Watson (W) or Crick (C) 

genes.  

(E) First derivative of Okazaki fragment strand bias around TSS, oriented such that transcription 

occurs from left to right. Data are smoothed across two 1 kb bins. 

(F) Schematic representation of upstream and TSS-proximal replication initiation inferred from 

data in Figure 1. 

(G) Percentage of replication forks moving left to right around TSS binned by RNA-seq read 

depth quartile from (Harenza et al., 2017) (panels i-iv).  

(H) Percentage of replication forks moving left to right around TSS of actively transcribed genes 

(FPKM > median, (Harenza et al., 2017)) binned by length according to quartiles for all genes 

(panels i-iv).  

(I) Percentage of replication forks moving left to right around TSS binned by transcriptional 

volume (FPKM from (Harenza et al., 2017) x gene length).  
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Figure 2. Global modulation of origin activity under conditions that increase or suppress 

dormant origin firing. 

 

(A) Percentage of replication forks moving left to right around TSS binned by transcriptional 

volume, for cells grown in the absence (black) or presence (red) of 0.2 mM hydroxyurea (HU) 

for 4h before OF collection. 

(B) Percentage of replication forks moving left to right around TSS binned by transcriptional 

volume, for cells treated with siRNAs against FANCD2 (green), FANCI (blue), or mock-treated 

(black), grown in 0.2 mM hydroxyurea for 4h before OF collection. 

 

 

 

Figure 3. Widespread, R-loop-independent replication-fork termination occurs at the 3’ 

ends of transcribed genes under unperturbed conditions. Termination in gene bodies 

increases under replication stress 

 

(A) Percentage of replication forks moving left to right around transcription termination sites 

(TTS) binned by RNA-seq read depth quartile from (Harenza et al., 2017) (panels i-iv).  

(B) Schematic representation of replication termination at TTS, with initiation at proximal TSS 

up- and downstream. 

(C) DRIP-seq signal from (14) around TTS of actively transcribed genes (FPKM from (18) > 

median) separated into high (purple) and low (brown) DRIP bins based on DRIP-seq signal 

(Hamperl et al., 2017)  ±10kb from the TTS. 

(D) Length distribution of actively transcribed high-DRIP vs low-DRIP genes 
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(E) Percentage of replication forks moving left to right around TTS of actively transcribed (FPKM 

from (Harenza et al., 2017) > median) high-DRIP vs low-DRIP genes. 

(F) (A) Percentage of replication forks moving left to right around (TTS) binned by RNA-seq 

read depth quartile from (Harenza et al., 2017) (panels i-iv), for cells grown in the absence 

(black) or presence (red) of 0.2 mM hydroxyurea (HU) for 4h before OF collection. 

(G) Schematic representation of the change in replication termination observed under 

replication stress.  
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Figure 1, Chen, Keegan, Kahli et al. 
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Figure 2, Chen, Keegan, Kahli et al. 
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Figure 3, Chen, Keegan, Kahli et al. 
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Figure S1, Chen, Keegan, Kahli et al. 
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Figure S1. Okazaki fragments show no strand bias around random genomic loci
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Figure S2, Chen, Keegan, Kahli et al.  
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Figure S2. Reproducibility of TSS data across replicate datasets
(A) Data were analyzed as in Fig. 1B, for two replicate datasets.
(B) Data were analyzed as in Fig. 1G, for two replicate datasets.
(C) Data were analyzed as in Fig.2B, using the second replicate datasets for each
knockdown condition.
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Figure S3, Chen, Keegan, Kahli et al. 
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Figure S3. Replication initiation is most efficient at high-volume TSS in HeLa cells
(A) Data were analyzed as in Fig. 1C, using Ok-seq data from HeLa cells (7)
(B) Data were analyzed as in Fig. 1D, using Ok-seq data from HeLa cells (7)
(C) Data were analyzed as in Fig. 1E, using Ok-seq data from HeLa cells (7)
(D) Data were analyzed as in Fig. 1G, using Ok-seq data from HeLa cells (7)
(E) Data were analyzed as in Fig. 1H, using Ok-seq data from HeLa cells (7)
(F) Data were analyzed as in Fig. 1I, using Ok-seq data from HeLa cells (7)

All gene expression data for HeLa cells are from the EBI gene expression atlas
https://www.ebi.ac.uk/gxa/home - absent values for FPKM were set to zero.
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Figure S4. The effect of gene length on TSS-proximal origin firing efficiency is not solely
a result of passive replication
(A) Percentage of replication forks moving left to right around TSS of actively transcribed genes
(FPKM (18) > median), where the TSS of the most proximal upstream gene is under (black) or over
(green) 50 kb from the TSS being analyzed.
(B) Percentage of replication forks moving left to right around TSS of actively transcribed genes
(FPKM (18) > median), where the TTS of the most proximal upstream gene is under (black) or over
(red) 50 kb from the TSS being analyzed.
(C) Percentage of replication forks moving left to right around TSS of actively transcribed genes
(FPKM (18) > median), where the TSS of the most proximal downstream gene is under (black) or over
(green) 50 kb from the TSS being analyzed.
(D) Percentage of replication forks moving left to right around TSS of actively transcribed genes
(FPKM (18) > median), where most proximal downstream TTS is under (black) or over (red) 50 kb
from the TSS being analyzed. Note that this TSS-TTS distance is equivalent to the length of the gene.
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Figure S5. The effect of FANCI or FANCD2 knockdown is not related to gene length
or increased replication termination
Percentage of replication forks moving left to right around TSS binned by transcriptional volume
(FPKM (18) x gene length) for cells treated with siRNAs against FANCD2 (green), FANCI (blue), 
or mock-treated (black), grown in 0.2 mM hydroxyurea for 4h before OF collection.
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Figure S6, Chen, Keegan, Kahli et al. 

Figure S6. Transcription-dependent, R-loop-independent replication termination at TTS in
HeLa cells 
(A) Data were analyzed as in Fig. 3A, using Ok-seq data from HeLa cells (7)
(B) Data were analyzed as in Fig. 3C: DRIP-seq data are from HeLa cells (14)
(C) Data were analyzed as inFig. 3E, using Ok-seq data from HeLa cells (7): : DRIP-seq
data are from HeLa cells (14)
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Figure S7. Reproducibility of TTS data across replicate datasets
(A) Data were analyzed as in Fig. 3A, for two replicate datasets.
(B) Data from cells grown in 0.2 mM HU for 4h before OF collection were analyzed
as in Fig. 3F, for two replicate datasets.
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Figure S8, Chen, Keegan, Kahli et al. 
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Figure S8. Model.
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