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Multicellular organisms develop from the fertilized eggs through numbers of cell divisions.

While the pattern of cell division has specific rules for healthy development, some fluctuations

for this pattern are allowable. In order to uncover this robust mechanism of development,

the position of cells in each embryo must be analyzed quantitatively. In the embryonic de-

velopmental biology, various studies are attempted to acquire the quantitative criteria from

time-series three-dimensional microscopic images by image analysis such as segmentation,

to understand the mechanism of development. Unfortunately, due to the fact of inaccuracy

of nuclei detection and segmentation, it is a hard task to evaluate an embryo quantitatively

from bioimages automatically. Based on these demands of quantitative analysis, we devel-

oped QCA Net, which accurately performs nuclear segmentation of three-dimensional fluo-

rescence microscopic images for early-stage mouse embryos. QCA Net is based on Convolu-
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tional Neural Network. We trained QCA Net using a part of one early-stage mouse embryo.

As a test, QCA Net performed segmentation of different 11 mouse embryos images. We suc-

ceeded in accurately acquiring the shape of the nucleus without fusion of nuclear regions.

Besides, we achieved accurate extraction of the time-series data of nuclear number, volume,

surface area, and center of gravity coordinates as the quantitative criteria of mouse devel-

opment, from the segmentation images acquired by QCA Net. To our surprise, these results

suggested that QCA Net recognized and distinguished the nucleus and a polar body formed

in meiosis process. We consider that QCA Net can drastically contribute to performing seg-

mentation of various bioimages in the embryonic developmental biology. The various quan-

titative criteria obtained from segmented images can uncover various unknown mechanisms

of embryonic development, such as the robust mechanism of development.
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The recent improvement of the microscopy and bioimaging technologies established tech-

nologies for live cell imaging1–7. This technology helped to get sufficient amount and quality

of time-series three-dimensional (3D) fluorescence microscopic images of the development. In

the embryonic developmental biology, various studies are attempted to acquire the quantitative

criteria such as abnormal chromosome numbers, the synchrony of cell division, and the rate of

development8–10. These studies analyzed time-series 3D microscopic images of the developmental

embryo, whose cell nucleus is labeled fluorescently, utilizing image analysis such as segmen-

tation. The previous segmentation methods in bioimage processing consisted of many types of

image processing such as filtering, thresholding, morphological operation, watershed, and mask

processing4, 10–13. These methods required parameter value to execute image processing. Even

though the optimal value of parameters depends on the features of each image and the imaging

condition of the microscopy system, the value is arbitrarily set by the analyst, and optimization of

this value tends to be neglected.

Keller et al. implemented DSLM-SI (digital scanned laser light sheet fluorescence mi-

croscopy with incoherent structured illumination microscopy) to perform time-lapse observation of

Drosophila early-stage embryos4. They performed nuclear segmentation of time-series images ac-

quired by DSLM-SI. Their algorithm was mainly based on image processing. The images obtained

by DSLM-SI have a high signal-to-noise ratio (SNR). Besides, Drosophila embryos are transparent

compared to that of the model organisms such as a mouse. However, the segmentation accuracy

was drastically decreasing as the development of embryo was proceeding (95% (24.5 hours post

fertilization (h.p.f.)), 73% (4.57 h.p.f.), and 54% (711.5 h.p.f.)). These results suggested that image
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analysis of developed embryos is difficult. The reason for making image analysis difficult is that

time-series 3D fluorescence microscopic images have complicated three image features. Firstly,

the fluorescence intensity decreases along the z-axis because the inside of the embryo is not just

transparent. Secondly, the fluorescence intensity decreases along the time axis due to the fading

of the fluorescent substance. Thirdly, the high spatial resolution cannot be achieved because of

keeping a balance with cytotoxicity and photographing speed. These complicate image features

are difficult for an analyst to grasp correctly. Therefore, the selection of appropriate image pro-

cessing is the hard task. In other words, the current low accuracy is attributed to that the change

in the spatiotemporal features of time-series 3D fluorescence microscopic image is not correctly

grasped.

In recent years, the analysis methods for various bioimages using Convolutional Neural Net-

work (CNN) which is one of deep learning algorithms in machine learning methodology have been

proposed14–20. CNN showed better performance than the previous methods in the field of image

analysis21. One of the critical advantages of CNN is to extract the image features useful for anal-

ysis automatically. CNN has also been applied to the segmentation methods of bioimage, and its

performance was superior to the previous methods14–18. Çiçek et al. implemented 3D U-Net based

on CNN and performed segmentation of Xenopus kidney tissue15. They created training data by

annotating each image with ”kidney tubule”, ”inside kidney tubule”, and ”background” in voxel-

wise manually. As a result of learning this training data, IoU (Intersection over Union) which is the

evaluation metric of segmentation achieved 0.723, and it was shown that 3D U-Net could perform

segmentation with high accuracy. Ho et al. performed segmentation of 3D fluorescent microscopy
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images which included nuclei of rat kidney labeled by the developed 3D CNN algorithm18. As a

result of learning, since the voxel accuracy achieved 0.922, it was shown that highly accurate seg-

mentation could be achieved. However, there remains a problem that a part of segmented nuclei

regions is fused with the other regions. These object fusing is disturbing to acquire the quantitative

criteria from bioimage.

These segmentation algorithms are based on Fully Convolutional Networks (FCN)22, which

consist of only convolution layers in CNN, and segmentation methodology by FCN is called se-

mantic segmentation. Since semantic segmentation gives the same label to objects of the same

class (Fig. 1 Semantic Segmentation), there arises the problem that regions are fused when neigh-

boring/overlapping objects are segmented23. For objects with organization level, semantic segmen-

tation is appropriate, but it is not suitable for objects with a cell or intracellular organelle level. On

the other hand, the segmentation methodology called for instance segmentation adds a different

label on objects of the same class (Fig. 1 Instance Segmentation). Therefore, instance segmenta-

tion is suitable for segmentation of cells and nuclei. However, because it is necessary to recognize

individual objects, instance segmentation is a difficult task compared with semantic segmentation

in general. Also, many instance segmentation methods using CNN proposed in the field of general

image recognition are complicated and difficult to apply to other fields24–26. Moreover, almost all

of these methods are targeting 2D images. For these reasons, there was no practical algorithm to

execute instance segmentation for 3D bioimages until now.

Therefore, we developed QCA Net as a new CNN based segmentation algorithm, which
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does not cause object fusions. Since QCA Net is a simple structure combining the conventional

semantic segmentation algorithms, it is an algorithm that can be easily applied to the analysis of

bioimages. We trained QCA Net by a part of one early-stage mouse embryo. As a test, QCA

Net performed instance segmentation of different 11 mouse embryos images. We succeeded in an

accurate acquisition of the shape of the nucleus without fusion of nuclear regions. Besides, we

succeeded in an accurate extraction of the quantitative criteria of mouse development, from the

instance segmentation images acquired by QCA Net. The extracted quantitative criteria are time-

series data of nuclear number, volume, surface area, and center of gravity coordinates. Surprisingly,

QCA Net did not only perform nuclear segmentation accurately but also performs segmentation of

nuclei alone, excluding polar bodies that are difficult to distinguish in image processing.

Results

Quantitative Criterion Acquisition Network (QCA Net) Our implemented algorithm was de-

fined as Quantitative Criterion Acquisition Network (QCA Net) that performs instance segmenta-

tion of 3D fluorescence microscopic images (Fig. 2). QCA Net consists of two subnetworks, which

are Nuclear Segmentation Network (NSN) and Nuclear Detection Network (NDN). NSN learned

the task of nuclear segmentation, and NDN learned the task of nuclear identification. The inputs

of QCA Net are time-series 3D fluorescence microscopic images. QCA Net executes instance

segmentation for the images one by one. When time-series 3D fluorescence microscopic images

are input, instance segmentation is performed at each time. The lower part of Fig. 2 showed an

example of instance segmentation for the 3D fluorescence microscopic image at four-cell stage.
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The segmentation task at each time consists of the following procedure. Initially, the input of

3D fluorescence microscopic image is preprocessed. Next, NSN performs semantic segmentation

of nuclear region, and NDN performs semantic segmentation of nuclear center region in parallel.

Finally, the estimated nuclear region by NSN is segmented by marker-based watershed from the

identified nuclear center region by NDN. Executed by these processes, instance segmentation at a

one-time point is achieved.

As shown in the upper part of Fig.2, inputting time-series images to QCA Net sequentially,

it outputs instance segmentation images at each time. QCA Net can extract the quantitative criteria

for mouse development from time-series instance segmentation images. These criteria are the

time-series data of the nuclear number, volume, surface area, and center of gravity coordinates.

Details of hyperparameters and learning methods of QCA Net were described in Methods.

Qualitative evaluation of QCA Net To evaluate the performance of QCA Net, we compared

the segmentation accuracy between QCA Net and 3D U-Net15, which is semantic segmentation

algorithm of 3D bioimage. QCA Net and 3D U-Net learned the same dataset which was sampled

from one early-stage mouse embryo. The creation of datasets was described in Methods.

We qualitatively compared segmentation results obtained by QCA Net and 3D U-Net (Fig.

3). QCA Net and 3D U-Net performed segmentation of mouse embryos used for learning. The 3D

fluorescence microscopic images of the segmentation target are at 16 cell stage and 50 cell stage

in mouse embryo whose cell nuclei fluorescently labeled (Fig. 3a, d). These mouse embryos were

different from the embryos used by learning. QCA Net performed instance segmentation of these
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embryos (Fig. 3b, e). In qualitative point of view, the nuclear region was divided correctly, and

QCA Net accurately performed instance segmentation. Similarly, 3D U-Net performed semantic

segmentation of these embryos (Fig. 2c, f). We evaluated that the segmented nuclear region was

fused, and 3D U-Net did not perform segmentation accurately.

The polar body has a nucleus, so it is fluorescently labeled. Therefore, it should be difficult

to exclude it from the segmentation result by general image processing. To achieve the purpose of

acquiring the quantitative criteria of mouse development, we did not add the polar bodies to training

data as the ground truth. We confirmed that the polar body was excluded in the segmentation result

(Fig. 3b). It suggested that QCA Net can distinguish and recognize the nucleus and the polar body.

On the other hand, although 3D U-Net learned the same training data as QCA Net, the polar body

was not excluded in the segmentation result (Fig. 3c). This point is described in Recognition of

polar bodies section.

QCA Net performed segmentation of time-series images of the mouse embryo used for learn-

ing (Supplementary Video 1). Early-stage mouse embryos form blastocysts during the develop-

mental process. The cells are very close together during the blastocysts stage, so image analysis is

complicated and challenging. The segmentation result showed that QCA Net performed segmen-

tation accurately although nuclei closely gathered during the blastocysts stage.

QCA Net and 3D U-Net performed segmentation of 10 different mouse embryos which were

not included in the learning datasets (Supplementary Fig. 1). The 3D fluorescence microscopic im-

ages of the segmentation target were at 8, 16, and 32 cell stage in mouse embryo whose cell nuclei
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fluorescently labeled (Supplementary Fig. 1a,d,g,j). Despite of the different mouse embryos from

the learned embryo, QCA Net accurately performed segmentation of the nuclear region (Supple-

mentary Fig. 1b,e,h,k). Also, QCA Net excluded the polar bodies indicated by the blue arrowheads

in Supplementary Fig. 1a,d,g, and precisely performed segmentation of the nuclei region. On the

other hand, there was much fusion of nuclear region in the segmentation result by 3D U-Net (Sup-

plementary Fig. 1c,f,i,l). This result also showed that the polar body was segmented like the

nucleus (Supplementary Fig. 1c,f,i blue arrowheads). The segmented polar body was one of the

causes for the false positive error. Based on these results, it was qualitatively shown that QCA Net

could perform instance segmentation with high accuracy.

QCA Net performed segmentation of time-series images of 10 different mouse embryos

which were not included in the learning datasets (Supplementary Video 2). The development of

mouse embryos had complicate characteristics such as the rate of development, nucleus arrange-

ment, shape, and fluorescence intensity. However, the segmentation result showed that QCA Net

could perform instance segmentation against these complicate characteristics robustly.

Quantitative evaluation of QCA Net We quantitatively compared segmentation accuracy of

learned QCA Net and 3D U-Net. In a correct answer of the segmentation, a voxel of a correct

object region was classified as an object region (True Positive, TP), or a voxel of a right back-

ground region was classified as a background region (True Negative, TN). On the other hand, in an

error answer of the segmentation, a voxel of a right background region was classified as an object

region (False Positive, FP), or a voxel of a correct object region was classified as a background
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region (False Negative, FN). According to these classifications, IoU which is the evaluation met-

rics of segmentation is defined by IoU = TP
TP+FP+FN , where TP, FP, FN denote the number of

true-positive voxels, false-positive voxels, and false-negative voxels respectively. IoU was conven-

tionally used in the segmentation task because IoU was a metrics for comprehensively measuring

the false-positive rate and the false-negative rate. However, since the IoU was calculated for each

image, it could not evaluate whether or not accurate segmentation was performed without fused

nuclei. So the IoU was not suitable metrics for evaluating instance segmentation. Therefore, we

used a metrics called MUCov24 based on the IoU for the evaluation of instance segmentation. The

MUCov is a metric calculated by dividing the total sum of the IoU for each segmented nucleus by

the nuclear number. It is defined by MUCov =
∑

i
1
N maxj IoU(yi, y∗j ), where N, y, y∗, i, j denote

the segmented nuclear number, the segmented nuclear region, the ground truth of nuclear region,

the label attached to the segmented nuclear (i = 1, . . . , N ), and the label attached to the ground

truth of nuclear region respectively.

We describe the result of evaluating the segmentation accuracy by QCA Net as instance

segmentation, and QCA Net without NDN and 3D U-Net as semantic segmentation. To evaluate

both semantic and instance segmentation, we used the metrics of IoU and MUCov. We evaluated

the segmentation accuracy of QCA Net, QCA Net without NDN, and 3D U-Net using images of 18

time points mouse embryos used for learning (Table. 1). The value of each metrics was calculated

for each time point, and its average and standard deviation were shown in Table. 1.

The IoU of QCA Net exceeded the IoU of 3D U-Net. 3D U-Net was reported that this could
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accurately perform semantic segmentation. This result showed that QCA Net was superior to the

current existed algorithm of segmentation. The main reason could be considered that QCA Net

performed parameter tuning using the Bayesian optimization27 and hyperparameters of QCA Net

used for learning (e.g., the optimization method, regularization) was different from 3D U-Net.

Detail of tuning and learning methods was described in Methods. Also, the IoU of QCA Net

slightly exceeded the IoU of QCA Net without NDN because QCA Net succeeded in exclusion of

false-positive nuclei using identification results by NDN.

The MUCov of QCA Net exceeded the MUCov of both QCA Net without NDN and 3D

U-Net. We considered that the MUCov of QCA Net without NDN and 3D U-Net were low caused

by the fusion of nuclear regions in the segmentation (Fig. 3 and Supplementary Fig. 1). NDN

performed nuclear identification with high accuracy, so QCA Net might precisely divide the fused

nuclear region based on the result of nuclear identification by NDN. The accuracy of instance

segmentation by QCA Net was affected by the accuracy of nuclear identification by NDN. We

evaluated the nuclear identification accuracy of NDN using F-measure (Supplementary Note 1

and Supplementary Table 1). F-measure is the metric that comprehensively measures the false-

positive rate and false-negative rate to evaluate nuclear identification. The average F-measure of

11 different mouse embryos was 0.915 in NDN, while the average F-measure was 0.856 in the

previous study10. Although the nuclear identification algorithm of the previous study performed

nuclear identification in same mouse embryos with high accuracy, the accuracy of NDN exceeded

its accuracy. So this result showed that the nuclear identification of NDN was superior to the

current existed algorithm regarding the accurate segmentation.
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Based on these results, it was quantitatively shown that QCA Net performed instance seg-

mentation with high accuracy. Details of the evaluation at each time point were shown in Supple-

mentary Table 2 and 3.

Acquiring quantitative criteria of mouse development by QCA Net To analyze the mechanism

of development, we need to acquire the location of the cells in individual embryos accurately.

Based on the location of the cells, various vital criteria for development can be extracted. In this

section, we describe the result of extracting the quantitative criteria of mouse development from the

time-series segmentation images acquired by QCA Net. As the quantitative criteria of the mouse

development, we extracted the time-series data of the nuclear number, volume, surface area, and

center of gravity coordinates because these are the critical quantitative criteria used in standard

embryonic development analysis (Fig. 4).

Initially, we evaluated the time-series data of the nuclear number (Fig.4a). Each series repre-

sented the result by QCA Net and the ground truth. The F-measure of nuclear identification accu-

racy indicated by this result was 0.932, and it was higher than the 0.898 which was the F-measure

of the previous study10. From this result, it was shown that QCA Net extracted the time-series data

of nuclear number with high accuracy.

Secondly, we evaluated the time-series data of the nuclear volume (Fig. 4b). Each series

represented the mean and the standard deviation of the nuclear volume. This result showed the

periodical tendency that the restoration of nuclear volume existed after its sharp decrease (Fig. 4b

green arrowheads). The same tendency was also shown in the nuclear volume of Zebrafish embryo
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in the previous study28. The previous study discussed that this tendency was caused by nucleus

aggregation and nuclear membrane collapse in anaphase in the physiological point of view. Based

on our result and previous study, QCA Net could correctly catch specific characteristic of anaphase

in development. Also, the nuclear volume at the two-cell stage from the pronuclear stage was about

7,000 µm3 (Fig. 4b from 0 days up to about 1.3 days). The previous study reports that the volume

of the mouse embryo at the two-cell stage was approximately 56,000 µm3 29. Therefore, the scale

of the nucleus volume was within the scale of the mouse embryo, and the nuclear volume of this

result was a reasonable value. These results showed that the time-series data of the nuclear volume

was accurately extracted.

Thirdly, we evaluated the time-series data of the nuclear surface area (Fig. 4c). Each series

represents the mean and the standard deviation. As with the time-series data of the nuclear volume,

the time-series data of the nuclear surface area showed the tendency mentioned above. Since the

nucleus is spherical, we considered that the result showed the same tendency similar with the

nuclear volume. Therefore, QCA Net accurately extract the time-series data of the nuclear surface

area.

Finally, we evaluated the time-series data of the nuclear center of gravity coordinates (Fig.

4d). The color shifts from cold color to warm color as the development of embryo was proceeding

in Fig. 4d. As the developmental process, the internal space expands and changes from morula to

blastocyst. Also, the exterior of the cell forming the spherical outer wall is called trophectoderm30.

The trophectoderm becomes the source of the extraembryonic tissue. During the developmen-
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tal process, it was observed that the internal space was expanded and the blastocyst was formed

(Fig. 4d). The time-series data of the nuclear center of gravity coordinates extracted by QCA Net

accurately showed this phenomenon.

Besides, we evaluated the quantitative criterion of 10 different mouse embryos not involved

in learning (Supplementary Fig. 2, 3, 4, and 5). These results showed the similar results to the

result of evaluation for the learned images. From these results, QCA Net could also acquire the

quantitative criteria from mouse embryos not involved in learning.

Recognition of polar bodies In early-stage embryos, polar bodies are formed in the process of

meiosis in oocytes. The polar body has the nucleus but hardly has cytoplasm. Also, the polar body

slowly degenerates at the developmental process and disappears naturally. Therefore, since polar

bodies may not be concerned with normal developmental process, we considered that they should

be excluded from segmentation targets. However, polar bodies tend to be extracted by image

processing because fluorescent proteins by microinjection of mRNA encoding target fluorescent

protein are introduced to polar bodies. Based on this fact, it is challenging to perform segmentation

only the nucleus excluding the labeled polar bodies in standard image processing.

QCA Net succeeded in performing segmentation of nuclei without polar bodies (Fig. 5). We

speculated the reason that QCA Net recognized the polar body which is difficult to be distinguished

from the nucleus. It is meaningful both biologically and image engineering to understand how to

recognize the polar body and exclude it from the segmentation result.
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The two cases that QCA Net recognizes polar bodies and excludes them from segmentation

results could be considered. The first case was that NSN and NDN excluded polar bodies (Fig.

5a,b,c). In both NSN and NDN, only nuclear regions were correctly identified, and polar bodies

were excluded. The second case was that NSN identified polar bodies, but NDN excluded polar

bodies (Fig. 5d,e,f). Even if NSN performed segmentation of the polar bodies as a false-positive

error when the NDN did not identify the polar bodies, the segmentation region of the polar bodied

was excluded in post-processing.

We considered the high accuracy of segmentation in QCA Net was achieved by the second

case. QCA Net independently identified nuclei by NSN and NDN. The watershed process using

the result of NDN was performed to divide the nuclear region segmented by NSN. Therefore, when

NDN did not identify the false-positive error of NSN, it was excluded in post-processing. Even if

NSN performed segmentation of the polar bodies, NDN did not identify them and excluded them

from the segmentation result. In this way, QCA Net could distinguish between nuclear and polar

bodies that are difficult to be distinguished in image processing. These results showed that QCA

Net could perform higher quality of analysis for various bioimages.

Discussion

Segmentation is an important and challenging task of bio-image analysis to uncover the biological

phenomenon. Although the segmentation accuracy was improved by the method based on the deep

learning algorithm14–18, these methods were based on semantic segmentation, and many problems,
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such as fusion of objects, remained by the semantic segmentation methodology. In this study, we

focused on this point and developed QCA Net which was the instance segmentation algorithm for

high-density cells or intracellular organelle in 3D images. QCA Net was a simple structure so

that the algorithm could be readily applied to various targets such as a microscopic image of a

bright field, phase contrast, and differential interference contrast. Particularly in nuclear detection

by NDN, we considered that NDN could estimate the central nuclear region because cells and

intracellular organelle have a patterned and straightforward shape. Since the method of NDN was

simple and powerful, in the case of bioimage analysis, there is no need to use a complicated object

detection algorithm as used in the field of general image recognition31, 32. This nuclear detection

algorithm was inspired by the idea based on the standard segmentation methodology11, 13.

In qualitatively and quantitatively, the methodology of instance segmentation by QCA Net

showed the effectiveness especially for high-density objects as compared with the previous method-

ology of semantic segmentation. The segmentation accuracy of QCA Net showed that IoU was

0.817 and MUCov was 0.801, which exceeded the segmentation accuracy of 3D U-Net15 (IoU was

0.665, MUCov was 0.334) which was the semantic segmentation algorithm of the representative

bioimage. The nuclear identification accuracy of NDN showed that F-measure was 0.915, which

exceeded the nuclear identification accuracy of the previous study10 (F-measure was 0.856) which

was the algorithm to identify nuclei in mouse embryos. Also, the quantitative criteria of mouse

development extracted by QCA Net were consistent with the previously biological knowledge in

many respects. By QCA Net, it is expected that the quality and throughput of analysis in the

embryo development field will be significantly improved.
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Finally, we describe the recognition of polar bodies in QCA Net. Relationships of polar bod-

ies in the development have been discussed for a long time33, 34. However, the precise explanation

why polar bodies exist in embryo was hardly reported. We showed that QCA Net recognized po-

lar bodies, so we considered that it was possible to trace only polar bodies in the developmental

process by applying QCA Net. Therefore QCA Net will be a powerful infrastructure tool in the

field of developmental biology in the future. On the other hand, the way to recognize the polar

bodies was not evident in this study. The main reason being that the regression of deep learning

was so complicated that the reason how this regression could correctly cope with the specific task

was veiled. Therefore, some researches tried to analyze learned features35, 36. Besides, the previous

study reported that each layer in the neural network had the role of specific image processing37.

Based on these researches, the regression by deep learning could be replaced as the combination

of specific image processing. If this combination is revealed and the layer which has the role to

distinguish nuclear and polar body is determined, the way of recognition for polar bodies will be

clear. It is more important than nothing to leave the black box in deep learning. In a study using

deep learning, the attitude to deepen understanding in this way is more important than anything

else.

Methods

Fluorescence image. The images for learning and evaluation were the time-series images of 11

mouse early embryos obtained by a confocal microscope. They were 5,522 images observed by 3D

fluorescence microscope in mouse embryos developing from the pronuclear stage to the maximum
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of 53 cell stages. Supplementary Table. 4 showed the condition of image acquisition. Each mouse

embryo showed different developmental rates and developmental stages (Supplementary Fig. 6).

Ground Truth creation. We manually created the ground truth from fluorescence microscopic

images at different 18-time points in 1 embryo using Fiji38. NSN and NDN learned the task of

nuclear segmentation and identification from the created ground truth. This embryo developed

from the pronuclear stage to 50 cell stage. Since polar bodies are not concerned with normal

developmental process, we excluded polar bodies from the ground truth. The ground truth to learn

the task of nuclear identification was a sphere region with a diameter of 5 voxels. The sphere

region was created based on the nuclear center of gravity coordinates. Supplementary Table. 5 and

Supplementary Fig. 7 showed the sampled 18-time point and these cell stage. The ground truth,

which compared the time-series data of the nuclear number, was created at each time point of 11

mouse embryos.

QCA Net overview. QCA Net consists of Nuclear Segmentation Network (NSN) that learned nu-

clear segmentation task and Nuclear Detection Network (NDN) that learned nuclear identification

task (Fig. 2). QCA Net performs instance segmentation of the time-series 3D fluorescence micro-

scopic images at each time point, and the quantitative criteria for mouse development are extracted

from the acquired time-series segmentation image.

We implemented QCA Net on Python 2.7 and used Chainer39 which is an open source frame-

work. We used NVIDIA Tesla K40 (745 MHz, 4.29 TFLOPS) and NVIDIA Tesla P100 (1189

MHz, 9.3 TFLOPS) for calculation of learning and segmentation. P100 is on Reedbush-H which
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is a calculation server of the University of Tokyo Information Infrastructure Center. The perfor-

mance of each GPU in parenthesis represents the operating frequency and single precision floating

point performance, respectively.

Pre-processing in QCA Net. We performed four pre-processing, (a) Normalization, (b) Mirror

padding, (c) Bicubic interpolation, (d) Data augmentation, to the input 3D fluorescence micro-

scopic images.

We performed (a) Normalization with the objective of preventing divergence of values and

gradient disappearance in learning. The value of each voxel to be normalized (I ′) is defined by

I ′ =
I − Imin

Imax − Imin
(1)

Where I defines a value of each voxel to be normalized, Imax defines maximum voxel value in the

image, and Imin defines minimum voxel value in the image. The value of I ′ is obtained for all the

voxels in the image, and the value range of the voxel value is [0, 1].

(b) Mirror padding is one of the methods padding around the image. Mirror padding is

performed by acquiring voxel values inside from m pixels from the edge of the image and extrap-

olating this mirror image to the outer edge. We performed (b) Mirror padding to fit the patch area

within the image even if the voxel of interest is out of the image. The patch size of QCA Net was

128 voxels, so the size of mirror padding was 64 voxels of half of the patch size.

Since the x, y, and z-axis resolution in the microscopic image to be analyzed was 0.8 : 0.8 :

1.75µm (Supplementary Table. 4), it was necessary to align it to the actual scale ratio of 1 : 1 : 1.
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We interpolated 2.1875-times in the z-axis direction as (c) Bicubic interpolation. Although the

learning and the evaluation target are acquired under the same condition, interpolation to the actual

scale ratio is essential when applying to the image acquired under different conditions.

We performed (d) Data augmentation, and expanded the number of data four times for each

training image by flip on the x-axis, the y-axis, and both the x and y-axes. In general, when the

number of samples of training data is small, a method of processing data and expanding the number

of samples to prevent over learning is used. In this study, the number of samples of the ground

truth was small, so we expanded the data. Since the bias of the luminance in the z-axis direction,

which is the feature of the time-series 3D fluorescence microscopic image, is always constant, we

did not expand data to the z-axis direction.

Nuclear Segmentation Network. NSN is a network that performs semantic segmentation of nu-

clear regions from 3D fluorescence microscopic images. We used SGD as an optimization method

for learning. The structure of the network is based on 3D U-Net15, and parameter tuning suitable

for the dataset was performed by the Bayesian optimization in SigOpt. The tuning methods were

detailed in Tuning hyperparameter of NSN & NDN Section. NSN had 16,850 parameters and was

a structure smaller than 3D U-Net (Supplementary Table. 6).

Nuclear Detection Network. NDN is a network that performs semantic segmentation of nu-

clear center region from 3D fluorescence microscope image. We used Adam40 as an optimization

method for learning. The structure of the network was based on 3D U-Net15, and parameter tuning

suitable for the data set was performed by the Bayesian optimization in SigOpt. NDN had 235,934
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parameters and was a structure larger than 3D U-Net (Supplementary Table. 7).

Post-processing in QCA Net. We performed two post-processing, (a) Re-interpolation and (b)

Marker-based watershed, on the semantic segmentation image output from NSN and NDN. (a) Re-

interpolation restores the resolution of the image interpolated for segmentation and identification.

(b) Marker-based watershed divides the semantic segmentation region by watershed with the center

region of the identified nuclei as a marker. This process enabled QCA Net to execute instance

segmentation.

Tuning hyperparameter of NSN & NDN. Hyperparameters in NSN and NDN were optimized by

the Bayesian optimization. To perform the optimization, we used SigOpt which is the optimization

platform. The total number of hyperparameters targeted for optimization is 10 (Supplementary

Table. 8).

We describe the hyperparameters for optimization. Up & downsampling denotes the number

of times to perform upsampling and downsampling. Initial channels denote the number of channels

in the first convolution layer. The number of channels in the subsequent convolutional layer is

based on the structure of 3D U-Net which is doubled in the upsampling section and is halved in

the downsampling section. Kernel size denotes the common kernel size in all convolution layers.

Weight decay denotes the parameter of the L2 norm.

In this experiment, we used SGD and Adam as the optimizer. The initial learning rate, which

is a parameter of SGD, denotes the initial value of the learning coefficient, and the decay learning

rate denotes a parameter for multiplying the initial learning rate when the accuracy of the reference
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evaluation metrics is lowered. The reference evaluation metrics of NSN was IoU and NDN was

F-measure. Adam’s parameters α, β1, β2, ϵ are parameters incorporated into the expression that

determines learning rate of Adam. Epoch denotes the number of learning iteration, and an attempt

to input all the training data and make it learn is defined as one epoch. Since Epoch is the value

which we empirically understand learning converges, we did not add to this optimization target,

and it was 50 in both models. Since Epoch is a parameter that directly affects the amount of

computation, we consider that if computation resources are abundant, it should be added to the

optimization target.

Model architecture & learning condition of NSN. We describe hyperparameters of NSN deter-

mined by the Bayesian optimization. Supplementary Table 9, 10 shows the hyperparameter of the

determined NSN and the model architecture of NSN was decided based on this result (Supplemen-

tary Table. 6). The output function of NSN called as softmax is defined by

yk =
exp(xk)

ΣK
j=1 exp(xj)

(2)

where K denotes the number of class, which is nucleus or background region, x denote each input

from the final layer, and y denotes output value. Also, the objective function of NSN called as

softmax cross entropy is defined by

E = −
N∑

n=1

K∑

k=1

dnk log yk (3)

where d denotes the ground truth and N denotes the number of learning data. We evaluated learn-

ing the model determined based on each optimizer (Supplementary Table. 11 and Supplementary

Fig. 8). As a result, NSN trained using SGD was able to perform nuclear segmentation with high
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accuracy, so we adopted NSN trained using SGD for QCA Net.

Model architecture & learning condition of NDN. We describe the hyperparameter of NDN

determined by the Bayesian optimization. Supplementary Table 12, 13 shows the hyperparameter

of the determined NDN and the model architecture of NDN was decided based on this result

(Supplementary Table. 7). Also, softmax function and softmax cross entropy similar to NSN was

used for output function and objective function. We evaluated by learning the model determined

based on each optimizer (Supplementary Table. 14 and Supplementary Fig. 9). As a result, NDN

trained by Adam was shown to be able to perform nuclear identification with high accuracy, so we

adopted Adam trained NDN for QCA Net.

Extraction of quantitative criteria from segmentation image. We describe the method of ex-

tracting the nuclear number, volume, surface area, center of gravity coordinates from the seg-

mentation images. The nuclear number was extracted by counting the number of labels of the

segmentation images. The nuclear volume was extracted by converting the voxel number of the

segmented nuclear region for each label into the actual scale. The nuclear surface area was ex-

tracted by converting the voxel number of the nuclear region that is in contact with the background

region to the actual scale. The nuclear center of gravity coordinates was calculated by calculating

the center of gravity of the segmented nuclear region for each label.
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Figure 1: Conceptual diagram of the different segmentation method
The conceptual diagram in the case where the semantic segmentation and the instance segmentation are
performed on 2D fluorescence microscopic image. In the 2D fluorescence microscopic image, all objects
subject to segmentation are the same class ”nucleus”. The semantic segmentation gives the same labeling
on objects of the same class, while the instance segmentation performs different labeling on objects of the
same class. When sufficient spatial distance exist between objects as shown in the upper part of the figure,
segmentation is accurately performed in the semantic segmentation and the instance segmentation. When
objects are adjacent/overlapping as shown in the lower part of the figure, the semantic segmentation fuses
the object region because segmentation is performed with the same label. On the other hand, the instance
segmentation does not fuse the object region because segmentation is performed with the different labels.
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Figure 2: Flow Diagram of our implementation algorithm QCA Net
The conceptual diagram of QCA Net that extracts quantitative criteria for mouse development from time-
series 3D fluorescence microscopic images of early-stage mouse embryos as input. QCA Net performs instance
segmentation at each time of time-series images. In the process of QCA Net, the pre-processing is firstly
performed to the input of the 3D fluorescence microscopic image at each time. The image after pre-processing
is parallelly processed in Nuclear Segmentation Network (NSN) performing the nuclear segmentation and
Nuclear Detection Network (NDN) performing the nuclear identification. The segmented nuclear region by
NSN is divided by marker-based watershed in post-processing, using the identified nuclear center region by
NDN. Through these process, QCA Net achieves the instance segmentation at a one-time point of time-series
images. Performing these process at each time, QCA Net can acquire the time-series instance segmentation
image. Finally, QCA Net extracts the quantitative criteria of mouse development such as the time-series
data of the nuclear number, volume, and so on, from the time-series instance segmentation images.

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 17, 2018. ; https://doi.org/10.1101/324186doi: bioRxiv preprint 

https://doi.org/10.1101/324186
http://creativecommons.org/licenses/by/4.0/


  

   

e f

a b c

d

16 cell
stage

3D fluorescence 
microscopic image

QCA Net
(Instance Segmentation)

3D U-Net
(Semantic Segmentation)

50 cell
stage

10 μm 10 μm 10 μm

 

10 μm 10 μm 10 μm

Figure 3: Comparison of segmentation results of QCA Net and 3D U-Net
The result of the segmentation by QCA Net and 3D U-Net to the 3D fluorescence microscopic images of
one mouse embryo at each cell stage. Each color represents the individual segmented nuclear region. (a, d)
The 3D fluorescence microscopic images of one mouse embryo about 2.4 days (16 cell stage) and about 3.5
days (50 cell stage) from the pronuclear stage. (b, e) The result of the instance segmentation by QCA Net
to (a, d). (c, f) The result of the semantic segmentation by 3D U-Net to (a, d). It qualitatively shows that
QCA Net performs accurate segmentation of nuclear region without the fusion of nuclear region. The blue
arrowhead shows the polar body, and QCA Net success in not performing the segmentation of the polar
body. On the other hand, the fusion of nuclear regions and the segmentation of the polar body occurs in 3D
U-Net.

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 17, 2018. ; https://doi.org/10.1101/324186doi: bioRxiv preprint 

https://doi.org/10.1101/324186
http://creativecommons.org/licenses/by/4.0/


Table 1: Quantitative evaluation of segmentation
The result that the segmentation accuracy of QCA Net, QCA Net without NDN, and 3D U-Net are compared
by the IoU and the MUCov. The IoU was used as a metrics of semantic segmentation, and the MUCov was
used as a metrics of instance segmentation. The evaluated objects are the 18-time point embryos which were
also used learning as the ground truth, and the values of each metrics represent the mean and the standard
deviation.

Model IoU MUCov
QCA Net (instance segmentation) 0.817 (0.121) 0.801 (0.117)
QCA Net w/o NDN (semantic segmentation) 0.813 (0.121) 0.647 (0.130)
3D U-Net (semantic segmentation) 0.665 (0.123) 0.334 (0.120)
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Figure 4: Quantitative criteria of mouse development extracted by QCA Net
(a) The time-series data of the nuclear number. Each series represents the result of QCA Net (red) and
Ground Truth (blue). (b) The time-series data of the nuclear volume. The tendency that the nuclear volume
rapidly decreases and then returns is periodically observed (green arrowheads). This tendency may indicate
anaphase. (c) The time-series data of the nuclear surface area. Similar to the time-series data of the nuclear
volume, this result also captures the features of anaphase (green arrowheads). (d) The time-series data of the
nuclear center of gravity coordinates. The color shifts from cold color to warm color as the developmental
process. The upper left figure shows the results displayed in 3D, and the upper right, the lower left, and the
lower right chart show the cross sections of the XZ, YZ, and XY axes, respectively. During the developmental
process, the internal clearance is widening, which shows that it forms the blastocyst.
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Figure 5: Case where polar bodies are recognized and excluded from segmentation targets
Two cases in which segmentation is performed excluding the polar bodies. (a) The 3D fluorescence micro-
scopic image of the mouse embryo at four-cell stage. The blue arrowhead represents the polar body. (b) The
nuclear segmentation result of (a) by NSN (red mesh) and the nuclear identification result of (a) by NDN
(blue mesh). (c) The instance segmentation result of (a) by QCA Net. These results show that NSN and
NDN exclude the polar body. (d) The 3D fluorescence microscopic image of the mouse embryo at 18 cell
stage. The blue arrowhead represents the polar body. (e) The nuclear segmentation result of (d) by NSN
(red mesh) and the nuclear identification result of (d) by NDN (blue mesh). (f) The instance segmentation
result of (d) by QCA Net. NSN performs segmentation of the polar body, but NDN excludes identification
of the polar body. As a result, the polar body is excluded from the result of instance segmentation.
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