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ABSTRACT  
 
Transcription factor (TF) footprinting uncovers putative protein-DNA binding via combined analyses of 
chromatin accessibility patterns and their underlying TF sequence motifs. TF footprints are frequently 
used to identify TFs that regulate activities of cell/condition-specific genomic regions (target loci) in 
comparison to control regions (background loci) using standard enrichment tests. However, there is a 
strong association between the chromatin accessibility level and the GC content of a locus and the 
number and types of TF footprints that can be detected at this site. Traditional enrichment tests (e.g., 
hypergeometric) do not account for this bias and inflate false positive associations. Therefore, we 
developed a novel method, Bias-free Footprint Enrichment Test (BiFET), that corrects for the biases 
arising from the differences in chromatin accessibility levels and GC contents between target and 
background loci in footprint enrichment analyses. We applied BiFET on TF footprint calls obtained from 
human EndoC-βH1 ATAC-seq samples using three different algorithms (CENTIPEDE, HINT-BC, and 
PIQ) and showed BiFET’s ability to increase power and reduce false positive rate when compared to 
hypergeometric test. Furthermore, we used BiFET to study TF footprints from human PBMC and 
pancreatic islet ATAC-seq samples to show its utility to identify putative TFs associated with cell-type-
specific loci.  
 
  
INTRODUCTION 
 
Detecting transcription factor (TF) binding to DNA is critical to understand and study transcriptional control 
of gene expression (1). Chromatin immunoprecipitation-sequencing (ChIP-seq) assays are effective in 
uncovering genome-wide binding patterns of a TF. However, profiling multiple TFs using this technology 
in a cell type of interest is costly and requires large input cell numbers, which limits its wide application to 
study TF-DNA interactions. A more high-throughput alternative to experimental profiling of these 
interactions is digital TF footprinting (2), which computationally infers TF binding to DNA by integrating 
chromatin accessibility patterns (e.g., DNase-seq/ATAC-seq profiles) with the underlying TF binding 
motifs represented as position weight matrices (PWM) (3,4). Several algorithms have been developed for 
this purpose to model the probability of a TF’s binding to a given locus from genomewide chromatin 
accessibility maps (5-8).  
     Due to advances in genomewide chromatin accessibility profiling, notably the ATAC-seq (9) 
technology, increasing numbers of chromatin accessibility maps have been generated in primary human 
cells to study complex diseases, including cancer (10), systemic lupus erythematosus (11), 
immunosenescence (12,13), and type 2 diabetes (14-16). Effective detection and analyses of TF 
footprints from these data will be instrumental to nominate potential regulators associated with a clinical 
phenotype of interest (e.g., immunosenescence (12) or cancer subtypes (17)). TF footprint enrichment 
analyses can be utilized for this purpose by comparing the number of TF footprint calls in genomic 
regions of interest (target sites) against footprint calls in a reference set of regions (background sites). 
Unfortunately, standard enrichment tests (e.g., hypergeometric test or equivalently one-sided Fisher’s 
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exact test) are subject to biases intrinsic to TF footprinting data and can lead to spurious enrichment 
results unrelated to the biological/clinical question of interest.  
     In our analyses, TF footprints obtained from ATAC-seq samples in three different human cell/tissue 
types (EndoC-βH1 pancreatic beta cell line (18), peripheral blood mononuclear cells (PBMCs), and 
pancreatic islets) revealed two major sources of bias affecting downstream enrichment analyses: 
differences in sequence GC content and chromatin accessibility levels of target/background regions. First, 
the GC content of a region significantly affects which TF footprints can be detected in this locus; when 
target regions on average have higher GC content than the background regions, many GC-rich motifs are 
falsely identified as enriched in targets, which has been previously noted in motif enrichment analyses 
and corrected for by minimizing the imbalance of GC content between target and background sites 
(19,20). TF footprint analyses are subject to a similar bias, however, no current methodology accounts for 
this bias in TF footprint enrichment analyses.  
     Second, detection of footprints in an open chromatin region (OCR) is highly dependent on the number 
of reads (e.g., Tn5 cuts) spanning this region. DNA-cutting enzymes, such as DNase I or Tn5, have 
sequence-specific biases that contribute to the differences in the number of reads at different OCRs 
(4,21-23). Footprint detection algorithms typically identify footprints in an OCR using the depletion of cuts 
at a given sequence relative to nearby flanking regions (24). Therefore, these algorithms likely detect 
more footprints in OCRs with more cuts (i.e., more read counts). Due to this association between read 
count numbers at a given locus and the number of footprints detected at this site, standard enrichment 
tests detect many false positive TFs when target regions have more reads on the average compared to 
the background regions.  
     In this study, we present a robust enrichment test for TF footprinting data analyses, BiFET: Bias-free 
Footprint Enrichment Test, that corrects for the biases arising from differences between background and 
target regions in terms of their number of sequencing reads and GC content (Figure 1). We applied 
BiFET on TF footprint calls from EndoC-βH1 ATAC-seq data using three different footprint algorithms: 
CENTIPEDE (6), HINT-BC (25) and PIQ (7). EndoC footprints from three algorithms were used to 
simulate true TF binding events, which enabled us to compare the detection power and the false positive 
rate of BiFET to the frequently used hypergeometric test. In comparison to the hypergeometric test, 
BiFET is robust to the choice of the background set and has high detection power and low false positive 
rate regardless of the algorithm used to call footprints. Furthermore, we applied BiFET on ATAC-seq data 
from human PBMCs and pancreatic islets to uncover TFs that are associated with PBMC or islet-specific 
regulatory elements and studied the efficacy of BiFET in the downstream enrichment analyses of 
footprinting data from clinically relevant samples.  
 
 
MATERIAL AND METHODS 
 
Bias-free Footprint Enrichment Test (BiFET) 
 
BiFET aims to identify TFs whose footprints are over-represented in target regions (e.g., ATAC-seq peaks 
associated with a phenotype) compared to background regions after correcting for differences in read 
counts and GC content between target and background regions. Specifically, BiFET tests the null 
hypothesis that target regions have the same probability of having footprints for a given TF k as the 
background regions after correcting for the read count and the GC content bias (See Figure 1 for a 
summary of the proposed framework). For this, the number of target peaks with footprints for TF k (��� is 
used as a test statistic and the p-value is calculated as the probability of observing �� or more peaks with 
footprints under the null hypothesis. The association between read counts and footprint detection rate, is 
modeled with a logistic function ��: �����, ��� � 21 � ������


 1 

 
, where �� denotes the number of reads in peak i.  �� is equal to 0 when the peak has no reads (�� =0) and 
increases monotonically converging to 1 as the number of reads increases to infinity at a rate determined 
by �� >0 (See Supplementary Figure S1A for the relation between �� and �� for increasing read count 
values).  
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     Similarly, we model the association between the GC content of a genomic region and the footprint 
detection by introducing a second logistic function ��: ����� , ��� � 21 � ����	�


 1 

 
, where �� denotes the GC content (proportion of GC) in the genomic region i and �� � 0 determines how 
fast �� converges to 1. Unlike the read count bias, the positive association between the GC content and 
footprint detection exists only for TFs with GC-rich motifs (See Figures 2C and D and Supplementary 
Figures 2B, C, E, and F for the relation between footprint detection and GC content of genomic regions 
for GC-rich and GC-poor motifs). The logistic function �� with various values of �� can model this TF-
specific association between GC content and the footprint detection. For example, when �� is high (i.e., 
10,000) as in Supplementary Figure 1B, �� is equal to 1 for any value of ��  >0, hence the footprint 
detection does not depend on the GC content. For GC-poor motifs, ��will have a high value, hence there 
will not be an association between the GC content and the footprint detection.      
     Finally, the probability that a footprint for TF k is called in a peak i (��,�� is modeled as: 
 ��,� � �������, ��������, ��� 
 
In this model, the parameter �� denotes TF-specific binding rate, which is adjusted by functions �� and  �� 
that measure the effect of the read count levels and GC content of peaks on footprint detection rates. This 
model assumes that the read counts and the GC contents of genomic regions independently affect the 
probability of footprint detection. This assumption is supported by our analyses (Supplementary Figure 
S3), which shows that the relation between footprint detection and GC content (or read counts) is 
preserved as we stratify the data by read counts (or GC content), respectively.   
     When target and background regions have similar read counts and GC content, the difference in rates 
of TF footprint calls can be explained by the difference in �� between the two sets. Therefore, we test if �� 
differs between the target and background regions. More specifically, we assume that the probability of 
the target peak i having a footprint for TF k is ��,�,� � ��,������, ��������, ��� and the probability of the 
background peak i having a footprint for TF k is ��,�,� � ��,������, ��������, ��� and test the null hypothesis 
( �� � ��,� � ��,� � �� ) and estimate the parameters �� , ��  and ��  by maximizing the likelihood of the 
footprint data for TF k: � ��,�
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, where T and B denote target and background peaks and �� and �� are target peaks and background 
peaks with footprints for TF k, where |��| � �� and |��| � ��.  The optimization was performed by R optim 
function with a limited-memory modification of the BFGS quasi-Newton method (26). 
     We then define the p-value for testing the null hypothesis as the probability that there are �� or more 
target peaks with footprints for TF k: 
 

Pr �|��| " ��� � # $� ��% �����, ��% ������, ��
& �

��
�
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 ��%
��
�
�
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�|���

 

 
, where ��%, ��% and ��

&  are maximum likelihood estimates (MLE) of �� ,  ��  and �� . This probability is 
calculated using R package poibin (27). 
     BiFET is available as a Bioconductor package named “BiFET”. Instructions on how to use BiFET and 
the required input files are available at 
https://github.com/UcarLab/BiFET/blob/master/vignettes/BiFET.Rmd.  
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Simulation studies in EndoC cell line 
 
1. EndoC ATAC-seq data processing 
We assessed the performance of BiFET by simulating TF footprint calls using ATAC-seq data in human 
EndoC-ßH1 beta cell line (18). From these data 138,707 OCRs (i.e., ATAC-seq peaks) were identified 
using MACS version 2.1.0 (28) with parameters “-nomodel -f BAMPE”. The peaks were truncated to a 
total length of 200bp (+/- 100bp from the peak center) to eliminate biases associated with differences in 
peak lengths. This same peak length cut-off has been used in all of our analyses to ensure that number of 
footprints was not affected by differences in target and background peak lengths.   
 
2. Footprint calling using three algorithms   
A number of footprinting algorithms have been developed to predict TF binding sites using DNase-seq or 
ATAC-seq data, which broadly fall into two categories: shape detection and motif-driven. Shape detection 
algorithms, e.g. Neph (29), Wellington (30), DNase2TF (8), Boyle (31), HINT (25), and HINT-BC (32) 
scan DNase-seq or ATAC-seq data to detect a footprint-like spatial shape—short genomic regions of 
low (DNase I or Tn5) cleavage immediately flanked from both ends by high cleavage— without 
specifying the TF motif. Motif-driven algorithms on the other hand, e.g., FLR (33), CENTIPEDE (6), PIQ 
(7), and BinDNase (34), first scan the genome for known TF sequence motifs and classify loci with a 
motif as bound or unbound based on the chromatin accessibility profiles (32). To evaluate BiFET’s 
performance for different TF footprinting detection methods, we chose three frequently used algorithms: 
HINT-BC (representing shape detection algorithms), CENTIPEDE, and PIQ (representing motif-driven 
algorithms) to call TF footprints from EndoC-ßH1 ATAC-seq data.  
     CENTIPEDE uses a Bayesian mixture model to estimate the posterior probabilities of each motif 
site bound by the corresponding TF (6). On the other hand, PIQ uses a Gaussian process to model 
and smooth the footprint profiles around motif sites to estimate the probability of occupancy for each 
motif occurrence (7). HINT-BC (HINT bias-corrected) is an extension of the method HINT (Hmm-based 
IdeNtification of Tf footprints), which adjusts for the sequence cleavage bias of cutting enzymes used in 
chromatin accessibility assays (32). 
      We applied all three algorithms with their default parameters using a PWM library compiled from the 
JASPAR database (35) and Jolma et al. (36) (n= 979 PWMs in total). Since HINT-BC does not specify 
which TF is associated with the detected footprint, we overlapped HINT-BC footprints with this PWM 
library. In this analysis, if at least 2/3 of a TF’s motif overlapped with a HINT-BC footprint, we associated 
this TF to the footprint. For all three algorithms TF footprints were filtered based on the scores that 
measure the confidence of the footprint detection, i.e., positive predictive values (PPV) > 0.9 for PIQ, 
posterior probabilities of binding > 0.95 for CENTIPEDE and tag-count score > 80th percentile for HINT-
BC with frequently used thresholds.  
 
3. TF footprinting simulations  
To investigate the impact of read count and GC content differences between target and background 
regions on the enrichment test results, we applied three different methods to select target regions 
comprising 5% of all EndoC ATAC-seq peaks (6,935 peaks): 

1) Target peaks were randomly selected from all peaks (target + background) so that the expected 
read counts and GC content do not differ between target and background regions. 

2) Target peaks were randomly selected by setting the sampling probability to be proportional to 
f(x=read counts per peak) using four functions: (a) f(x)=x, (b) f(x)=x1/2, (c) f(x)=x-1/2, and (d) f(x)=x-1 

where the average read count for target peaks decreases from (a) to (d). In (a) and (b), target 
peaks have higher read counts than the background peaks, whereas in (c) and (d), they have 
lower read counts than the background peaks.   

3) Target peaks were randomly selected by setting the sampling probability to be proportional to f(x= 
GC content per peak) using four different f functions: (a) f(x)=x, (b) f(x)=x1/2, (c) f(x)=x-1/2, (d) 
f(x)=x-1 where the average GC content for the target peak set decreases from (a) to (d). In (a) and 
(b), the average GC content for target peaks are higher than that of background peaks, whereas 
in (c) and (d), it is lower than the background peaks.   

     In all three cases, target peaks were randomly selected independent of their location, functional 
association, or TF motif enrichments. Therefore, no TFs were expected to specifically bind to these 
random peaks, and any TF that is significantly enriched in target peaks is marked as a false positive call. 
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To quantify the detection power of our method, we randomly selected 10 TFs; for each of these TFs, we 
simulated artificial footprint calls in N% of the target sets. In other words, for each selected TF k, we 
increased the number of target peaks with footprints for this TF (i.e., |��|) by N%. We set N to be the 
binding rate of the TF (i.e., the percentage of peaks with footprints for the TF) across all peaks or across 
target peaks, whichever is larger. Since we simulated additional footprints for these 10 TFs only within 
target regions, they should be truly enriched in target peaks compared to the background peaks. Hence, 
these 10 TFs are treated as true positives (TP) in our analyses, whereas the rest of the TFs detected are 
considered false positives (FP). Each simulation setting was repeated 50 times to eliminate biases 
stemming from random samplings. For each simulation, we identified TFs that are enriched in the target 
set compared to the background set using hypergeometric test and BiFET and assessed the false 
positive rate and true positive rate for each method using TF footprints from three different footprint 
detection algorithms. 
 
Analysis of human islet and PBMC ATAC-seq data 
 
1. Islet and PBMC ATAC-seq data processing 
ATAC-seq peaks from five human PBMCs (12) and five human islets (14,16) were called using MACS 
version 2.1.0 with parameters “-nomodel -f BAMPE”. The peaks from all ten samples were merged to 
generate one consensus peak set (N = 57,108 peaks) by using R package DiffBind_2.2.5. (37), where 
only the peaks called at least twice (out of 10 samples) were included in the analysis. We used the 
“summits” option to re-center each peak around the point of greatest read overlap and obtained 
consensus peaks of same width (200 bp, +/- 100bp around the summit). Out of these consensus peaks, 
we defined PBMC-specific peaks as those that were called in at least four PBMC samples and in none of 
the islet samples (n=4106 peaks). Similarly, we defined islet-specific peaks as those called in at least four 
islet samples but in none of the PBMC samples (n=12886 peaks). Consensus peaks that exclude 
PBMC/islet-specific peaks were used as the background (i.e., non-specific) regions in our enrichment 
analyses (n=40116 peaks). PIQ was used to call TF footprints from the pooled islet and pooled PBMC 
samples to increase the detection power for TF footprints based on JASPAR PWMs (n=454 in total). Only 
the TF footprints with positive predictive values greater than 0.9 are used in downstream enrichment 
analyses.  
 
2. Footprinting calls using random motifs 
Unlike in our simulation study, in real world datasets we typically do not know which TFs are true or false 
positive regulators of the loci of interest. To quantify BiFET’s ability to reduce false positive rates, we 
generated artificial PWMs and used PIQ to call footprints for these artificial motifs in ATAC-seq samples 
(i.e., false positive calls). To generate artificial PWMs, we started with the JASPAR PWMs (n=454) and 
randomly permuted every column (base pair) of the PWM matrix to obtain a random PWM matrix. For 
each randomly generated PWM (454 in total), we calculated its Euclidean distance to the JASPAR PWMs 
using R package PWMsimilarity (38) and selected the top 200 random motifs that are the most dissimilar 
to the known motifs based on their PWM similarity. These 200 random motifs were used to call PIQ 
footprints from islet and PBMC ATAC-seq samples and used for assessing false positive rates. 
 
RESULTS 
 
Number of ATAC-seq reads and GC content of a region affect TF footprints detected at this locus 
From EndoC-ßH1 ATAC-seq data, 15,219,923 significant CENTIPEDE footprints were detected for 793 
(out of 979 tested) PWMs (Methods). Only 974,975 (6.4%) of these overlapped ATAC-seq peaks that 
mapped to 790 distinct PWMs. PIQ detected 5,057,304 significant footprints for 978 TF motif PWMs, 
where 830,795 (16.4%) footprints for 969 PWMs overlapped EndoC ATAC-seq peaks.  On the other 
hand, by design, HINT-BC detects footprints within a given set of regions. In total, 135,657 footprints were 
detected by HINT-BC that was associated with 979 PWMs (Figure 2A). Only the footprints that are within 
ATAC-seq peaks were used in downstream analysis. 
     Despite the differences in genome-wide footprint calls, comparable numbers of footprints were 
detected within ATAC-seq peaks per TF using different algorithms (Pearson correlation coefficient r=0.58 
for CENTIPEDE and PIQ, r=0.72 for HINT-BC and PIQ, r=0.46 for CENTIPEDE and HINT-BC; 
Supplementary Figures S4A, B, C). Furthermore, similar numbers of footprints were detected per peak 
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by different methods (r=0.6 for CENTIPEDE and PIQ, r=0.42 for HINT-BC and PIQ, r=0.32 for 
CENTIPEDE and HINT-BC; Supplementary Figures S4D, E, F), suggesting that different algorithms 
produce comparable footprints from the same data and they are subject to similar biases in footprint calls.  
     The number of ATAC-seq reads spanning a peak correlated significantly (p<e-16) with the number of 
footprints detected within this peak, for all three algorithms: r=0.58 for PIQ (Figure 2B), r=0.38 for 
CENTIPEDE (Supplementary Figure S2A), and r=0.35 for HINT-BC (Supplementary Figure S2D). 
Furthermore, for GC-rich motifs (i.e., motifs for which the average probability of having G or C in their 
PWM matrix > 0.5 such as KLF5 and SP1 in Figure 2E), GC content of the peak and the number of 
footprints detected from this region was also significantly correlated: r=0.57 for PIQ (Figure 2C), r=0.54 
for CENTIPEDE (Supplementary Figure S2C), and r=0.24 for HINT-BC (Supplementary Figure S2F). 
We observed that HINT-BC is less subject to such GC bias, likely because it is not motif-driven and it 
adjusts for the sequence cleavage bias of cutting enzymes. For TFs with low-GC content PWMs (e.g., 
Forkhead (FOX) transcription factor family members, POU2F2 in Figure 2F), GC content of the peak is 
not associated with the number of footprints detected at the peak (Figure 2D, and Supplementary 
Figures S2B, E). These observations suggest a relationship between locus-specific read count and GC 
content and the detection probability of TF footprints from this site, which is conserved across three 
algorithms and likely bias downstream enrichment analyses. 
 
BiFET enrichment results are robust to differences between target and background regions 
By simulating TF footprint enrichments in EndoC cells, we quantified the impact of enrichment test choice 
under different scenarios (Methods). First, we observed that, as expected, BiFET and hypergeometric test 
(HT) performs similarly when target and background regions have comparable read counts and GC 
contents (Table 1A for PIQ, Supplementary Table S1A for CENTIPEDE and Supplementary Table 
S2A for HINT-BC results).  
     However, when target regions harbor more ATAC-seq reads (i.e., higher read counts) compared to 
background regions, HT produces large numbers of false positive enrichments. For example, HT 
identified 648 out of 959 TF motifs (i.e., 969 PWMs detected within peaks – 10 true positives) to be 
significantly enriched in randomly selected target regions (False positive rate (FPR) = 68%) when there is 
a significant difference between target and background regions in terms of median read counts (Table 
1B, setting a). For the same scenario, BiFET controlled the false positive rate at 0.001, where only 1 out 
of 959 TF motifs had a significant enrichment. On the contrary, when read counts of target regions were 
lower than those of background regions, HT had a lower True Positive Rate (TPR) than BiFET (e.g., 87% 
TPR with BiFET vs. 50% with HT for setting d in Table 1B). BiFET and HT generated similar results for 
footprints called using CENTIPEDE and HINT-BC (Supplementary Table S2B, S3B)   
     BiFET also outperformed HT under varying GC content distributions for background and target 
regions. When the median GC content of target regions is higher than that of the background regions, HT 
produced many FP calls. For example, 128/959 TF motifs tested (FPR=13%) were detected to be 
significantly enriched when GC contents of background and target regions were significantly different 
(Table 1C, setting a). Under the same scenario, BiFET better controlled the false positive rate and 
detected only 22 TFs to be enriched out of 959 (FPR=2%). Similarly, BiFET outperformed HT for 
footprints obtained from CENTIPEDE (Supplementary Table S1C) and HINT-BC (Supplementary Table 
S2C). These simulation results suggest that in comparison to the standard enrichment test (i.e., 
hypergeometric test), BiFET is robust to the choice of background regions and has high detection power 
and low false positive rate irrespective of the algorithm used for footprinting calls. 
  
BiFET uncovers TFs associated with cell-specific regulatory elements 
We used BiFET to detect TFs associated with cell-specific OCRs by comparing ATAC-seq data from 
human PBMCs (12) and pancreatic islets (14). Using a stringent definition of cell-specific accessibility 
(Methods), we identified 4,106 PBMC-specific ATAC-seq peaks (e.g., CD28 locus in Figure 3A) and 
12,886 islet-specific ATAC-seq peaks (e.g., ISL1 locus in Figure 3B). The remaining ATAC-seq peaks 
(n=40,116) were considered non-specific and used as the background set in our enrichment analyses. 
PIQ detected 389,948 significant footprints for 401 PWMs within PBMC ATAC-seq peaks and 390,502 
significant footprints for 414 PWMs within islet ATAC-seq peaks. Using BiFET and HT, we identified 
PWMs whose footprints were enriched in PBMC-specific peaks compared to the background peaks (i.e., 
non-specific peaks) and, similarly, TFs whose footprints were enriched in islet-specific peaks compared to 
the background peaks. PBMC-specific peaks (i.e., target peaks) had higher ATAC-seq read counts than 
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the background peaks in the PBMC samples, where median log read count of target peaks was 4.8 and 
median log read count of background peaks was 3.8 (Figure 3C, left panel). On the other hand, PBMC-
specific peaks had lower GC content than the common peaks (median GC proportion=0.495 vs. 0.53; 
Figure 3C, right panel). Since background peaks had significantly lower read counts than the target 
peaks, they tended to have fewer footprints. Therefore, if read count bias was not adjusted for, the 
standard enrichment tests would identify many false positive enrichments.  
     BiFET identified 89 PWMs (mapping to 84 TFs) to be significantly (FDR ≤5%) enriched in PBMC-
specific peaks out of 401 PWMs that were tested. In comparison, HT identified 205 PWMs as significantly 
enriched in PBMC-specific peaks, including all 89 PWMs captured by BiFET. As expected, when a PWM 
is significantly enriched by either method, the percent of target peaks with footprints is higher than the 
percent of background peaks with footprints for this TF (Figure 3D, red dots). However, differences in 
percent of peaks with footprints between target and background were smaller for the TFs that are solely 
identified by HT (i.e., dark red dots labeled as ‘HT-only’ in Figure 3D). 
     Similarly, we identified TF footprints enriched in islet-specific peaks using BiFET and HT. Similar to the 
PBMC data, islet-specific peaks (target peaks) had higher average ATAC-seq read count than the 
background peaks in islets, where median log read count for target peaks is 4.4 and median log read 
count for background peaks is 3.9 (Figure 3E, left panel). Islet-specific peaks also had lower GC content 
than the background peaks (median GC proportion = 0.46 vs. 0.53; Figure 3E, right panel). BiFET 
identified 135 PWMs (mapping to 122 TFs) out of 414 tested to be significantly enriched in islet-specific 
peaks (FDR=0.05), while HT identified 187 PWMs, including the 135 PWMs detected by BIFET. We 
noted that since the difference in read counts between target and background peaks was not as striking 
as in PBMC samples (Figures 3C vs. 3E), the number of PWMs exclusively detected using HT were less 
in islet samples compared to PBMC samples (52 vs. 116). As expected, TFs enriched in islet-specific 
peaks had more footprints in target regions than in background regions (Figure 3F). TFs with significant 
enrichment according to both methods (light blue dots in Figure 3F) clearly separated from the non-
significant TFs, while the TFs identified only by the HT (dark blue dots in Figure 3F) had similar footprint 
rates between background and target sets, suggesting that enrichments detected only by HT are likely 
false positives.  
     To study the functional relevance of TF enrichments obtained from PBMC- and islet-specific peaks, we 
performed pathway enrichment analysis using HOMER (19). Of the 84 PBMC-specific TFs and 122 islet-
specific TFs (Supplementary Table S3) identified by BiFET, 46 TFs were common (Supplementary 
Figure S5A) suggesting that some TFs that regulate cell-specific regions can be common across cell 
types. The top 3 enriched Wiki pathways for PBMC-specific TFs (n=38) were all immune-related including 
“Type II, III interferon signaling” and “Development of pulmonary dendritic cells and macrophage subsets” 
(Supplementary Table S4). In contrast, islet-specific TFs (n=76) included HNF1A, HNF1B, HNF4A, and 
PAX6 (Supplementary Table S5), and the most enriched KEGG pathway for islets was “Maturity Onset 
Diabetes of the Young”. These functional enrichment results show that islet/PBMC-specific TFs identified 
by BiFET reflect functional enrichments relevant to the cognate cell type.  
     We repeated the pathway enrichment analyses for TFs identified by HT. HT identified 175 PBMC-
specific TFs and 167 islet-specific TFs, of which 113 were common between two cell types 
(Supplementary Figure S5B). We found that the pathways enriched for TFs that are PBMC-specific 
(n=62) included immune-related pathways, but their p-values were less significant compared to those 
obtained from BiFET results (Supplementary Figures S5C, E; Supplementary Table S6). Likewise, we 
observed that pathways enriched for islet-specific TFs (n=54) had less significant p-values compared to 
BiFET results for islet biology related pathways (Supplementary Figures S5D, F; Supplementary Table 
S7). These results indicate that BiFET was more effective in detecting cell type-specific regulators than 
the standard enrichment test and can be effective in reducing false positive enrichments between TFs 
and genomic regions of interest to study human diseases and biology.  
 
BiFET reduces false positive associations in ATAC-seq footprinting analyses 
Although pathway enrichment analysis suggested that the TFs identified by BiFET better capture 
regulators of PBMC/islet-specific functions, it is difficult to assess which of these are true regulators in 
clinical samples. To demonstrate the advantage of BiFET in reducing false positives in clinically relevant 
comparisons, we performed enrichment analyses using BiFET and HT on PIQ footprints for 200 artificially 
generated random motifs (Methods). For these artificial motifs, 121,085 footprints were detected within 
PBMC ATAC-seq peaks, where 194 motifs had at least one footprint. The number of detected footprints 
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for these random motifs was highly correlated (Pearson correlation r=0.71) with the read counts similar to 
the original JASPAR motifs (r=0.66) (Supplementary Figures S6A, B) Application of BiFET on these 
footprints identified 12 PWMs that are significantly enriched in PBMC-specific peaks compared to 
background peaks, while HT identified 79 significantly enriched PWMs for the same analyses, including 
all 12 PWMs captured by BiFET.  For these random PWMs, the percent of target peaks with footprints 
was overall lower than that of the original JASPAR motifs (Supplementary Figure S6C vs. Figure 3D). 
As expected, for significantly enriched PWMs, percent of target peaks with footprints was higher than the 
percent of background peaks with footprints (Supplementary Figure S6C red dots). Similar to the 
previous results, the differences in percent of peaks with footprints between target and background 
regions were smaller for the PWMs that are solely identified by HT (i.e., dark red dots labeled as ‘HT-only’ 
in Supplementary Figure S6C) when compared to PWMs identified by both methods. Furthermore, 
BiFET had higher enrichment p-values for these PWMs when compared to HT (Supplementary Figure 
S6D). Together these results suggest that footprint detection is subject to high rates of false positive calls 
and BiFET can be a useful downstream analysis method to reduce false positive associations for 
accurate interpretation of footprint enrichments.  
 
Background set choice affects false positive rate and detection power in standard tests.  
Simulation studies suggested that differences in read counts have a bigger impact on enrichment results 
than differences in GC content. Therefore, the differences between BiFET and HT enrichment results for 
PBMC- and islet-specific peaks likely stem from the differences in average read counts between target 
and background peaks (Figures 3C, E, left panel). To test this, we repeated HT enrichment analyses 
using different subsets of background peaks with different average read counts. First, we ordered 
background peaks based on their read counts and selected top n% of these peaks, where n is ranging 
from 50% to 100%, where 100% is equal to the original background set. Using these peak sets as the 
new background set, we performed HT and identified the set of PWMs significantly enriched in PBMC-
specific peaks (Hn). As n increased from 50% to 100% (Table 2A), the average read counts of newly 
defined background peaks decreased from 168 to 93 and the number of identified PWMs (|Hn|) increased 
from 105 to 205. These analyses suggest that HT results highly depend on the choice of background 
regions and FP rate for enrichments increase as the difference between target and background regions 
increase in terms of their average ATAC-seq read counts. The PWMs captured by each of these analyses 
almost fully matched BIFET results (Hn ( B in Table 2A), suggesting again that BiFET captures likely true 
positives.  
     A potential solution to the dependence of HT results on background set choice is to carefully select 
background regions to match target regions in terms of GC content and average read counts. 
Subsampling background regions to match the GC content of target and background regions has been 
widely used in motif enrichment analyses to correct for GC bias (19,20). However, in addition to the 
difficulty of sub-sampling background peaks to match target peaks both in terms of GC content and read 
counts simultaneously, there are several disadvantages associated with this strategy. First, having a 
smaller set of background peaks would reduce the power to detect differentially enriched PWMs. In our 
PBMC and islet data analyses, we had a large background set (n=40,116) and therefore sufficient power 
to detect enriched PWMs. Decrease in the size of background set can be tolerated up to a certain point. 
However, as background set shrinks further, the detection power would decrease. To test this, we 
randomly selected a subset of background peaks (n%) used in the most stringent case in the previous 
test (i.e., top 50% of the background peak). As n decreased from 100% (original set, 20,058 background 
peaks) to 10% (2005 background peaks), the number of enriched PWMs (i.e., |Hn|) also decreased from 
105 to 33 (Table 2B), showing the reduction in power driven by the size of the background set. The 
second problem with random sampling of background peaks is the stochasticity it introduces in data 
analyses and the enrichment results. We tested this by repeating the random sampling of background 
peaks 10 times, where 10% of 20,058 peaks were selected as background peaks at each iteration. The 
number of PWMs significantly enriched in target peaks compared to these background peaks varied from 
25 to 51 among different runs (Table 2C), with only 13 TFs common across 10 runs. These analyses 
suggest that the choice of background set has a significant impact on HT enrichment results and cannot 
be easily handled by subsampling data. BiFET does not require prior selection of background regions and 
works effectively with any background set, even if this set significantly differs from the target sets in terms 
of chromatin accessibility levels and GC content.  
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Footprints for high-GC motifs are captured in regions with high read counts 
To understand the association between read counts and the footprint detection rate for each TF, we 
further studied the �� parameter in our models. Higher values for �� imply that the TF k can be detected 
in peaks with low read counts while lower values for �� imply that the TF k can be detected mainly in 
peaks with high read counts (Methods). Using PIQ calls from PBMC and islet data, we identified TFs with 
high �� values (>95th percentile) and low �� values (<5th percentile) (Supplementary Table S8). We 
restricted our analysis to TFs that have footprints in at least 0.05% of all peaks (n=29 peaks), since the 
estimate �� could be unstable for TFs with fewer footprints. As suggested by our model, TFs with low �� 
(blue bars in Figure 4A, Supplementary Figure S7A for islet) were detected within peaks with high read 
counts (i.e., bigger peaks), whereas the TFs with high �� (red bars in Figure 4A, Supplementary Figure 
S7A for islet) were detected within peaks with low read counts (i.e., smaller peaks). Surprisingly, we 
noted that the �� estimates obtained from PBMC footprinting data were in agreement with those obtained 
from the islet footprinting data (Spearman correlation=0.88, Figure 4B), suggesting that the dependence 
of TF footprint detection rate on read counts (i.e., �� parameter in our models) is specific to each TF and 
independent of the underlying cell type.  
     We did not detect a strong relationship between the length or the information content of a PWM and 
the corresponding TF’s �� value (Supplementary Figures S8A, B for PBMC; Supplementary Figures 
S9A, B for islet). However, GC content of the PWMs (i.e., the average probability of having G or C within 
a motif) was inversely correlated with ��values (Supplementary Figure S8C for PBMC (p-value= 3.8e-
13); Supplementary Figure S9C for islet (p-value=2.5e-12)), which implies that TFs with low �� values i) 
tend to have high GC content PWMs and ii) are detected in regions that have high GC content.  Indeed, 
regions that harbored footprints for low �� TFs had higher GC content than regions harboring footprints 
for high �� TFs (Figure 4C for PBMC; Supplementary Figure S7B for islet). This is likely due to the 
correlation between GC content and read counts (r=0.54, p-value<e-16; Figure 4D for PBMC; 
Supplementary Figure S10 for islet and EndoC-ßH1), which might be related to the GC-specific cutting 
bias of Tn5 transposase (39) or PCR amplification bias towards GC-rich fragments (40). Due to this 
correlation between GC content and read counts, GC-rich motifs are more frequently detected in peaks 
with high read counts. Furthermore, since footprint detection rate is positively associated with number of 
reads, GC-rich motifs are more frequently detected in these analyses (Supplementary Figure S8D for 
PBMC; Supplementary Figure S9D for islet). However, we noted exceptions to this association between 
footprint detection rate and high GC and high read counts of genomic regions. For example, footprints of 
certain TFs (e.g. TEAD1/3/4) were detected within peaks with high read counts, but low-GC contents, 
suggesting they are more difficult to detect in open chromatin assays and require deeper sequencing.      
 
DISCUSSION 
 
In this study, we showed that TF footprint detection at a genomic locus is impacted by chromatin 
accessibility levels (i.e., ATAC-seq read count) and the GC content of this genomic region. This 
dependence is critical and needs to be taken into consideration in enrichment analyses while comparing 
target regions to background regions. For this purpose, we developed BiFET, a novel enrichment test that 
corrects for the differences in sequence and read counts of target and background regions. We applied 
BiFET on ATAC-seq data from the human beta cell line EndoC-ßH1 using TF footprints called with 
CENTIPEDE (6), HINT-BC (25) and PIQ (7) as well as on ATAC-seq data from human PBMCs and islets 
to demonstrate that BiFET can effectively identify potential regulators of cell-type specific loci. 
      Our simulation results showed that BiFET is a robust alternative to standard enrichment tests, e.g., 
hypergeometric test (Table 1). For footprinting data analyses, standard tests are very sensitive to the 
choice of background regions and require these regions to be comparable to target regions in terms of 
average read counts and GC content. If the background regions are not properly selected in such 
analyses, which has its own challenges (Table 2), they lead to high false positive rates and therefore 
spurious associations between open chromatin regions and TFs. BiFET on the other hand does not 
require selecting background regions as it accounts for any differences between target and background 
loci in terms of GC content and read counts. Overall, BiFET reduces false positive rates and provides a 
high detection power. Furthermore, we noted similar improvements in enrichment analyses using BIFET 
with footprints called via three different methods (CENTIPEDE, HINT-BC, and PIQ), suggesting that 
BiFET works effectively regardless of the algorithm used for calling TF footprints.  
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     The distribution of read counts across the genome is confounded with the cleavage bias of cutting 
enzymes used in chromatin accessibility assays (4,21). For example, Tn5 transposase used in ATAC-seq 
libraries is biased towards more frequently cutting guanosine- and cytidine-rich sequences, thus, regions 
with high GC content tend to have more cleavages in such assays (39), however very little is known 
about the impact of this bias on TF footprinting data analyses (22). In agreement with the reported 
sequence biases, we observed that read counts and GC contents were positively associated in all ATAC-
seq datasets studied here regardless of the cell types. Furthermore, we observed that TFs with GC-rich 
motifs are detected more frequently in regions with higher read counts, which also typically have high GC 
contents. This observation further supports that it is necessary to adjust for the potential biases in the 
data in TF footprint enrichment analysis.  
     Although TF footprinting provides an attractive and cost-effective alternative to ChIP-seq assays, it is 
prone to false positive calls as also suggested by our analyses using the randomly generated motifs. 
Therefore, an enrichment test that can reduce false positive associations between TFs and genomic 
regions is critical to effectively analyze and interpret TF footprinting data. Another pitfall of TF footprinting 
analysis is the high false negative detection rate. It is known that some TFs leave no footprints despite 
prominent binding to DNA (8,41). Furthermore, we observed that some TFs with known cell-specific 
functions were missed in the enrichment test due to i) missing PWMs or ii) small numbers of footprints 
detected for these TFs such as PDX1 and NKX6-1 for islets, which both have AT-rich PWMs. These are 
some of the open challenges that still hinder footprinting analyses, which ongoing studies are trying to 
address (42,43). 
     In summary, we observed that there is a positive association between read counts and GC content of 
a given locus and the number of TF footprints detected at this site. If not taken into consideration, this 
association significantly inflates the false positive rate in enrichment tests. By modeling this association 
and accounting for this bias, BiFET reduces false positive rate without compromising the true positive 
rate. This advanced and novel test is more effective for the analyses and interpretation of TF footprinting 
data that is inherent to biases and can distinguish the most probable regulators of cell- or disease-specific 
functions from potentially spurious ones, which will be an essential next step in genomic medicine studies 
that are generating chromatin accessibility maps from clinically-relevant samples to study complex human 
diseases (10-13). 
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Table 1: Simulation results for EndoC PIQ footprints shows efficacy of BiFET. We calculated the 
median read counts and GC proportions of target and background sets and the number of true positives 
(TP), true positive rate (TPR), number of false positives (FP) and false positive rate (FPR) under FDR 
0.05 averaged across 50 simulations for each simulation setting: (A) randomly sampling target peaks 
among all peaks, (B) randomly sampling target peaks with different read counts among all peaks, and (C 
randomly sampling target peaks with different GC contents among all peaks.  

Table 2: HT results depend on background peaks used in the analyses. We tested different 
scenarios to understand the impact of background peak selection on HT results. (A) Selecting top n% of 
all background peaks based on their read counts showed that increasing the difference between target 
and background sets in terms of read counts increases the false positive enrichments with HT. (B) 
Randomly sampling different percentages of background peaks (n~20,000 peaks) showed that reducing 
the size of the background set reduces detection power for HT.  (C) Repeating the analyses from (B) for 
10 times showed that random sampling introduces stochasticity in the HT enrichment results, where 
different sets of PWMs are captured to be enriched in each run.  
 
Fig 1. BiFET framework. BiFET models chromatin accessibility (i.e., read count) and GC content 
differences between target and background regions for an effective TF footprinting enrichment test.   
 
Fig 2. The relation between TF footprints and sequence/genomic features of a locus (A) Number of 
CENTIPEDE, HINT-BC and PIQ footprints detected in EndoC cell line within (red bars) and outside (gray 
bars) EndoC ATAC-seq peaks (B) ATAC-seq read counts vs. number of PIQ footprints detected in a 
peak. Due to the outliers, we restricted analyses to peaks whose read counts are below the 99th 
percentile. (C) For TFs with high-GC motifs, GC content of a peak correlate significantly with the number 
of PIQ footprints detected at this peak. (D) For TFs with low-GC motifs, GC content of a peak is not 
correlated with the number of PIQ footprints detected at this peak. (E) Example high-GC content PWMs 
(F) Example low-GC content PWMs.  
 
Fig 3. Footprints enriched in PBMC and islet-specific ATAC-seq peaks. (A) UCSC genome browser 
track for example PBMC-specific peaks located around the CD28 locus. Chromatin accessibility maps in 
PBMCs (islets) are shown in red (blue). ChromHMM (44) states for PBMCs and islets are represented as 
colored bars. (B) Example islet-specific peak located around the promoter of ISL1. (C) Read counts (left 
panel) and GC content (right panel) of PBMC-specific (target) peaks vs. background peaks in PBMC 
samples. (D) Percent of target peaks with footprints vs. percent of background peaks with footprints for 
each TF in PBMC samples. The TFs that are significant by both BiFET and hypergeometric test are 
labeled ‘BiFET & HT’ and indicated by red dots, those that are significant only by the hypergeometric test 
(‘HT-only’) are colored in dark red, and the TFs that are not significant (‘NS’) by either method are colored 
in gray. (E) Read counts (left panel) and GC contents (right panel) of islet-specific (target) peaks vs. 
background peaks in islet samples. (F) Percent of target peaks with footprints vs. percent of background 
peaks with footprints for each TF in islet samples. The TFs that are significant by both BiFET and 
hypergeometric test are labeled ‘BiFET & HT’ and colored in blue, those that are significant only by the 
hypergeometric test (‘HT-only’) are colored in dark blue and the TFs that are not significant (‘NS’) by 
either method are colored in gray. 
 
Fig 4. The relation between TF motif features and footprint detection rate (A) Distribution of read 
counts for peaks that have footprints for high �� TFs (above 95th percentile of ��, red bars) and low �� values (below 5th percentile, blue bars) in PBMCs. Footprints for low �� TFs were found in peaks with 
high read counts, whereas footprints for high ��  TFs were found in low read count peaks. (B) �� estimates obtained from PBMC footprint data correlate significantly with �� estimates from islet 
footprint data in rank. The TFs that are PBMC-specific are colored red, those that are islet-specific are 
colored blue, those that are both PBMC and islet-specific are colored green and those that are neither 
PBMC nor islet-specific are colored grey. (C) Distribution of GC contents for the peaks that have 
footprints for high �� TFs (above 95th percentile, red bars) and low �� values (below 5th percentile, blue 
bars) in PBMCs. (D) GC proportion of a region correlates significantly with the ATAC-seq read counts 
aligning to this location.   
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A. Randomly sampling target peaks

Median reads Median reads Median GC % Median GC% TP (TPR) TP (TPR) FP (FPR) FP (FPR)
target background target background BiFET HT BiFET HT

72 72 0.43 0.43 8 (0.8) 8.1 (0.81) 0.14 (0.00015) 0.28 (0.00029)

B. Randomly sampling target peaks with di erent read counts

Simulation Median reads Median reads TP (TPR) TP (TPR) FP (FPR) FP (FPR)
setting target background BiFET HT BiFET HT

a 275 70 9.2 ( 0.92 ) 10 ( 1 ) 1.3 ( 0.0014 ) 648 ( 0.68 )
b 123 71 8.7 ( 0.87 ) 9.9 ( 0.99 ) 0.86 ( 9e-04 ) 423 ( 0.44 )
c 58 73 8.4 (0.84) 6 (0.6) 0.06 (6.3e-05) 0 (0)
d 52 74 8.7 (0.87) 5 (0.5) 0.04 (4.2e-05) 0 (0)

C. Randomly sampling target peaks with di erent GC contents

Simulation Median GC % Median GC % TP (TPR) TP (TPR) FP (FPR) FP (FPR)
setting target background BiFET HT BiFET HT

a 0.45 0.42 8.4 ( 0.84 ) 9.4 ( 0.94 ) 22 ( 0.023 ) 128 ( 0.13 )
b 0.44 0.42 8.1 ( 0.81 ) 8.9 ( 0.89 ) 0.94 ( 0.00098 ) 30 ( 0.032 )
c 0.42 0.43 8.3 (0.83) 8 (0.8) 0.35 (0.00036) 0.29 (3e-04)
d 0.41 0.43 8.2 (0.82) 7.6 (0.76) 0.61 (0.00064) 0.24 (0.00026)

Table 1: Simulation results
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Table 2: Impact of background peak selection on HT results

A. Use top n% background peaks
n      50 60 70 80 90 100

mean read count 168 147 129 114 102 93
   105 115 134 157 182 205
   87 88 88 89 89 89

Mean read count of target peaks =189
B=set of TFs identified by BiFET

B. Randomly select n% of X = top 50 % background peaks

n% 10 20 30 40 50 60 70 80 90 100

mean read count 168 169 165 169 168 171 170 169 168 168
33 57 69 90 84 92 96 100 105 105

C. Randomly select 10 % of X = top 50 % background peaks

Run 1 2 3 4 5 6 7 8 9 10

mean read count 165 171 168 177 169 167 170 171 173 168
25 43 34 49 39 34 51 43 26 45

|Hn|
|Hn Π B|

|Hn|

|H10|
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