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Abstract

A challenge to understanding biological diversification is accounting for community-scale pro-
cesses that cause multiple, co-distributed lineages to co-speciate. Such processes predict non-
independent, temporally clustered divergences across taxa. Approximate-likelihood Bayesian
computation (ABC) approaches to inferring such patterns from comparative genetic data are
very sensitive to prior assumptions and often biased toward estimating shared divergences.
We introduce a full-likelihood Bayesian approach, ecoevolity, which takes full advantage
of information in genomic data. By analytically integrating over gene trees, we are able to
directly calculate the likelihood of the population history from genomic data, and efficiently
sample the model-averaged posterior via Markov chain Monte Carlo algorithms. Using sim-
ulations, we find that the new method is much more accurate and precise at estimating the
number and timing of divergence events across pairs of populations than existing approximate-
likelihood methods. Our full Bayesian approach also requires several orders of magnitude less
computational time than existing ABC approaches. We find that despite assuming unlinked
characters (e.g., unlinked single-nucleotide polymorphisms), the new method performs better
if this assumption is violated in order to retain the constant characters of whole linked loci.
In fact, retaining constant characters allows the new method to robustly estimate the correct
number of divergence events with high posterior probability in the face of character-acquisition
biases, which commonly plague loci assembled from reduced-representation genomic libraries.
We apply our method to genomic data from four pairs of insular populations of Gekko lizards
from the Philippines that are not expected to have co-diverged. Despite all four pairs diverg-
ing very recently, our method strongly supports that they diverged independently, and these
results are robust to very disparate prior assumptions.
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1 Introduction
To understand the distribution of Earth’s biodiversity, we must consider the degree to

which environmental changes explain diversity within and among species. A major compo-
nent of this is understanding how community-scale processes cause co-diversification across
evolutionary lineages. Such processes are expected to generate patterns of divergence times
that are difficult to explain by lineage-specific processes of diversification. Specifically, find-
ing that divergences are temporally clustered across multiple evolutionary lineages provides
compelling evidence that a shared process was responsible for the lineages diverging. For
example, the fragmentation of an environment, like an island, forest, or watershed, can cause
multiple taxa distributed across that environment to co-diverge over a short period relative
to evolutionary timescales (Figure 1). One way to test the predictions of such processes
of diversification is to infer the temporal pattern of divergences across multiple taxa, and
determine whether any subsets of the taxa shared the same divergence times.

If researchers are interested in comparing the divergence times among a number of pairs
of populations, we can approach this as a problem of model choice: How many divergence
events, and what assignment of taxa to those events, best explain the genetic variation within
and between the diverged populations of each pair (Figure 1)? One challenge of this inference
problem is the number of possible models. If we have N pairs of populations, we would like
to assign them to an unknown number of divergence events, k, which can range from one to
N . For a given number of divergence events, the Stirling number of the second kind tells us
the number of ways of assigning the taxa to the divergence times (i.e., the number of models
with k divergence-time parameters):

S2(N , k) =
1

k!

k−1∑
i=0

(−1)i
(
k

i

)
(k − i)N . (1)

When the number of divergence times is unknown, we need to sum over all possible values
of k to get the total number of possible divergence models (the Bell number; Bell, 1934)):

BN =
N∑
k=1

S2(N , k). (2)

As the number of pairs we wish to compare grows, the prospect of comparing maximum
or marginal likelihoods among all possible models quickly becomes daunting. As a result,
a Bayesian model-averaging approach is appealing, because it allows the data to determine
which models are most relevant.

Methods have been developed to perform this model averaging using approximate-likelihood
Bayesian computation (ABC) (Hickerson et al., 2006; Huang et al., 2011; Oaks, 2014). How-
ever, these methods often struggle to detect multiple divergence times across pairs of popu-
lations (Oaks et al., 2013, 2014) or have little information to update a priori expectations
(Oaks, 2014). More fundamentally, the loss of information inherent to ABC approaches can
prevent them from discriminating among models (Robert et al., 2011; Marin et al., 2013;
Green et al., 2015).
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Figure 1. A cartoon depiction of the inference problem for three pairs of insular lizard populations.
Three ancestral species of lizards co-occured on a paleo-island that was fragmented into two
islands by a rise in sea levels at τ1. The island fragmentation caused the second and third (from
the top) lineages to co-diverge; the first lineage diverged later (at τ2) via over-water dispersal.
The five possible divergence models are shown to the right, with the correct model indicated. The
divergence-time parameters (τ1 and τ2) and the pair-specific divergence times (t1, t2, and t3) are
shown. The third population pair shows the notation used in the text for the biallelic character
data (n, r = (n1, r1), (n2, r2)) and effective sizes of the ancestral (NR

e ) and descendant (ND1
e and

ND2
e ) populations. The lizard silhouette for the middle pair is from pixabay.com, and the other

two are from phylopic.org; all were licensed under the Creative Commons (CC0) 1.0 Universal
Public Domain Dedication.
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One proposed solution is to focus the inference problem on whether or not all pairs di-
verged at the same time (i.e., k = 1 versus k > 1) (Hickerson et al., 2014). However, limiting
the inference in this way is often not satisfactory, because biogeographers rarely expect that
all of the pairs of populations they wish to compare diverged at the same time. Limiting
ourselves to the hypothesis of a single shared divergence would not recognize situations where
only a subset of taxa co-diverged, or where multiple shared divergences have occurred. The
latter is particularly relevant when multiple landscape changes are known to have occurred.
More fundamentally, Papadopoulou and Knowles (2016) astutely point out that all of the
pairs co-diverging is not the correct null hypothesis. If we wish to test for shared diver-
gences, it is more appropriate to consider all the pairs diverging independently as the null
expectation.

Here, our goal is to develop a new Bayesian model-choice approach to this problem that
handles many more genetic loci, takes full advantage of the information in those loci, and
therefore more reliably estimates the number of divergence events and the assignment of
taxa to those events. Our method leverages recent analytical work (Bryant et al., 2012)
to efficiently and directly compute the full-likelihood of divergence models from genomic
data. By efficiently using all of the information in the data, the new method is faster,
more accurate, and more precise than approximate-likelihood methods for estimating shared
divergences. We introduce the new method and its assumptions, assess its performance with
simulated data, and apply it to genomic data from geckos from the Philippine Islands.

2 Methods

2.1 The data

We assume we have genetic data from multiple pairs of populations, and our goal is to
estimate the time at which the two populations of each pair diverged, and compare these
divergence times across the pairs. For each pair of populations that we wish to compare,
we assume that we have collected orthologous genetic markers with at most two states. We
will refer to these as “biallelic characters,” but note that this includes constant characters
(i.e., characters for which all the samples from the two populations share the same state).
We follow Bryant et al. (2012) in referring to the two possible states as “red” and “green.”
We assume each character is effectively unlinked, i.e., each marker evolved along a gene
tree that is independent of the others, conditional on the population history. Examples
include well-spaced, single-nucleotide polymorphisms (SNPs) or amplified fragment-length
polymorphisms (AFLPs).

For each population and for each marker we sample n copies of the locus, r of which are
copies of the red allele and the remaining n − r are copies of the green allele; r can range
from zero to n. Thus, for each population of a pair, and for each locus, we have a count of
the total sampled gene copies and how many of those are the red allele.

We will use n and r to denote allele counts for a locus from both populations of a pair;
i.e., n, r = (n1, r1), (n2, r2) (Figure 1 and Table 1). We will also use “character pattern” to
refer to n, r. We will use Di to denote these counts across all the loci from population pair
i. In other words, Di is all the genetic data collected from population pair i. Finally, we
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Table 1. A key to some of the notation used in the text.

Symbol Description

N The number of population pairs being compared.

k
The number of divergence times (or “events”) across the population pairs being

compared.
ti The time in the past when the two populations of pair i diverged.
τ The time of a divergence event at which one or more pairs of populations diverged.

T
The divergence model, which comprises the divergence times and the mapping of the

population pairs to those times.
τ All of the unique divergence times in the model (τ = τ1, . . . , τk).
T The mapping of population pairs to divergence events, but not the times of the events.
H The base distribution of the Dirichlet process.
α The concentration parameter of the Dirichlet process.

n, r
The number of copies of a locus sampled from a population, and the number of those

copies that are the “red” allele.
n, r The allele counts from both populations of a pair (i.e., n, r = (n1, r1), (n2, r2)).

Di
The allele counts across all the loci from population pair i. I.e., all of the characters

being analyzed for population pair i.
m The number of loci collected for a pair of populations.
D All of the data being analyzed, i.e., the character matrices from all population pairs.
g A gene tree with branch lengths.
µ The rate of mutation.
u Relative rate of mutating from the “red” to “green” state.
v Relative rate of mutating from the “green” to “red” state.
π The stationary frequency of the “green” state.
NR
e The effective size of the ancestral population.

ND1
e , ND2

e The effective sizes of the two descendant populations of a pair.

Ne
Shorthand notation for all three effective population sizes for a pair (ancestral and the

two descendant populations).

S
The species tree for a pair of populations. This comprises the three effective population

sizes (ancestral an the two descendant) and the time of divergence.
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use D to represent the data across all the pairs of populations of which we wish to compare
the divergence times. Note, because the pairs are unconnected (Figures 1 and 2), different
characters can be collected for each pair (i.e., characters do not need to be orthologous across
the pairs).

α

p1

H

t1, ... , tN

··S1 · SN

NR
e

ND1
e ND2

e
RNR

e

p2

NR
e

ND2
eND1

e
RNR

e

p3p4 p5

π1µ1 πN µN

n, r n, r

p6 p7p8 p9

Constant node Stochastic node Deterministic node Data node

Figure 2. A directed graph representation of the model implemented in ecoevolity. Each
constant node represents the parameters of a prior for which the prior distribution and values of
the parameters can be choosen by the investigator.

2.2 The model

2.2.1 The evolution of markers

We assume a finite-sites, continuous-time Markov chain (CTMC) model for the evolution
of the biallelic characters along a gene tree with branch lengths, g. As the marker evolves
along the gene tree, forward in time, there is an instantaneous relative rate u of mutating
from the red state to the green state, and a corresponding relative rate v of mutation from
green to red. The stationary frequency of the red and green state is then v/(u + v) and
u/(u+ v), respectively. Thus, if given the stationary frequency of the green allele, π, we can
obtain the relative rates of mutation between the two states. We will denote the overall rate
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of mutation as µ. If a mutation rate per site per unit time is given, then branch lengths are
in absolute time. Alternatively, if µ = 1, the branch lengths of the gene tree are in units
of expected substitutions per site. In such a case, for a given pair of populations, the µ is
redundant, because it can be incorporated into the branch lengths of the gene tree. However,
we introduce the notation here, because it will be useful later when we want to allow rate
variation among pairs of populations.

2.2.2 The evolution of gene trees

We assume that each marker sampled from a pair of populations evolved within a simple
“species” tree with one ancestral root population that diverged into two descendant (terminal)
branches at time t (Figure 1). Again, if the µ is given, t is in units of absolute time; however,
if µ is set to one, time is in units of expected substitutions per site. We will use Ne to denote
all three effective sizes of a population pair (NR

e , ND1
e , and ND2

e ). We will also use S as
shorthand for the species tree, which comprises the population sizes and divergence time of
a pair (Ne and t).

2.2.3 The likelihood

Given µ, π, and S, the probability of the observed data at a locus (n and r), is the
probability of the character pattern given the gene tree multiplied by the probability of the
gene tree given the species tree, summed over all possible gene tree topologies and integrated
over all possible gene tree branch lengths,

p(n, r |S, µ, π) =
∫
g

p(n, r | g, µ, π)p(g, µ, π |S)dg (3)

(Felsenstein, 1988; Nielsen and Wakeley, 2001; Rannala and Yang, 2003). We take advantage
of the mathematical work of (Bryant et al., 2012) to analytically integrate over all possible
gene trees and all possible character substitution histories along those gene trees. This allows
us to compute the likelihood of the species tree directly from a biallelic character pattern
under a coalescent model, i.e., p(n, r |S, µ, π). We refer readers to Bryant et al. (2012) for
the details of this likelihood and the algorithms to compute it.

Assuming independence among loci (conditional on the species tree), we can calculate
the probability of m loci given the species tree by simply taking the product over them,

p(D |S, µ, π) =
m∏
i=1

p(ni, ri |S, µ, π). (4)

Finally, the likelihood across all of our N pairs is simply the product of the likelihood of
each pair,

p(D |S,µ,π) =
N∏
i=1

p(Di |Si, µi, πi), (5)

where D = D1, D2, . . . , DN , S = S1, S2, . . . , SN , µ = µ1, µ2, . . . , µN , and π = π1, π2, . . . , πN .
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2.2.4 Correcting for excluded constant characters

If we exclude constant characters and only analyze variable characters, we need to correct
the sample space for the excluded constant characters. We can correct the likelihood by
simply dividing by the probability of a variable character, which is equal to one minus the
probability of a constant character,

p(n, r |S, µ, π, variable) = p(n, r |S, µ, π)
p(variable |S, µ, π)

=
p(n, r |S, µ, π)

1− p(constant |S, µ, π)

=
p(n, r |S, µ, π)

1− p(n all red |S, µ, π)− p(n all green |S, µ, π) .

(6)

When we take the product over loci to get the probability of all the variable data collected
from a pair of populations, we correct each character pattern to allow for different numbers
of sampled gene copies among loci,

p(D |S, µ, π, variable) =
m∏
i=1

p(ni, ri |S, µ, π)
1− p(ni all red |S, µ, π)− p(ni all green |S, µ, π)

. (7)

This is a bit different than the correction done in the software SNAPP (Bryant et al., 2012). If
we use max(n) to denote the maximum number of gene copies sampled from each population,
then the correction in SNAPP is

pSNAPP (D |S, µ, π, variable) =
∏m

i=1 p(ni, ri |S, µ, π).
(1− p(max(n) all red |S, µ, π)− p(max(n) all green |S, µ, π))m .

(8)

These are equivalent if the same number of samples are collected across all variable loci for
each population (i.e., no missing gene copies), but will deviate if fewer copies are sampled
for at least one locus. Thus, identical likelihoods between SNAPP and our method should
not be expected when analyzing variable-only data.

2.3 Bayesian inference

We can obtain a posterior probability distribution by naively plugging the likelihood in
Equation 5 into Bayes’ rule,

p(S,µ,π |D) =
p(D |S,µ,π)p(S,µ,π)

p(D)
. (9)

However, this assumes all pairs of populations diverged independently, not allowing us to
learn about shared divergence times. What we want to do is relax this assumption and allow
pairs to share divergence times.

Let’s use T to represent the divergence model, which comprises the divergence times—
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the number of which (k) can range from 1 to N—and the mapping of non-overlapping
subsets of the population pairs to these k divergence times. We will separate out T into two
components,

1. the partitioning of the N population pairs to divergence events, which we will denote
as T , and

2. the divergence times themselves, τ = τ1, . . . , τk , the number of which (k) is determined
by T .

We relax the assumption of independent divergence times by treating the number of di-
vergence events and the assignment of population pairs to those events as random variables
under a Dirichlet process (Ferguson, 1973; Antoniak, 1974). Specifically, we use the Dirichlet
process as a prior on divergence models, T ∼ DP(H,α), where H is the base distribution
of the process and α is concentration parameter that controls how clustered the process is.
The concentration parameter determines the prior probability of T (the partitioning of the
population pairs) and the base distribution determines the prior probability of the divergence
time of each subset.

Under the Dirichlet process prior, the posterior becomes

p(α, T,Ne ,µ,π |D, H) =
p(D |T,Ne ,µ,π)p(T |α,H)p(α)p(Ne)p(µ)p(π)

p(D, H)
, (10)

where Ne is the collection of the effective population sizes (Ne) across all of the pairs.
By expanding the divergence model (T) into the partitioning of the population pairs to
divergence events (T ) and the times of those events (τ ), we get

p(α, τ , T ,Ne ,µ,π |D, H) =
p(D | τ , T ,Ne ,µ,π)p(T |α)p(τ | T , H)p(α)p(Ne)p(µ)p(π)

p(D, H)
.

(11)

2.3.1 Priors

Prior on the concentration parameter Given a single parameter, α, the Dirichlet
process determines the prior probability of all the possible ways the N pairs of populations
can be partitioned to k = 1, 2, . . .N divergence events. Given α, the prior probability that
two pairs of populations, i and j (assuming i 6= j), share the same divergence time is

p(ti = tj |α) =
1

1 + α
(12)

This illustrates that when α is small, the process tends to be more clumped, and as it
increases, the process tends to favor more independent divergence times. One option is to
simply fix the concentration parameter to a particular value, which is likely sufficient when
the number of pairs is small. Alternatively, we allow a hierarchical approach to accommodate
uncertainty in the concentration parameter by specifying a gamma distribution as a prior
on α (Escobar and West, 1995; Heath et al., 2011).
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Prior on the divergence times Given the partitioning of the pairs to divergence events,
we use a gamma distribution for the prior on the time of each event, τ | T ∼ Gamma(·, ·).
This is the base distribution (H) of the Dirichlet process.

Prior on the effective population sizes For the two descendant populations of each
pair, we use a gamma distribution as the prior on the effective population sizes. For the
root population, we use a gamma distribution on the effective population size relative to
the mean size of the two descendant populations, which we denote as RNR

e
. For example,

a value of one would mean the root population size is equal to (ND1
e + ND2

e )/2. The goal
of this approach is to allow more informative priors on the root population size; we often
have stronger prior expectations for the relative size of the ancestral population than the
absolute size. This is important, because the effective size of the ancestral population is a
difficult nuisance parameter to estimate and can be strongly correlated with the divergence
time. For example, if the divergence time is so old such that all the gene copies of a locus
coalesce within the descendant populations, the locus provides very little information about
the size of the ancestral population. As a result, a larger ancestral population and more
recent divergence will have a very similar likelihood to a small ancestral population and an
older divergence. Thus, placing more prior density on reasonable values of the ancestral
population size can help improve the precision of divergence-time estimates.

Prior on mutation rates In the model presented above, for each population pair, the
divergence time (τ) and mutation rate (µ) are inextricably linked. For a single pair of
populations, if little is known about the mutation rate, this problem is easily solved by
setting it to one (µ1 = 1) such that time is in units of expected substitutions per site and
the effective population sizes are scaled by µ. However, what about the second pair of
populations for which we wish to compare the divergence time to the first? Because the
species trees in our model are disconnected (Figures 1 and 2), we cannot learn about the
relative rates of mutation across the population pairs from the data. As a result, we need
strong prior information about the relative rates of mutation across population pairs for this
model to work.

If the second pair of populations is closely related to the first, and shares a similar life
history, we could assume they share the same mutation rate and set the mutation rate of the
second pair to one as well (µ1 = µ2 = 1). Alternatively, we could relax that assumption and
put a prior on µ2. However, this should be a strongly informative prior. Placing a weakly
informative prior on µ2 would mean that we can no longer estimate its divergence time
relative to the first pair, which is our primary goal. So, while it is possible to incorporate
uncertainty in relative mutation rates, it is important to keep in mind that the data cannot
inform these parameters, and thus the prior uncertainty in rates will be directly reflected in
the posterior of divergence times.

Prior on the equilibrium-state frequency Our method allows for a beta prior to be
placed on the frequency of the green allele for each pair of populations, πi ∼ Beta(·, ·).
However, if using SNP data, we advise fixing the frequency of the red and green states to
be equal (i.e., π = 0.5). The reason for this is that there is no natural way of re-coding
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four-state nucleotides to two states, and so the relative transition rates, u and v, are not
biologically meaningful. There will always be arbitrariness associated with how one decides
to perform this re-coding, and unless π = 0.5, this arbitrariness will affect the likelihood
and results. Constraining π to 0.5 makes the CTMC model a two-state analog of the “JC69”
model (Jukes and Cantor, 1969). However, if the genetic markers are naturally biallelic, the
frequencies of the two states can be meaningfully estimated, making the model a two-state
general time-reversible model (Tavaré, 1986).

2.3.2 Approximating the posterior with MCMC

We use Markov chain Monte Carlo (MCMC) algorithms to numerically approximate the
joint posterior in Equation 11. We use the Gibbs sampling algorithm (Algorithm 8) of
Neal (2000) to update the divergence model (T) during the chain. We also use univariate
Metropolis-Hastings algorithms (Metropolis et al., 1953; Hastings, 1970) to update each
parameter of the model during the MCMC. To improve mixing of the chain when there
are strong correlations between divergence times, effective population sizes, and mutation
rates we use multivariate Metropolis-Hastings algorithms. The probability of accepting a
Metropolis-Hastings proposal is determined by the product of three terms, the first two of
which are the ratios of the likelihood and prior probability densities of the proposed state to
the current state of the model. The third term, the Hastings ratio (HR), accounts for any
difference in the probability of the proposed move versus the probability of the move that
would exactly reverse the proposed state back to the current state of the model. Below, we
detail the Hastings ratio for two of our multivariate moves.

TimeRootSizeMixer proposal One case of poor mixing can occur for pairs that diverge
long enough ago such that only a single coalescence occurs within the root for most loci.
In this scenario there is very little information in the character patterns about the size of
the ancestral population, and so the divergence time and root population size become highly
correlated (i.e., an older divergence time and smaller root size explain the data equally well as
a younger divergence time and larger root size). We used expectations under the coalescent
to design a proposal to better sample this correlated region of parameter space. To simplify
notation, throughout this section we will use N in place of NR

e to denote the effective size
of the ancestral population.

When coalescence of gene lineages is complete within a sampled pair of populations, only
two lineages coalesce within the ancestral population. In this case, the expected height of
the root of a gene tree is equal to τµ+2Nµ, in units of time determined by µ (e.g., expected
substitutions per site if µ = 1). The purpose of our move is to keep the expected root height
of the gene trees of the proposed state equal to the current state,

τ ′µ + 2N ′µ = τµ + 2Nµ. (13)

The mutation rate cancels, giving us the following relationship to uphold during our proposal,

τ ′ + 2N ′ = τ + 2N. (14)
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This relationship will allow us to jointly and efficiently explore the space of τ and N when
there is little information in the data to tease them apart.

For population pair i, we first draw a uniform random deviate, u ∼ Uniform(−λ, λ),
where λ is a tuning parameter that can be adjusted to improve the acceptance rate of
the proposal. Next, we propose a new value for the effective population size of the root
population

N ′i = N ie
u.

Now, we use the relationship in Equation 14 to determine the corresponding proposed value
for the population divergence time,

τ ′ = τ + 2N i − 2N ′i. (15)

The uniform deviate to reverse this move is simply u′ = −u.
To get the Hastings ratio for this move, we use the formula of Green (1995),

Hastings ratio =
g′(u′)

g(u)
| det(J)|, (16)

which is the ratio of the probability of drawing the random deviate that would reverse the
proposed move to the probability of drawing the random deviate of the proposed move,
multiplied by the absolute value of the determinant of a Jacobian matrix. Because the
forward and reverse random deviates are uniform, g

′(u′)
g(u)

= 1, and the Hastings ratio reduces
to just the Jacobian term,

J =

∣∣∣∣∣∣∣∣∣
∂N ′i
∂N i

∂N ′i
∂τ

∂N ′i
∂u

∂τ ′

∂N i

∂τ ′

∂τ
∂τ ′

∂u

∂u′

∂N i

∂u′

∂τ
∂u′

∂u

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
eu 0 Neu

2(1− eu) 1 −2Neu

0 0 −1

∣∣∣∣∣∣∣∣∣
det(J) = eu

∣∣∣∣∣∣ 1 −2Ne
u

0 −1

∣∣∣∣∣∣− 0

∣∣∣∣∣∣ 2(1− e
u) −2Neu

0 −1

∣∣∣∣∣∣+Neu

∣∣∣∣∣∣ 2(1− e
u) 1

0 0

∣∣∣∣∣∣
= −eu

| det(J)| = | − eu| = eu = Hastings ratio.

(17)

Notice that the change to τ also changes the divergence times of all the pairs that currently
share this divergence time with pair i. So, the efficiency of this move can be hindered when
there is a lot of sharing of divergence times. However, we can easily extend this move to
change the sizes of the ancestral population of pairs j, k, . . . n that share their divergence
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time with pair i. To do this, we, again, adhere to the relationship in Equation 14:

2N ′j = 2N j + τ − τ ′

N ′j = N j +
1

2
(τ − τ ′)

= N j +
1

2
(τ − (τ + 2N i − 2N ′i))

= N j +
1

2
(τ − τ − 2N i + 2N ′i)

= N j − (N i −N ′i)
= N j − (N i −N ie

u)

= N j −N i(1− eu).

(18)

The Jacobian term then becomes

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂N ′i
∂N i

∂N ′i
∂τ

∂N ′i
∂Nj

∂N ′i
∂Nk

. . .
∂N ′i

∂Nn−1

∂N ′i
∂Nn

∂N ′i
∂u

∂τ ′

∂N i

∂τ ′

∂τ
∂τ ′

∂Nj

∂τ ′

∂Nk
. . . ∂τ ′

∂Nn−1

∂τ ′

∂Nn

∂τ ′

∂u

∂N ′j
∂N i

∂N ′j
∂τ

∂N ′j
∂Nj

∂N ′j
∂Nk

. . .
∂N ′j
∂Nn−1

∂N ′j
∂Nn

∂N ′j
∂u

∂N ′k
∂N i

∂N ′k
∂τ

∂N ′k
∂Nj

∂N ′k
∂Nk

. . .
∂N ′k
∂Nn−1

∂N ′k
∂Nn

∂N ′k
∂u

...
...

...
... . . . ...

...
...

∂N ′n−1

∂N i

∂N ′n−1

∂τ

∂N ′n−1

∂Nj

∂N ′n−1

∂Nk
. . .

∂N ′n−1

∂Nn−1

∂N ′n−1

∂Nn

∂N ′n−1

∂u

∂N ′n
∂N i

∂N ′n
∂τ

∂N ′n
∂Nj

∂N ′n
∂Nk

. . . ∂N ′n
∂Nn−1

∂N ′n
∂Nn

∂N ′n
∂u

∂u′

∂N i

∂u′

∂τ
∂u′

∂Nj

∂u′

∂Nk
. . . ∂u′

∂Nn−1

∂u′

∂Nn

∂u′

∂u

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eu 0 0 0 . . . 0 0 N ie
u

2(1− eu) 1 0 0 . . . 0 0 −2N ie
u

eu − 1 0 1 0 . . . 0 0 N ie
u

eu − 1 0 0 1
. . . 0 0 N ie

u

...
...

... . . . . . . . . . ...
...

eu − 1 0 0 0
. . . 1 0 N ie

u

eu − 1 0 0 0 . . . 0 1 N ie
u

0 0 0 0 . . . 0 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det(J) = −eu
| det(J)| = | − eu| = eu = Hastings ratio.

(19)

TimeSizeRateMixer proposal This proposal is designed to improve mixing of the MCMC
chain when there are strong posterior correlations among divergence time, population size,
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and mutation rate parameters. It does so by jointly scaling these parameters according
to the direction (positive or negative) of the posterior correlations we often observed when
analyzing simulated data. The divergence time was often positively correlated with the
effective sizes of the descendant populations, and negatively correlated with the mutation
rate and effective population size of the ancestral population.

For a given divergence time, τi, we first draw a random uniform deviate, u ∼ Uniform(−λ, λ),
where λ is, again, a tuning parameter to adjust the proposal’s acceptance rate. We use this
random deviate to propose a new value for the divergence time,

τ ′i = τie
u.

Next, we visit each population pair that is associated with this divergence time, and propose
the following updates to the pair’s parameters, if they are being estimated (i.e., not fixed):

NR
e
′ = NR

e e
−u

ND1
e
′ = ND1

e eu

ND2
e
′ = ND1

e eu

µ′ = µe−u.

(20)

When doing so, we keep track of the total number of parameters that have been updated,
denoted as n, and how many of these were scaled by eu, denoted m; the remaining n −m
parameters were scaled by e−u.

Given n and m, we can again use Green’s 1995 formula (Equation 16 above) to determine
the Hastings ratio for this proposal. Once again, g

′(u′)
g(u)

= 1, because the random deviates are
uniform. Using θ1, . . . , θm and θm+1, . . . , θn to denote the parameters that have been scaled

14

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2018. ; https://doi.org/10.1101/324525doi: bioRxiv preprint 

https://doi.org/10.1101/324525
http://creativecommons.org/licenses/by/4.0/


by eu and e−u, respectively, the Jacobian term is

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂θ′1
∂θ1

∂θ′1
∂θ2

. . .
∂θ′1

∂θm−1

∂θ′1
∂θm

∂θ′1
∂θm+1

∂θ′1
∂θm+2

. . .
∂θ′1
∂θn−1

∂θ′1
∂θn

∂θ′1
∂u

∂θ′2
∂θ1

∂θ′2
∂θ2

. . .
∂θ′2

∂θm−1

∂θ′2
∂θm

∂θ′2
∂θm+1

∂θ′2
∂θm+2

. . .
∂θ′2
∂θn−1

∂θ′2
∂θn

∂θ′2
∂u

...
... . . . ...

...
...

... . . . ...
...

...
∂θ′m−1

∂θ1

∂θ′m−1

∂θ2
. . .

∂θ′m−1

∂θm−1

∂θ′m−1

∂θm

∂θ′m−1

∂θm+1

∂θ′m−1

∂θm+2
. . .

∂θ′m−1

∂θn−1

∂θ′m−1

∂θn

∂θ′m−1

∂u

∂θ′m
∂θ1

∂θ′m
∂θ2

. . . ∂θ′m
∂θm−1

∂θ′m
∂θm

∂θ′m
∂θm+1

∂θ′m
∂θm+2

. . . ∂θ′m
∂θn−1

∂θ′m
∂θn

∂θ′m
∂u

∂θ′m+1

∂θ1

∂θ′m+1

∂θ2
. . .

∂θ′m+1

∂θm−1

∂θ′m+1

∂θm

∂θ′m+1

∂θm+1

∂θ′m+1

∂θm+2
. . .

∂θ′m+1

∂θn−1

∂θ′m+1

∂θn

∂θ′m+1

∂u

∂θ′m+2

∂θ1

∂θ′m+2

∂θ2
. . .

∂θ′m+2

∂θm−1

∂θ′m+2

∂θm

∂θ′m+2

∂θm+1

∂θ′m+2

∂θm+2
. . .

∂θ′m+2

∂θn−1

∂θ′m+2

∂θn

∂θ′m+2

∂u
...

... . . . ...
...

...
... . . . ...

...
...

∂θ′n−1

∂θ1

∂θ′n−1

∂θ2
. . .

∂θ′n−1

∂θm−1

∂θ′n−1

∂θm

∂θ′n−1

∂θm+1

∂θ′n−1

∂θm+2
. . .

∂θ′n−1

∂θn−1

∂θ′n−1

∂θn

∂θ′n−1

∂u

∂θ′n
∂θ1

∂θ′n
∂θ2

. . . ∂θ′n
∂θm−1

∂θ′n
∂θm

∂θ′n
∂θm+1

∂θ′n
∂θm+2

. . . ∂θ′n
∂θn−1

∂θ′n
∂θn

∂θ′n
∂u

∂θ′u
∂θ1

∂θ′u
∂θ2

. . . ∂θ′u
∂θm−1

∂θ′u
∂θm

∂θ′u
∂θm+1

∂θ′u
∂θm+2

. . . ∂θ′u
∂θn−1

∂θ′u
∂θn

∂θ′u
∂u

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eu 0 . . . 0 0 0 0 . . . 0 0 θ′1e
u

0
. . . . . . 0 0 0 0 . . . 0 0 θ′1e

u

... . . . . . . . . . ...
...

... . . . ...
...

...

0 0
. . . . . . 0 0 0 . . . 0 0 θ′me

u

0 0 . . . 0 eu 0 0 . . . 0 0 θ′me
u

0 0 . . . 0 0 e−u 0 . . . 0 0 θ′me
−u

0 0 . . . 0 0 0
. . . . . . 0 0 θ′me

−u

...
... . . . ...

...
... . . . . . . . . . ...

...

0 0 . . . 0 0 0 0
. . . . . . 0 θ′ne

−u

0 0 . . . 0 0 0 0 . . . 0 e−u θ′ne
−u

0 0 . . . 0 0 0 0 . . . 0 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det(J) = −eume−u(n−m)

= −e2um−un

| det(J)| = eu(2m−n) = Hastings ratio.
(21)
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2.4 Software implementation

The method outlined above is implemented in the open-source software package, ecoevolity,
written in the C++ language. The source code is freely available from https://github.
com/phyletica/ecoevolity, and documentation is available at http://phyletica.org/
ecoevolity/. The software package is accompanied by an extensive test suite, which, among
other aspects, validates that the likelihood code returns the same values as SNAPP (Bryant
et al., 2012), and all of our MCMC proposals sample from the expected prior distribution
when data are ignored.

The ecoevolity package includes four programs:

1. ecoevolity for performing Bayesian inference under the model described above.

2. sumcoevolity for summarizing posterior samples collected by ecoevolity and per-
forming simulations to calculate Bayes factors for all possible numbers of divergence
events.

3. simcoevolity for simulating biallelic characters under the model described above.

4. DPprobs for Monte Carlo approximations of probabilities under the Dirichlet process;
this can be useful for choosing a prior on the concentration parameter.

We have also developed a Python package, pycoevolity, to help with preprocessing data
and summarizing posterior samples collected by ecoevolity. This includes assessing MCMC
chain stationarity and convergence and plotting posterior distributions. The source code for
pycoevolity is available at https://github.com/phyletica/pycoevolity.

All of our analyses were performed with Version 0.1 (commit 1d688a3) of the ecoevolity
software package. The TimeRootSizeMixer algorithm implemented in this version of the
software only updates one ancestral population size per proposal. In Version 0.2 (commit
884780e), the default behavior is for the TimeRootSizeMixer proposal to update the an-
cestral population size for all other pairs associated with the same divergence time (see
above). While this tends to improve mixing slightly, it does not change the results we
present here in a meaningful way. Our results can be reproduced exactly with Version
0.1. To help facilitate reproducibility, a detailed history of this project is available at
https://github.com/phyletica/ecoevolity-experiments, including all of the data and
scripts needed to produce our results.

2.5 Analyses of simulated data

2.5.1 Validation analyses

Our first step to validate the new method was to verify that it behaves as expected when
the model is correct (i.e., data are simulated and analyzed under the same model). We used
the simcoevolity tool from the ecoevolity package, which simulates data under the model
described above. All data were simulated under the following settings:

1. N = 3
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2. n = 10 (i.e., 10 alleles—5 diploid individuals—sampled from each population)

3. α = 1.414216, which corresponds with a prior mean of k = 2 divergence events

4. τ ∼ Exponential(mean = 0.01)

5. π = 0.5

6. µ = 1

We simulated data under five different settings for the effective population sizes. The first
setting was an idealized situation where all population sizes were known and equal, NR

e =
ND1
e = ND2

e = 0.002. The four remaining scenarios differed in their distribution on the
relative effective size of the root population:

1. RNR
e
∼ Gamma(shape = 2,mean = 1)

2. RNR
e
∼ Gamma(shape = 10,mean = 1)

3. RNR
e
∼ Gamma(shape = 100,mean = 1)

4. RNR
e
∼ Gamma(shape = 1000,mean = 1)

For these four scenarios, the descendant populations were distributed as Gamma(shape =
5,mean = 0.002). The most difficult nuisance parameter to estimate for a pair of populations
is the root population size, which can be correlated with the parameter of interest, the
divergence time. Thus, our choice of simulation settings is designed to assess how uncertainty
in the root population size affects inference.

Under each of the five scenarios we simulated 500 data sets of 100,000 characters and
500 data sets of 500,000 characters. This includes constant characters; the mean number of
variable SNPs was approximately 5,500 and 27,500, respectively. We then analyzed all 5,000
simulated data sets in ecoevolity both with and without constant characters included. For
all analyses, the prior for each parameter matched the distribution the true value was drawn
from when the data were simulated. For analyses where NR

e = ND1
e = ND2

e = 0.002, we ran
three independent MCMC chains for 37,500 generations, sampling every 25th generation.
For all other analyses, we ran the three chains for 75,000 generations, sampling every 50th
generation. As a result, we collected 4503 samples for each analysis (1501 samples from each
chain, including the initial state).

In order to assess the frequentist behavior of the posterior probabilities of divergence
models inferred by ecoevolity, we simulated an additional 20,000 data sets of 100,000
characters under the setting where RNR

e
∼ Gamma(shape = 100,mean = 1). All 20,500 data

sets were analyzed with ecoevolity and binned based on the inferred posterior probability
that k = 1. The mean posterior probability that k = 1 for each bin was plotted against
the proportion of data sets within the bin for which the true divergence model was k = 1;
the latter approximates the true probability that k = 1. If the new method is unbiased,
in a frequentist sense, the inferred posterior probabilities that k = 1 within a bin should
approximately equal the proportion of the data sets for which that is true (Huelsenbeck and
Rannala, 2004; Oaks et al., 2013; Oaks, 2014).
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2.5.2 Assessing the effect of linked characters

The characters of most data sets being collected by high-throughput technologies do
not all evolve along independent gene trees. Most consist of many putatively unlinked loci
that each comprise sequences of linked nucleotides. For example, “RADseq” and “sequence
capture” techniques generate thousands of loci that are approximately 50–300 nucleotides
in length. This creates a question when using methods like ecoevolity that assume each
character is independent: Is it better to violate the assumption of unlinked characters and
use all of the data, or throw away much of the data to avoid linked characters?

To better adhere to the unlinked-character assumption, we could retain only a single
site per locus. However, this results in a very large loss of data. Furthermore, to try
and maximize the informativeness of the retained characters, most researchers retain only
one variable character per locus. While this can be corrected for (see Equation 7), it still
results in the loss of a very informative component of the data: The proportion of variable
characters. Before throwing away so much information, we should determine whether it is in
our best interest. In other words, does keeping all of the data and violating the assumption
of unlinked characters result in better or worse inferences than throwing out much of our
data?

To address this question, we simulated data sets composed of loci of linked sites that
were 100, 500, and 1000 characters long. The characters for each locus were simulated along
the same gene tree (i.e., no intra-locus recombination). Simulated data sets were analyzed
with ecoevolity in one of three ways: (1) All characters were included, (2) only variable
characters were included, and (3) only a maximum of one variable character per locus was
included. Only the last option avoids violating the assumption of unlinked characters, but
throws out the most data.

For all three locus lengths, we simulated 500 data sets with a total of 100,000 and 500,000
characters. The settings of the simulations performed with simcoevolity, and subsequent
analyses with ecoevolity, correspond with the validation analyses described above where
the relative size of the root population was distributed as Gamma(shape = 100,mean =
1). Furthermore, to assess the affect of linked characters on the posterior probabilities of
divergence models, we simulated an additional 10,000 data sets with 1,000, 100-character
loci (100,000 total characters each). As described above, to assess the frequentist behavior
of the inferred posterior probabilities, we binned the results of the analyses of these 10,500
data sets based on the posterior probability that k = 1 and plotted the mean of each bin
against the approximated true probability that k = 1.

2.5.3 Assessing the effect of missing data

The method should be robust to missing data, because it is simply treated as a smaller
sample of gene copies from a particular population for a particular locus. Because each
character is assumed to have evolved along a coalescent gene tree, the identity of each gene
copy within a population does not matter. Thus, some loci having fewer sampled gene
copies from some populations should result in more variance in parameter estimates, but is
not expected to create bias. To confirm this behavior, we simulated data sets with different
probabilities of sampling each gene copy. Specifically, we simulated data sets for which the
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probability of sampling each gene copy was 90%, 75%, or 50%, which resulted in data sets
with approximately 10%, 25%, or 50% missing data. For each sampling probability, we
simulated 100 data sets with 500,000 unlinked characters; the settings were the same as
described for the validation analyses above where RNR

e
∼ Gamma(shape = 100,mean = 1).

2.5.4 Assessing the effect of biases in character-pattern acquisition

When analyzing the Gekko data (see below), we observed large discrepancies in the esti-
mated divergence times depending on whether or not the constant characters were removed
from the analysis. This was not observed in the analyses of simulated data, because the like-
lihood is appropriately corrected for the excluded constant characters. This suggests that
there are additional character-pattern acquisition biases in the empirical data, for which are
our method cannot correct. Such acquisition biases have been documented during the de
novo assembly of RADseq loci (Harvey et al., 2015; Linck and Battey, 2017).

The loss of rare alleles during the acquisition and assembly of the data could explain the
much larger divergence times estimated from the empirical data when constant characters
are removed. After the constant characters, the rare alleles are “next in line” to inform
the model that the population divergence was recent. If these patterns are being lost during
data acquisition and assembly, and not accounted for in the likelihood calculation, this should
create an upward bias in the divergence time estimates.

To explore whether data acquisition bias can explain the discrepancy we observed for the
Gekko data, we simulated data sets where the probability of sampling singleton character
patterns (i.e., one gene copy is different from all the others) was 80%, 60%, and 40%. For
each, we simulated and analyzed 100 data sets with 500,000 unlinked characters; the settings
were the same as described for the validation analyses above where RNR

e
∼ Gamma(shape =

100,mean = 1).

2.5.5 Comparison to ABC methods

We wanted to compare the performance of the new method to the existing approximate-
likelihood Bayesian computation (ABC) method dpp-msbayes (Oaks, 2014). In order to do
this, we had to simulate relatively small data sets that the ABC method could handle in a
reasonable amount of time. Accordingly, we simulated data sets with 200 loci, each with 200
linked characters (40,000 total characters). For simulations and analyses of both ecoevolity
and dpp-msbayes, the settings were

1. N = 3

2. n = 10 (i.e., 10 alleles—5 diploid individuals—sampled from each population)

3. α = 1.414216, which corresponds with a prior mean of k = 2 divergence events

4. τ ∼ Gamma(shape = 2,mean = 0.05)

5. µ = 1

6. ND
e ∼ Gamma(shape = 5,mean = 0.002)

19

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2018. ; https://doi.org/10.1101/324525doi: bioRxiv preprint 

https://doi.org/10.1101/324525
http://creativecommons.org/licenses/by/4.0/


For analyses with dpp-msbayes, the effective size of the ancestral population, NR
e , was also

distributed as Gamma(shape = 5,mean = 0.002), whereas for ecoevolity, the relative effec-
tive size of the ancestral population, RNR

e
, was distributed as Gamma(shape = 100,mean =

1); the marginal prior on NR
e induced by the latter is similar to the former. For analyses

with dpp-msbayes, we assumed a Jukes-Cantor model of nucleotide substitution, whereas
for the ecoevolity, we assumed the two-state equivalent (i.e., π = 0.5).

Each method was applied to 500 data sets simulated under its own model. Thus, there
were no model violations, except for the new method, for which the assumption of unlinked
characters was violated by the 200-character loci. For the analysis of each simulated data set
with ecoevolity, three independent MCMC chains were run for 75,000 generations, sam-
pling every 50th generation. For the dpp-msbayes analyses, 500,000 samples were simulated
from the joint prior distribution, 2,000 of which were retained for the approximate posterior
sample.

2.6 Empirical application

Previous methods for estimating shared divergence times often over-cluster taxa (Oaks
et al., 2013, 2014). Thus, a good empirical test of the new method would be pairs of
populations that we expect diverged independently of one another. We analyzed restriction-
site-associated sequence (RADseq) data from four pairs of populations of Gekko lizards
(Table 2). Each pair of populations inhabit two different oceanic islands in the Philippines
that were never connected during lower sea levels of glacial periods. Because these islands
were never connected, the divergence between the populations of each pair is likely due to
over-water dispersal, the timing of which should be idiosyncratic to each pair.

Table 2. A summary of the data collected from the pairs of Cyrtodactylus and Gekko populations
from the Philippines. Each row represents a pair of populations sampled from two islands that
were never connected during low sea levels of glacial periods.
Species Island 1 Island 2 Sample sizes # loci # sites # variable # polyallelic
G. crombota-rossi Babuyan Claro Calayan 5 5 16,901 1,538,408 5737 50
G. mindorensis Lubang Luzon 5 4 18,137 1,651,186 12,092 68
G. mindorensis Maestre De Campo Masbate 3 3 15,993 1,455,238 11,845 27
G. sp. B-sp. A Camiguin Norte Dalupiri 5 5 15,199 1,383,596 5612 31

We analyzed the data with and without the constant characters. Also, there were a small
number of sites that had more than two nucleotides represented (Table 2), which cannot be
handled directly by our model of biallelic characters. We explored two ways of handling these
sites: (1) excluding them, and (2) coding the first nucleotide in the alignment as 0 (“green”),
and all other nucleotides for that site as 1 (“red”). Thus, between including/excluding the
constant sites and removing/re-coding the polyallelic characters, we analyzed four versions
of the RADseq data.

To be conservative in assessing the ability of the new method to distinguish divergence
times among the pairs, we set α = 0.44, which places 50% of the prior probability on one
divergence event (i.e., all four pairs sharing the same divergence). Furthermore, to assess
the sensitivity of the results to α, we also used α = 3.77, which corresponds with a prior

20

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2018. ; https://doi.org/10.1101/324525doi: bioRxiv preprint 

https://doi.org/10.1101/324525
http://creativecommons.org/licenses/by/4.0/


mean number of divergence events of three. Other settings that were shared by all analyses
of the Gekko RADseq data include:

• ND
e ∼ Gamma(shape = 4,mean = 0.004)

• RNR
e
∼ Gamma(shape = 100,mean = 1)

• π = 0.5

• µ = 1 for all four pairs

The ABC methods of inferring shared divergence events are very sensitive to the prior on
divergence times (Oaks et al., 2013; Hickerson et al., 2014; Oaks et al., 2014; Oaks, 2014). To
assess whether results of our new method are also sensitive to the prior on divergence times,
we analyzed the data sets that included constant characters under the following priors:

1. τ ∼ Exponential(mean = 0.005)

2. τ ∼ Exponential(mean = 0.01)

3. τ ∼ Exponential(mean = 0.05)

4. τ ∼ Exponential(mean = 0.1)

5. τ ∼ Exponential(mean = 0.2)

For the two versions of the Gekko data that lacked the constant characters, we used the
following priors:

1. τ ∼ Exponential(mean = 0.01)

2. τ ∼ Exponential(mean = 0.05)

3. τ ∼ Exponential(mean = 0.1)

4. τ ∼ Exponential(mean = 0.2)

5. τ ∼ Exponential(mean = 0.5)

For all analyses, we ran 10 independent MCMC chains for 150,000 generations, sampling
every 100th generation. Convergence and mixing of the chains was assessed by the potential
scale reduction factor (PSRF; the square root of Equation 1.1 in Brooks and Gelman, 1998)
and effective sample size (ESS; Gong and Flegal, 2016) of the log-likelihood and all param-
eters. We also inspected the chains visually with the program Tracer version 1.6 (Rambaut
et al., 2014).

The collection and assembly of the Gekko RADseq data are detailed in Oaks et al. (in
prep.). The sequence reads are available on the NCBI Sequence Read Archive (accession
XXXXXX) and the assembled data matrices are available in our project repository (https:
//github.com/phyletica/ecoevolity-experiments).
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3 Results

3.1 Analyses of simulated data

3.1.1 Validation analyses

When there is no model misspecification, our new method has the desired frequentist
behavior wherein 95% of the time the true value of a parameter falls within the 95% credible
interval. We see this for divergence times (Figure 3) and the effective sizes of descendant
(Figure S1) and ancestral (Figure S2) populations. Our results also show that the estimated
posterior probability of the single divergence model (k = 1) mirrors the probability that
the model is correct (Figure 4). We see the same behaviors whether or not the constant
characters are excluded, demonstrating that our likelihood correction for excluded constant
characters is working correctly (Equation 7).

As expected, the precision of divergence time and population size estimates is greater
when the constant characters are included and when there is greater prior information about
the ancestral population size (Figures 3, S1, & S2). The increase in precision associated with
the fivefold increase in the number of sampled characters (100k to 500k) is relatively modest
(Figures 3, S1, & S2). Retaining the constant characters results in a much larger increase in
precision than collecting five times more characters.

The true number of divergence events is included in the 95% credible set greater than 98%
of the time for all the simulation conditions (Figure 5). The frequency at which the correct
number of events has the largest posterior probability, and the median posterior probability
of the correct number of events, increases when constant characters are retained and as prior
information about the ancestral population size increases (Figure 5). As with the parameter
estimates, the performance increase associated with the increase from 100k to 500k sampled
characters is moderate; retaining the constant characters has a much larger effect (Figure 5).
When constant characters are used, the median posterior probability of the correct number
of divergence events is high (over 0.89 for all simulation conditions; Figure 5).

For the data sets simulated with 100,000 and 500,000 characters, the number of vari-
able characters ranged from 515–21,676 and 4,670–105,373, respectively, with an average
of approximately 5,500 and 27,500 variable characters, respectively (Figures S3 & S4). As
expected, the variance in the number variable characters increases with the variance in the
prior distribution of the relative effective size of the root population (Figures S3 & S4).

The MCMC chains for all analyses converged very quickly; we conservatively removed
the first 401 samples, resulting in 3300 samples from the posterior (1100 samples from three
chains) for each analysis. To assess convergence and mixing, we plotted histograms of the
potential scale reduction factor across the three independent chains and the effective sample
size for the log-likelihood and divergence times (Figures S5, S6, S7, & S8). Mixing was
poorer when there was more prior uncertainty in the root population size (Figures S7 &
S8). However, given the expected frequentist behavior for how often the true parameter
values were contained within the 95% confidence intervals (Figures 3, S1, & S2), and the
weak relationship between the ESS and estimation error (Figure S9), we do not expect
MCMC mixing had a large effect on our simulation results under the most extreme levels of
uncertainty in the root population size that we simulated.
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Figure 3. The accuracy and precision of divergence time estimates, in units of expected subsi-
tutions per site, when data are simulated and analyzed under the same model (i.e., no model
misspecification). The first four columns show the results from different distributions on the
relative effective size of the ancestral population, decreasing in variance from left to right. The
fifth column shows results when the effective size (Neµ) of all populations is fixed to 0.002. For
the first two and last two rows, the simulated character matrix for each population had 500,000
and 100,000 characters, respectively. The first and third rows show the results of analyses using
all characters, whereas the second and fourth rows show the results when only variable charac-
ters are used. Each plotted circle and associated error bars represent the posterior mean and
95% credible interval for the time that a pair of populations diverged. Each plot consists of
1500 estimates—500 simulated data sets, each with three pairs of populations. For each plot,
the root-mean-square error (RMSE) and the proportion of estimates for which the 95% credible
interval contained the true value—p(t ∈ CI)—is given. We generated the plot using matplotlib
Version 2.0.0 (Hunter, 2007).
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Figure 4. Assessing frequentist behavior of divergence-model posterior probabilities when there is
no model misspecification. 20,500 data sets were simulated and analyzed under the same model
and assigned to bins of width 0.2 based on the estimated posterior probability of a single, shared
divergence event. The mean posterior probability of each bin is plotted against the proportion
of data sets in the bin for which a single, shared divergence is the true model. The number of
data sets within each bin is provided next to the corresponding plotted point. The left plot shows
the results when all characters are analyzed, and the right plot shows the results when only the
variable characters are analyzed. All simulated data sets had three pairs of populations, each
with 100,000 characters. We generated the plot using matplotlib Version 2.0.0 (Hunter, 2007).
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Figure 5. The ability of the new method to estimate the number of divergence events when
data are simulated and analyzed under the same model (i.e., no model misspecification). The
first four columns show the results from different distributions on the relative effective size of the
ancestral population, decreasing in variance from left to right. The fifth column shows results
when the effective size (Neµ) of all populations is fixed to 0.002. For the first two and last two
rows, the simulated character matrix for each population had 500,000 and 100,000 characters,
respectively. The first and third rows show the results of analyses using all characters, whereas
the second and fourth rows show the results when only variable characters are used. Each plot
shows the results of the analyses of 500 simulated data sets, each with three population pairs;
the number of data sets that fall within each possible cell of true versus estimated numbers of
events is shown, and cells with more data sets are shaded darker. For each plot, the proportion of
data sets for which the number of events with the largest posterior probability matched the true
number of events—p(k̂ = k)—is shown in the upper left corner, the median posterior probability

of the correct number of events across all data sets—p̃(k|D)—is shown in the upper right corner,
and the proportion of data sets for which the true divergence model was included in the 95%
credible set—p(k ∈ CS)—is shown in the lower right. We generated the plot using matplotlib
Version 2.0.0 (Hunter, 2007).
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3.1.2 Assessing the effect of linked characters

The accuracy of divergence time estimates did not appear to be affected by the model
violation of linked characters (Figures 6 & S10). However, as the length of loci increases, we
do see an underestimation of posterior uncertainty (i.e., the true divergence time is contained
within the 95% credible interval less frequently than 95% of the time; Figures 6 & S10). This
makes sense given that there is less coalescent variation in the data than the model expects
if all the characters had evolved along independent gene trees. Importantly, this effect of
underestimating posterior uncertainty is small for data sets with 100bp loci, suggesting this
violation of the model has little impact for high-throughput data sets with short loci, like
those collected via RADseq. As expected, analyzing only one variable site per locus removes
this underestimation of posterior uncertainty (see the last row of Figures 6 & S10), but at
a large cost of much greater posterior uncertainty in parameter estimates due to the loss
of data. We see the same behavior for estimating the effective sizes of the ancestral and
descendant populations (Figures S11–14).

The cost of removing data to avoid violating the assumption of unlinked characters is
also very pronounced for estimating the number of divergence events. The method better
estimates the correct number of events, and with much higher posterior probability, when
the constant characters are retained (Figures 7 & S15). The median posterior probability
of the correct number of divergence events is over 0.95 for all 500k-character data sets, even
when loci were 1000bp long (Figure 7). However, our results show that linked characters do
introduce bias in the estimated posterior probability of the one divergence model (k = 1)
(Figure 8). However, the bias is moderate and makes the method conservative in the sense
that it tends to underestimate the probability of shared divergence (Figure 8).

For simulated data sets with loci of length 100, 500, and 1000 base pairs, there were an
average of 5.4, 27.1, and 54.1 variable characters per locus, respectively. As expected, the
number of variable characters per 100k and 500k data set was very similar to the simulated
unlinked-character data sets, with an average of about 5,500 variable characters per 100k
data set (Figure S16) and 27,100 variable characters per 500k data set (Figure S17). When
at most one variable character is sampled per locus, the number of remaining characters is
usually close or equal to the number of loci; 1000, 200, and 100 characters for the 100k data
sets with 100, 500, and 1000 bp loci, respectively, and 5000, 1000, and 500 characters for
500k data sets with 100, 500, and 1000 bp loci, respectively (Figures S16 & S17).

3.1.3 Assessing the effect of missing data

As predicted by coalescent theory, our results show that random missing data has little
effect on the performance of the method with respect to estimating divergence times (Fig-
ure 9), effective population sizes (Figures S18 & S19), or the number of divergence events
(Figure 10).

3.1.4 Assessing the effect of biases in character-pattern acquisition

Biased character acquisition against singleton character patterns does create bias in es-
timates of divergence times (Figure 11) and population sizes (Figure S20 & S21), and the
bias increases as the probability of missing a character with a singleton pattern increases.
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Figure 6. Assessing the affect of linked sites on the the accuracy and precision of divergence time
estimates (in units of expected subsitutions per site). The columns, from left to right, show the
results when loci are simulated with 100, 500, and 1000 linked sites. For each simulated data set,
each of three population pairs has 500,000 sites total. The rows show the results when (top) all
sites, (middle) all variable sites, and (bottom) at most one variable site per locus are analyzed.
For each plot, the root-mean-square error (RMSE) and the proportion of estimates for which the
95% credible interval contained the true value—p(t ∈ CI)—is given. We generated the plot
using matplotlib Version 2.0.0 (Hunter, 2007).
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Figure 7. Assessing the affect of linked sites on the ability of the new method to estimate the
number of divergence events. The columns, from left to right, show the results when loci are
simulated with 100, 500, and 1000 linked sites. For each simulated data set, each of three
population pairs has 500,000 sites total. The rows show the results when (top) all sites, (middle)
all variable sites, and (bottom) at most one variable site per locus are analyzed. The number of
data sets that fall within each possible cell of true versus estimated numbers of events is shown,
and cells with more data sets are shaded darker. For each plot, the proportion of data sets for
which the number of events with the largest posterior probability matched the true number of
events—p(k̂ = k)—is shown in the upper left corner, the median posterior probability of the

correct number of events across all data sets—p̃(k|D)—is shown in the upper right corner, and
the proportion of data sets for which the true divergence model was included in the 95% credible
set—p(k ∈ CS)—is shown in the lower right. We generated the plot using matplotlib Version
2.0.0 (Hunter, 2007).
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Figure 8. Assessing the affect of linked sites on the frequentist behavior of divergence-model
posterior probabilities. 10,500 data sets were simulated such that each of three population pairs
has 1000 loci, each with 100 linked sites (100,000 sites total). Each simulated data set is assigned
to a bin of width 0.2 based on the estimated posterior probability of a single, shared divergence
event. The mean posterior probability of each bin is plotted against the proportion of data sets in
the bin for which a single, shared divergence is the true model. The number of data sets within
each bin is provided next to the corresponding plotted point. The plots show the results when
(left) all characters, (middle) all variable characters, and (right) at most one variable character
per locus is analyzed. We generated the plot using matplotlib Version 2.0.0 (Hunter, 2007).

Notably, this bias is smaller when the constant characters are retained in the data set (Figure
11, S20 & S21).

However, in the face of data-acquisition bias, the method still estimates the number of
divergence events well, especially when constant characters are used (Figure 12). Even when
the probability of sampling a character with a singleton pattern is 0.4, the median posterior
probability of the correct number of divergence events is 0.948. (Figure 12).

3.1.5 Comparison to ABC methods

The new full-likelihood method, ecoevolity, does a much better job of estimating di-
vergence times (Figure 13) and effective population sizes (Figures S22 & S23), than the
approximate-likelihood Bayesian method, dpp-msbayes. This is despite the simulated data
sets being “tailored” for the ABC method (i.e., loci of 200 linked base pairs). Notably, the
new method does not underestimate the older divergence times like the ABC method, which
suffers from saturated population-genetic summary statistics that assume an infinite-sites
model of mutation (Figure 13).

The new method also does a better job of estimating the number of divergence events
(Figure 14), with a median posterior probability of the correct number of events of 0.942,
compared to 0.789 for the ABC method. Importantly, the new method underestimates the
number of events much less frequently (Figure 14), which should lead to fewer erroneous
interpretations of shared processes of divergence.

It is difficult to compare the computational effort between the two approaches, given that
ecoevolity is collecting autocorrelated samples from the full posterior, whereas dpp-msbayes
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Figure 9. Assessing the affect of missing data on the the accuracy and precision of divergence
time estimates (in units of expected subsitutions per site). The columns, from left to right, show
the results when each simulated 500,000-character matrix has approximately 0%, 10%, 25%,
and 50% missing cells. For comparison, the first column shows the results of the 500 data
sets from Figure 3; the remaining columns show the results of 100 data sets. The rows show
the results when (top) all sites and (bottom) only variable sites are analyzed. For each plot,
the root-mean-square error (RMSE) and the proportion of estimates for which the 95% credible
interval contained the true value—p(t ∈ CI)—is given. All simulated data sets had three pairs
of populations. We generated the plot using matplotlib Version 2.0.0 (Hunter, 2007).
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Figure 10. Assessing the affect of missing data on the ability of the new method to estimate
the number of divergence events. The columns, from left to right, show the results when each
simulated 500,000-character matrix has approximately 0%, 10%, 25%, and 50% missing cells.
For comparison, the first column shows the results of the 500 data sets from Figure 5; the
remaining columns show the results of 100 data sets. The rows show the results when (top)
all sites and (bottom) only variable sites are analyzed. The number of data sets that fall within
each possible cell of true versus estimated numbers of events is shown, and cells with more data
sets are shaded darker. For each plot, the proportion of data sets for which the number of events
with the largest posterior probability matched the true number of events—p(k̂ = k)—is shown
in the upper left corner, the median posterior probability of the correct number of events across
all data sets—p̃(k|D)—is shown in the upper right corner, and the proportion of data sets for
which the true divergence model was included in the 95% credible set—p(k ∈ CS)—is shown in
the lower right. All simulated data sets had three pairs of populations. We generated the plot
using matplotlib Version 2.0.0 (Hunter, 2007).
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Figure 11. Assessing the affect of an acquisition bias against rare allele patterns on the accuracy
and precision of divergence time estimates (in units of expected subsitutions per site). The
columns, from left to right, show the results when each simulated 500,000-character data set
has a probability of 100%, 80%, 60%, and 40% of sampling each simulated singleton pattern.
E.g., each character matrix analyzed in the far right column is missing approximately 60% of
characters where all but one gene copy has the same allele. For comparison, the first column
shows the results of the 500 data sets from Figure 3; the remaining columns show the results of
100 data sets. The rows show the results when (top) all sites and (bottom) only variable sites
are analyzed. For each plot, the root-mean-square error (RMSE) and the proportion of estimates
for which the 95% credible interval contained the true value—p(t ∈ CI)—is given. All simulated
data sets had three pairs of populations. We generated the plot using matplotlib Version 2.0.0
(Hunter, 2007).
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Figure 12. Assessing the affect of an acquisition bias against rare allele patterns on the ability of
the new method to estimate the number of divergence events. The columns, from left to right,
show the results when each simulated 500,000-character data set has a probability of 100%, 80%,
60%, and 40% of sampling each simulated singleton pattern. E.g., each character matrix analyzed
in the far right column is missing approximately 60% of characters where all but one gene copy
has the same allele. For comparison, the first column shows the results of the 500 data sets from
Figure 5; the remaining columns show the results of 100 data sets. The rows show the results
when (top) all sites and (bottom) only variable sites are analyzed. The number of data sets that
fall within each possible cell of true versus estimated numbers of events is shown, and cells with
more data sets are shaded darker. For each plot, the proportion of data sets for which the number
of events with the largest posterior probability matched the true number of events—p(k̂ = k)—is
shown in the upper left corner, the median posterior probability of the correct number of events
across all data sets—p̃(k|D)—is shown in the upper right corner, and the proportion of data sets
for which the true divergence model was included in the 95% credible set—p(k ∈ CS)—is shown
in the lower right. All simulated data sets had three pairs of populations. We generated the plot
using matplotlib Version 2.0.0 (Hunter, 2007).
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Figure 13. Comparing the accuracy and precision of divergence-time estimates between (left)
the new full-likelihood Bayesian method, ecoevolity, and (right) the approximate-likelihood
Bayesian method, dpp-msbayes. Each plotted circle and associated error bars represent the
posterior mean and 95% credible interval for the time that a pair of populations diverged. Each
plot consists of 1500 estimates—500 simulated data sets, each with three pairs of populations.
The simulated character matrix for each population pair consisted of 200 loci, each with 200
linked sites (40,000 characters total). For each plot, the root-mean-square error (RMSE) and the
proportion of estimates for which the 95% credible interval contained the true value—p(t ∈ CI)—
is given. We generated the plot using matplotlib Version 2.0.0 (Hunter, 2007).
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Figure 14. Comparing the ability to estimate the number of divergence events between (left)
the new full-likelihood Bayesian method, ecoevolity, and (right) the approximate-likelihood
Bayesian method, dpp-msbayes. Each plot shows the results of the analyses of 500 simulated
data sets; the number of data sets that fall within each possible cell of true versus estimated
numbers of events is shown, and cells with more data sets are shaded darker. Each simulated
data set contained three pairs of populations, and the simulated character matrix for each pair
consisted of 200 loci, each with 200 linked sites (40,000 characters total). For each plot, the
proportion of data sets for which the number of events with the largest posterior probability
matched the true number of events—p(k̂ = k)—is shown in the upper left corner, the median

posterior probability of the correct number of events across all data sets—p̃(k|D)—is shown in
the upper right corner, and the proportion of data sets for which the true divergence model was
included in the 95% credible set—p(k ∈ CS)—is shown in the lower right. We generated the
plot using matplotlib Version 2.0.0 (Hunter, 2007).
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is collecting independent samples from a different distribution we hope is similar to the pos-
terior. Nonetheless, the comparison is aided by the fact that the heavy computation of both
methods is coded in C/C++. To compare the overall amount of computation required by the
two approaches we look at the average time it takes to analyze a simulated data set on a
single processor (2.6GHz Intel Xeon CPU E5-2660 v3). This was 34.6 days for dpp-msbayes
(2,991,304 seconds) and only 33.4 minutes (2004.5 seconds) for ecoevolity. The majority
of the runtime for the ABC method is spent simulating samples from the prior distribution.
While this step can be parallelized, the likelihood computations of ecoevolity can also be
multi-threaded. Regardless of the difficulties associated with comparing the approaches, the
1,492-fold difference in computation time clearly demonstrates the full-likelihood method is
much more efficient than ABC.

3.2 Empirical application

When the new method is applied to all of the RADseq sites from the four pairs of
Gekko populations, the results strongly support that all of the pairs diverged independently
(Figure 15). The results are very robust to the priors on divergence times (τ) and the
concentration parameter (α) of the Dirichlet process, and to whether the polyallelic SNPs
are recoded as binary (Figure 15) or removed (Figure S24). Likewise, the estimates of
divergence times and effective population sizes are nearly identical regardless of the prior on
τ or α, or whether polyallelic SNPs are recoded or removed (Figures 16, S25, S26, & S27).

However, when only variable SNPs are analyzed, the behavior is much different. First, the
estimated divergence times and population sizes are clearly far too large and more sensitive
to the priors on the divergence times and the concentration parameter (Figures S28 & S29).
While the true values of these parameters are obviously unknown, given the variability of
these data (Table 2), and other data from these species (Siler et al., 2012, 2014), these
values are clearly nonsensical. The posterior probabilities of the number of divergences are
also much more sensitive to the τ and α priors, with some combinations yielding results for
which three divergence events are preferred, although Bayes factors always preferred four
divergences (Figure S30). These findings are similar when the polyallelic SNPs are removed
(Figures S31–33).

The large overestimation of divergence times and population sizes is consistent with our
findings from the data sets simulated with an acquisition bias against rare allele patterns
(Figure 11, S20 & S21). In these simulation-based analyses, we also saw dramatic overesti-
mation of these parameters when constant characters were excluded. It appears that some
variable character patterns are being lost during the acquisition and assembly of the RADseq
data, and the model is sensitive to these missing variable sites, especially when only variable
characters are analyzed.

4 Discussion
Previous approaches to estimating shared divergence times based on approximate-likelihood

Bayesian computation (ABC) are very sensitive to prior assumptions about divergence times
and often over-cluster divergences with strong support (Oaks et al., 2013; Hickerson et al.,
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Figure 15. The prior (light bars) and approximated posterior (dark bars) probabilities of the
number of divergence events across Gekko pairs of populations, under eight different combinations
of prior on the divergence times (rows) and the concentration parameter of the Dirichlet process
(columns). For these analyses, constant characters were included, and all characters with more
than two alleles were recoded as biallelic. The Bayes factor for each number of divergence times
is given above the corresponding bars. Each Bayes factor compares the corresponding number of
events to all other possible numbers of divergence events. We generated the plots with ggplot2
Version 2.2.1 (Wickham, 2009).
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Figure 16. The approximate marginal posterior densities of divergence times for each Gekko pair
of populations, under eight different combinations of prior on the divergence times (rows) and
the concentration parameter of the Dirichlet process (columns). For these analyses, constant
characters were included, and all characters with more than two alleles were recoded as biallelic.
We generated the plots with ggridges Version 0.4.1 (Wilke, 2018) and ggplot2 Version 2.2.1
(Wickham, 2009).
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2014; Oaks et al., 2014; Oaks, 2014). Here, we introduced a new approach that increases
the power and robustness of these inferences by leveraging all of the information in genomic
data within a full-likelihood, Bayesian framework. The full-likelihood approach is much bet-
ter at estimating divergence times (Figure 13) and nuisance parameters (Figure S22 & S23)
than ABC. It is also better able to estimate the correct number of divergence events with
more confidence, and is much less biased toward underestimating the number of divergence
events (Figure 14). This is especially important, because most biogeographers that use these
methods are interested in testing for shared events. The increased power of the method to
detect variation in divergence times and avoid spurious estimates of shared divergences will
lead to fewer erroneous interpretations of shared processes of divergence.

The efficiency associated with using all of the information in the data makes the method
very promising for empirical applications. For example, increasing the number of characters
from 100,000 to 500,000 resulted in only modest improvements in precision (Figures 3, S1,
& S2). This suggests that the benefit of collecting more characters begins to plateau when
data sets are small relative to the number of characters commonly collected via modern
high-throughput sequencing technologies (e.g., the simulated 100k data sets had only 5,500
SNPs on average). Even with only 200 short (200 bp) loci, the median posterior probability
of the correct number of divergence events was 0.94 (Figure 14). Also, directly calculating
the likelihood of the population history from genomic data avoids the computation necessary
for approximating the likelihood via simulations. As a result, the new method, ecoevolity,
provides better approximations of the posterior over 1000 times faster than the ABC method,
dpp-msbayes.

4.1 To exclude linked characters, or not?

The increased precision and robustness associated with retaining constant characters cre-
ates an interesting question when analyzing DNA sequence data from reduced-representation
genomic libraries: Is it better to analyze all the data and violate the assumption that the
characters are unlinked, or suffer a large loss of data to avoid violating that assumption?
Several of our results suggest retaining all the data is preferable. First of all, the method
is much better at estimating the divergence times, effective population sizes, and the cor-
rect number of events with high posterior probability when analyzing linked sequences of
characters compared to when only one variable character per locus is analyzed (Figures 6
and 7, and Figures S10–15). Second, retaining all the data makes the method more robust
to data-acquisition biases (Figures 11 and 12 and Figures S20 and 21), which are common
in alignments from reduced-representation genomic libraries (Harvey et al., 2015; Linck and
Battey, 2017). Third, the results from the Gekko RADseq data are reasonable and robust
to prior assumptions when all data are analyzed, but nonsensical and sensitive to prior as-
sumptions when only variable characters are analyzed. Our simulations suggest this is due
to the filtering of the character patterns that occurred when assembling these data.

Perhaps most striking is how much better the method estimates the number of divergence
events when all the data are used. For example, across the 500,000-character data sets, the
median posterior probability of the correct number of divergence events is over 0.94 regardless
of the linked characters or pattern-acquisition biases we simulated (Figures 5, 7, & 12). For
comparison, these values are as low as 0.41 when constant characters are removed (Figure
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12).
We caution against generalizing our findings of favorable performance with linked loci

to other methods that assume unlinked characters. However, Chifman and Kubatko (2014)
found quartet inference of splits in multi-species coalescent trees from SNP data was also
robust to the violation of unlinked characters. Our results show the amount of data that is
discarded to avoid linked characters can far outweigh the effects of violating the assumption
of unlinked characters. When analyzing linked loci with a method that assumes unlinked
characters, using simulations to assess the effect of linkage on the method may be worth the
effort in order to bring more data to bear.

4.2 Philippine Gekko

We purposefully selected a challenging empirical test case for the new method. Each of
the four pairs of populations of Gekko occur on two different oceanic islands that were never
connected. Thus, we do not expect shared divergence times across the pairs. However, based
on previous findings (Siler et al., 2012, 2014), all these pairs likely diverged very recently.
This is a challenging region of parameter space for this type of method: Very similar and
recent divergence times that are nonetheless independent. Our results strongly support
independent divergences, despite all four pairs diverging very recently. (Figures 15 & 16).
These results demonstrate that using the likelihood from genomic data provides enough
information to unambiguously separate divergences across very narrow timescales.

4.3 Caveats

This method is subject to the caveats associated with all model-based statistical methods,
however, there are two caveats that are worth emphasizing with specific reference to the
types of models we explored here. First, it is important to keep in mind that when modeling
the divergence of two populations, the time of the divergence and the mutation rate are
inextricably linked. Thus, we cannot learn about the relative rates of mutation among
pairs of populations when also trying to estimate their divergence times. Unlike previous
methods (Hickerson et al., 2006; Huang et al., 2011; Oaks, 2014), we allow priors to be placed
on mutation rates, to allow uncertainty to be incorporated into the model. However, the
priors on the mutation rates need to be informative if one hopes to be able to estimate the
divergence times.

Second, the new method does not allow migration after populations diverge. This is a
weakness compared to ABC approaches to this problem (Huang et al., 2011; Oaks, 2014).
However, given the biases and sensitivity to priors exhibited by the ABC methods even
when migration is ignored (Oaks et al., 2013, 2014; Oaks, 2014), modeling migration with
these methods is not advisable without thorough simulation-based analyses to assess their
statistical behavior.
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5 Conclusions
We introduced a new Bayesian model-choice method for estimating shared divergence

times across taxa. By using the full likelihood and genome-scale data, the new method is
more accurate, precise, robust, and efficient than existing methods based on approximate
likelihoods. This new tool will allow biologists to leverage comparative genomic data to test
hypotheses about the effects of environmental change on diversification.
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Figure S1. The accuracy and precision of estimates of the descendant (leaf) population sizes
(scaled by the mutation rate), when data are simulated and analyzed under the same model (i.e.,
no model misspecification). The columns show the results from different distributions on the
relative effective size of the ancestral population, decreasing in variance from left to right. For
the first two and last two rows, the simulated character matrix for each population had 500,000
and 100,000 characters, respectively. The first and third rows show the results of analyses using
all characters, whereas the second and fourth rows show the results when only variable characters
are used. Each plotted circle and associated error bars represent the posterior mean and 95%
credible interval. Each plot consists of 3000 estimates—500 simulated data sets, each with three
pairs of populations. For each plot, the root-mean-square error (RMSE) and the proportion of
estimates for which the 95% credible interval contained the true value—p(Neµ ∈ CI)—is given.
We generated the plot using matplotlib Version 2.0.0 (Hunter, 2007).
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Figure S2. The accuracy and precision of estimates of the ancestral (root) population size (scaled
by the mutation rate), when data are simulated and analyzed under the same model (i.e., no
model misspecification). The columns show the results from different distributions on the relative
effective size of the ancestral population, decreasing in variance from left to right. For the first
two and last two rows, the simulated character matrix for each population had 500,000 and
100,000 characters, respectively. The first and third rows show the results of analyses using all
characters, whereas the second and fourth rows show the results when only variable characters
are used. Each plotted circle and associated error bars represent the posterior mean and 95%
credible interval. Each plot consists of 1500 estimates—500 simulated data sets, each with three
pairs of populations. For each plot, the root-mean-square error (RMSE) and the proportion of
estimates for which the 95% credible interval contained the true value—p(Neµ ∈ CI)—is given.
We generated the plot using matplotlib Version 2.0.0 (Hunter, 2007).
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Figure S3. The number of variable characters in the simulated data sets with 100,000 unlinked
and unfiltered characters per pair of populations. 500 data sets were simulated for each setting
on the relative size of the ancestral population (indicated above each plot). The mean and range
across the 500 data sets is indicated in the upper right corner of each plot. We generated the
plot using matplotlib Version 2.0.0 (Hunter, 2007).
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Figure S4. The number of variable characters in the simulated data sets with 500,000 unlinked
and unfiltered characters per pair of populations. 500 data sets were simulated for each setting
on the relative size of the ancestral population (indicated above each plot). The mean and range
across the 500 data sets is indicated in the upper right corner of each plot. We generated the
plot using matplotlib Version 2.0.0 (Hunter, 2007).

5

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 17, 2018. ; https://doi.org/10.1101/324525doi: bioRxiv preprint 

https://doi.org/10.1101/324525
http://creativecommons.org/licenses/by/4.0/


Gamma(2, 0.5)

1.001 (1.000–1.058)

Gamma(10, 0.1)

1.001 (1.000–1.054)

Gamma(100, 0.01)

1.001 (1.000–1.047)

Gamma(1000, 0.001)

1.000 (1.000–1.026)

All sizes = 0.002

500k

1.000 (1.000–1.004)

1.001 (1.000–1.017) 1.001 (1.000–1.048) 1.001 (1.000–1.020) 1.001 (1.000–1.024)

500k
variable

only

1.000 (1.000–1.004)

1.000 (1.000–1.008) 1.000 (1.000–1.004) 1.000 (1.000–1.013) 1.000 (1.000–1.005)

100k

1.000 (1.000–1.004)

1.000 1.025 1.050
0.00

0.25

0.50

0.75

1.00 1.001 (1.000–1.010) 1.000 (1.000–1.022) 1.000 (1.000–1.009) 1.000 (1.000–1.011)

100k
variable

only

1.000 (1.000–1.005)

PSRF of log likelihood

Fr
eq
ue
nc
y

Figure S5. Histograms of the potential scale reduction factor (the square root of Equation 1.1
in Brooks and Gelman 1998) for the log likelihood across the three MCMC chains run for each
simulated data set. The first four columns show the results from different distributions on the
relative effective size of the ancestral population, decreasing in variance from left to right. The
fifth column shows results when the effective size (Neµ) of all populations is fixed to 0.002. For
the first two and last two rows, the simulated character matrix for each population had 500,000
and 100,000 characters, respectively. The first and third rows show the results of analyses using
all characters, whereas the second and fourth rows show the results when only variable characters
are used. The mean and range across the 500 data sets is indicated in the upper right corner of
each plot. We generated the plot using matplotlib Version 2.0.0 (Hunter, 2007).
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Figure S6. Histograms of the potential scale reduction factor (the square root of Equation 1.1 in
Brooks and Gelman 1998) for the divergence times across the three MCMC chains run for each
simulated data set. The first four columns show the results from different distributions on the
relative effective size of the ancestral population, decreasing in variance from left to right. The
fifth column shows results when the effective size (Neµ) of all populations is fixed to 0.002. For
the first two and last two rows, the simulated character matrix for each population had 500,000
and 100,000 characters, respectively. The first and third rows show the results of analyses using
all characters, whereas the second and fourth rows show the results when only variable characters
are used. The mean and range across the 500 data sets is indicated in the upper right corner of
each plot. We generated the plot using matplotlib Version 2.0.0 (Hunter, 2007).
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Figure S7. Histogram of the estimated effective sample sizes (Gong and Flegal, 2016) for the
log likelihood across the three MCMC chains run for each simulated data set. The first four
columns show the results from different distributions on the relative effective size of the ancestral
population, decreasing in variance from left to right. The fifth column shows results when the
effective size (Neµ) of all populations is fixed to 0.002. For the first two and last two rows, the
simulated character matrix for each population had 500,000 and 100,000 characters, respectively.
The first and third rows show the results of analyses using all characters, whereas the second and
fourth rows show the results when only variable characters are used. The mean and range across
the 500 data sets is indicated in the upper right corner of each plot. We generated the plot using
matplotlib Version 2.0.0 (Hunter, 2007).
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Figure S8. Histogram of the estimated effective sample sizes (Gong and Flegal, 2016) for the
divergence times across the three MCMC chains run for each simulated data set. The first four
columns show the results from different distributions on the relative effective size of the ancestral
population, decreasing in variance from left to right. The fifth column shows results when the
effective size (Neµ) of all populations is fixed to 0.002. For the first two and last two rows, the
simulated character matrix for each population had 500,000 and 100,000 characters, respectively.
The first and third rows show the results of analyses using all characters, whereas the second and
fourth rows show the results when only variable characters are used. The mean and range across
the 500 data sets is indicated in the upper right corner of each plot. We generated the plot using
matplotlib Version 2.0.0 (Hunter, 2007).
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Figure S9. Plots of the estimated effective sample sizes (Gong and Flegal, 2016) for the divergence
times against absolute error of the divergence-time estimates. The first four columns show
the results from different distributions on the relative effective size of the ancestral population,
decreasing in variance from left to right. The fifth column shows results when the effective size
(Neµ) of all populations is fixed to 0.002. For the first two and last two rows, the simulated
character matrix for each population had 500,000 and 100,000 characters, respectively. The
first and third rows show the results of analyses using all characters, whereas the second and
fourth rows show the results when only variable characters are used. We generated the plot using
matplotlib Version 2.0.0 (Hunter, 2007).
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Figure S10. Assessing the affect of linked sites on the the accuracy and precision of divergence
time estimates (in units of expected subsitutions per site). The columns, from left to right, show
the results when loci are simulated with 100, 500, and 1000 linked sites. For each simulated data
set, each of three population pairs has 100,000 sites total. The rows show the results when (top)
all sites, (middle) all variable sites, and (bottom) at most one variable site per locus are analyzed.
For each plot, the root-mean-square error (RMSE) and the proportion of estimates for which the
95% credible interval contained the true value—p(t ∈ CI)—is given. We generated the plot
using matplotlib Version 2.0.0 (Hunter, 2007).
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Figure S11. Assessing the affect of linked sites on the accuracy and precision of estimates of
descendant (leaf) population sizes (scaled by the mutation rate). The columns, from left to
right, show the results when loci are simulated with 100, 500, and 1000 linked sites. For each
simulated data set, each of three population pairs has 100,000 sites total. The rows show the
results when (top) all sites, (middle) all variable sites, and (bottom) at most one variable site
per locus are analyzed. For each plot, the root-mean-square error (RMSE) and the proportion of
estimates for which the 95% credible interval contained the true value—p(Neµ ∈ CI)—is given.
We generated the plot using matplotlib Version 2.0.0 (Hunter, 2007).
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Figure S12. Assessing the affect of linked sites on the accuracy and precision of estimates of
descendant (leaf) population sizes (scaled by the mutation rate). The columns, from left to
right, show the results when loci are simulated with 100, 500, and 1000 linked sites. For each
simulated data set, each of three population pairs has 500,000 sites total. The rows show the
results when (top) all sites, (middle) all variable sites, and (bottom) at most one variable site
per locus are analyzed. For each plot, the root-mean-square error (RMSE) and the proportion of
estimates for which the 95% credible interval contained the true value—p(Neµ ∈ CI)—is given.
We generated the plot using matplotlib Version 2.0.0 (Hunter, 2007).
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Figure S13. Assessing the affect of linked sites on the accuracy and precision of estimates of
ancestral (root) population size (scaled by the mutation rate). The columns, from left to right,
show the results when loci are simulated with 100, 500, and 1000 linked sites. For each simulated
data set, each of three population pairs has 100,000 sites total. The rows show the results when
(top) all sites, (middle) all variable sites, and (bottom) at most one variable site per locus are
analyzed. For each plot, the root-mean-square error (RMSE) and the proportion of estimates
for which the 95% credible interval contained the true value—p(Neµ ∈ CI)—is given. We
generated the plot using matplotlib Version 2.0.0 (Hunter, 2007).
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Figure S14. Assessing the affect of linked sites on the accuracy and precision of estimates of
ancestral (root) population size (scaled by the mutation rate). The columns, from left to right,
show the results when loci are simulated with 100, 500, and 1000 linked sites. For each simulated
data set, each of three population pairs has 500,000 sites total. The rows show the results when
(top) all sites, (middle) all variable sites, and (bottom) at most one variable site per locus are
analyzed. For each plot, the root-mean-square error (RMSE) and the proportion of estimates
for which the 95% credible interval contained the true value—p(Neµ ∈ CI)—is given. We
generated the plot using matplotlib Version 2.0.0 (Hunter, 2007).
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Figure S15. Assessing the affect of linked sites on estimating the number of divergence events.
The columns, from left to right, show the results when loci are simulated with 100, 500, and
1000 linked sites. For each simulated data set, each of three population pairs has 100,000 sites
total. The rows show the results when (top) all sites, (middle) all variable sites, and (bottom)
at most one variable site per locus are analyzed. The number of data sets that fall within each
possible cell of true versus estimated numbers of events is shown, and cells with more data sets
are shaded darker. For each plot, the proportion of data sets for which the number of events
with the largest posterior probability matched the true number of events—p(k̂ = k)—is shown
in the upper left corner, the median posterior probability of the correct number of events across
all data sets—p̃(k|D)—is shown in the upper right corner, and the proportion of data sets for
which the true divergence model was included in the 95% credible set—p(k ∈ CS)—is shown in
the lower right. We generated the plot using matplotlib Version 2.0.0 (Hunter, 2007).
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Figure S16. The number of variable characters in the simulated data sets with 100,000 characters
per pair of populations that were linked in loci of length (left column) 100, (middle column) 500,
and (right column) 1000 sites. The first row shows all the variable sites, whereas the second row
shows when at most one variable site per locus is randomly choosen. The mean and range across
the 500 data sets is indicated in the upper right corner of each plot. We generated the plot using
matplotlib Version 2.0.0 (Hunter, 2007).
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Figure S17. The number of variable characters in the simulated data sets with 500,000 characters
per pair of populations that were linked in loci of length (left column) 100, (middle column) 500,
and (right column) 1000 sites. The first row shows all the variable sites, whereas the second row
shows when at most one variable site per locus is randomly choosen. The mean and range across
the 500 data sets is indicated in the upper right corner of each plot. We generated the plot using
matplotlib Version 2.0.0 (Hunter, 2007).
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Figure S18. Assessing the affect of missing data on the the accuracy and precision of estimates
of descendant (leaf) population sizes (scaled by the mutation rate). The columns, from left to
right, show the results when each simulated 500,000-character matrix has approximately 0%,
10%, 25%, and 50% missing cells. For comparison, the first column shows the results of the 500
data sets from Figure S1; the remaining columns show the results of 100 data sets. The rows
show the results when (top) all sites and (bottom) only variable sites are analyzed. For each plot,
the root-mean-square error (RMSE) and the proportion of estimates for which the 95% credible
interval contained the true value—p(Neµ ∈ CI)—is given. All simulated data sets had three
pairs of populations. We generated the plot using matplotlib Version 2.0.0 (Hunter, 2007).
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Figure S19. Assessing the affect of missing data on the the accuracy and precision of estimating
ancestral (root) population size (scaled by the mutation rate). The columns, from left to right,
show the results when each simulated 500,000-character matrix has approximately 0%, 10%,
25%, and 50% missing cells. For comparison, the first column shows the results of the 500
data sets from Figure S2; the remaining columns show the results of 100 data sets. The rows
show the results when (top) all sites and (bottom) only variable sites are analyzed. For each plot,
the root-mean-square error (RMSE) and the proportion of estimates for which the 95% credible
interval contained the true value—p(Neµ ∈ CI)—is given. All simulated data sets had three
pairs of populations. We generated the plot using matplotlib Version 2.0.0 (Hunter, 2007).
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Figure S20. Assessing the affect of an acquisition bias against rare allele patterns on the accuracy
and precision of estimating descendant (leaf) population sizes (scaled by the mutation rate). The
columns, from left to right, show the results when each simulated 500,000-character data set
has a probability of 100%, 80%, 60%, and 40% of sampling each simulated singleton pattern.
E.g., each character matrix analyzed in the far right column is missing approximately 60% of
characters where all but one gene copy has the same allele. For comparison, the first column
shows the results of the 500 data sets from Figure S1; the remaining columns show the results
of 100 data sets. The rows show the results when (top) all sites and (bottom) only variable
sites are analyzed. For each plot, the root-mean-square error (RMSE) and the proportion of
estimates for which the 95% credible interval contained the true value—p(Neµ ∈ CI)—is given.
All simulated data sets had three pairs of populations. We generated the plot using matplotlib
Version 2.0.0 (Hunter, 2007).
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Figure S21. Assessing the affect of an acquisition bias against rare allele patterns on the accuracy
and precision of estimating ancestral (root) population size (scaled by the mutation rate). The
columns, from left to right, show the results when each simulated 500,000-character data set
has a probability of 100%, 80%, 60%, and 40% of sampling each simulated singleton pattern.
E.g., each character matrix analyzed in the far right column is missing approximately 60% of
characters where all but one gene copy has the same allele. For comparison, the first column
shows the results of the 500 data sets from Figure S2; the remaining columns show the results
of 100 data sets. The rows show the results when (top) all sites and (bottom) only variable
sites are analyzed. For each plot, the root-mean-square error (RMSE) and the proportion of
estimates for which the 95% credible interval contained the true value—p(Neµ ∈ CI)—is given.
All simulated data sets had three pairs of populations. We generated the plot using matplotlib
Version 2.0.0 (Hunter, 2007).
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Figure S22. Comparing the accuracy and precision of estimates of the descendant (leaf) pop-
ulation sizes between (left) the new full-likelihood Bayesian method, ecoevolity, and (right)
the approximate-likelihood Bayesian method, dpp-msbayes. Each plotted circle and associated
error bars represent the posterior mean and 95% credible interval. Each plot consists of 3000
estimates—500 simulated data sets, each with three pairs of populations. The simulated char-
acter matrix for each population pair consisted of 200 loci, each with 200 linked sites (40,000
characters total). For each plot, the root-mean-square error (RMSE) and the proportion of es-
timates for which the 95% credible interval contained the true value—p(Neµ ∈ CI)—is given.
We generated the plot using matplotlib Version 2.0.0 (Hunter, 2007).
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Figure S23. Comparing the accuracy and precision of estimates of the ancestral (root) pop-
ulation size between (left) the new full-likelihood Bayesian method, ecoevolity, and (right)
the approximate-likelihood Bayesian method, dpp-msbayes. Each plotted circle and associated
error bars represent the posterior mean and 95% credible interval. Each plot consists of 1500
estimates—500 simulated data sets, each with three pairs of populations. The simulated char-
acter matrix for each population pair consisted of 200 loci, each with 200 linked sites (40,000
characters total). For each plot, the root-mean-square error (RMSE) and the proportion of es-
timates for which the 95% credible interval contained the true value—p(Neµ ∈ CI)—is given.
We generated the plot using matplotlib Version 2.0.0 (Hunter, 2007).
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Figure S24. The prior (light bars) and approximated posterior (dark bars) probabilities of the
number of divergence events across Gekko pairs of populations, under eight different combinations
of prior on the divergence times (rows) and the concentration parameter of the Dirichlet process
(columns). For these analyses, constant characters were included, but all characters with more
than two alleles were removed. The Bayes factor for each number of divergence times is given
above the corresponding bars. Each Bayes factor compares the corresponding number of events
to all other possible numbers of divergence events. We generated the plots with ggplot2 Version
2.2.1 (Wickham, 2009).
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Figure S25. The approximate marginal posterior densities of population sizes for each Gekko pair
of populations, under eight different combinations of prior on the divergence times (rows) and
the concentration parameter of the Dirichlet process (columns). For these analyses, constant
characters were included, but all characters with more than two alleles were recoded as biallelic.
We generated the plots with ggridges Version 0.4.1 (Wilke, 2018) and ggplot2 Version 2.2.1
(Wickham, 2009).
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Figure S26. The approximate marginal posterior densities of divergence times for each Gekko
pair of populations, under eight different combinations of prior on the divergence times (rows)
and the concentration parameter of the Dirichlet process (columns). For these analyses, constant
characters were included, but all characters with more than two alleles were removed. We gen-
erated the plots with ggridges Version 0.4.1 (Wilke, 2018) and ggplot2 Version 2.2.1 (Wickham,
2009). 27
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Figure S27. The approximate marginal posterior densities of population sizes for each Gekko pair
of populations, under eight different combinations of prior on the divergence times (rows) and the
concentration parameter of the Dirichlet process (columns). For these analyses, constant char-
acters were included, but all characters with more than two alleles were removed. We generated
the plots with ggridges Version 0.4.1 (Wilke, 2018) and ggplot2 Version 2.2.1 (Wickham, 2009).
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Figure S28. The approximate marginal posterior densities of divergence times for each Gekko
pair of populations, under eight different combinations of prior on the divergence times (rows)
and the concentration parameter of the Dirichlet process (columns). For these analyses, constant
characters were excluded, and all characters with more than two alleles were recoded as biallelic.
We generated the plots with ggridges Version 0.4.1 (Wilke, 2018) and ggplot2 Version 2.2.1
(Wickham, 2009).
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Figure S29. The approximate marginal posterior densities of population sizes for each Gekko pair
of populations, under eight different combinations of prior on the divergence times (rows) and
the concentration parameter of the Dirichlet process (columns). For these analyses, constant
characters were excluded, and all characters with more than two alleles were recoded as biallelic.
We generated the plots with ggridges Version 0.4.1 (Wilke, 2018) and ggplot2 Version 2.2.1
(Wickham, 2009). 30
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Figure S30. The prior (light bars) and approximated posterior (dark bars) probabilities of the
number of divergence events across Gekko pairs of populations, under eight different combinations
of prior on the divergence times (rows) and the concentration parameter of the Dirichlet process
(columns). For these analyses, constant characters were excluded, and all characters with more
than two alleles were recoded as biallelic. The Bayes factor for each number of divergence times
is given above the corresponding bars. Each Bayes factor compares the corresponding number of
events to all other possible numbers of divergence events. We generated the plots with ggplot2
Version 2.2.1 (Wickham, 2009).
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Figure S31. The approximate marginal posterior densities of divergence times for each Gekko
pair of populations, under eight different combinations of prior on the divergence times (rows)
and the concentration parameter of the Dirichlet process (columns). For these analyses, constant
characters and all characters with more than two alleles were removed. We generated the plots
with ggridges Version 0.4.1 (Wilke, 2018) and ggplot2 Version 2.2.1 (Wickham, 2009).
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Figure S32. The approximate marginal posterior densities of population sizes for each Gekko pair
of populations, under eight different combinations of prior on the divergence times (rows) and
the concentration parameter of the Dirichlet process (columns). For these analyses, constant
characters and all characters with more than two alleles were removed. We generated the plots
with ggridges Version 0.4.1 (Wilke, 2018) and ggplot2 Version 2.2.1 (Wickham, 2009).
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Figure S33. The prior (light bars) and approximated posterior (dark bars) probabilities of the
number of divergence events across Gekko pairs of populations, under eight different combina-
tions of prior on the divergence times (rows) and the concentration parameter of the Dirichlet
process (columns). For these analyses, constant characters and all characters with more than
two alleles were removed. The Bayes factor for each number of divergence times is given above
the corresponding bars. Each Bayes factor compares the corresponding number of events to all
other possible numbers of divergence events. We generated the plots with ggplot2 Version 2.2.1
(Wickham, 2009).
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