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Abstract 
Adaptive acquisition of information is critical for goal-directed behavior. Popular theories posit that 
information acquisition is driven by intrinsic motives (curiosity or exploration bonus) and mediated by 
valuation system. However, they are insufficient when agents need to evaluate instrumental benefit of 
new information in a forward-looking manner. We tested whether human brain computes value of 
information (VOI) on a scale common with more basic rewards to acquire information. In an fMRI task, 
subjects purchased information for choices on monetary lotteries. Behaviorally, subjective VOI was 
largely driven by instrumental benefit, as normatively predicted, but additionally affected by non-
instrumental motive, particularly the utility of anticipation. Neurally, VOI was represented in striatum, 
ventromedial prefrontal cortex, and dorsolateral prefrontal cortex. Cross-categorical decoding revealed 
that these regions use a common scale for VOI and another type of value, expected utility of the lotteries. 
These provide new insight on neurocognitive mechanism of forward-looking, value-based information 
acquisition. 
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Introduction 
Adaptive acquisition of information is critical in goal-directed behavior in humans. Collecting too little 
information, paying too much for information, not discriminating relevant information from irrelevant 
one, or acting on unreliable or false information, can all result in failure to achieve desired goals. 
Understanding neurocognitive mechanisms of adaptive information acquisition is not only important in 
neuroscience, psychology, and economics, but also has wide real-world applications, such as 
policymaking, public health, and artificial intelligence. 
 
Information seeking behavior is frequently viewed as reflecting agents’ curiosity, i.e., motive to collect 
information for its own sake1-4. Explaining curiosity is a challenge to decision-making models, such as 
reinforcement learning (RL), because it is not directly reinforced by explicit, tangible rewards. To 
incorporate curiosity-driven information acquisition, decision-making models often postulate that 
acquisition of information is intrinsically rewarding, and more specifically, exploratory actions (or, in 
general, actions that would not be extrinsically rewarded) are encouraged by some forms of bonus utility5-

7. Various forms of utility bonus have been proposed, such as surprise8, novelty9-11, perceived information 
gap2, and anticipatory utility (savoring and dread)12-14. At the neural level, dopaminergic reward system 
may multiplex intrinsic bonus utility with signals on extrinsic reward15-17. Multiplexing extrinsic and 
intrinsic rewards would make otherwise myopic agents to explore the environment and gather 
information, which may lead to improvement of decision making in the long term. 
 
The idea that information acquisition is solely driven by curiosity or utility bonus, however, has been 
challenged on conceptual and empirical grounds. Most importantly, agents should be more motivated to 
acquire information if it has larger instrumental benefits under the current goal. For instance, we are 
interested in weather forecast if we are trying to decide whether to go hiking or reading indoors, but not 
so much if we have already decided to stay indoors. Such goal-driven information acquisition is 
particularly challenging when agents need to acquire information that they have never acquired before 
(e.g., a morning TV show in a foreign country we have never seen), where the bonus utility may not be 
adaptively formed based on the past history.  
 
To evaluate information’s instrumental benefits in these cases, agents normatively need to be forward-
looking and simulate their own actions and possible outcomes under different contents of information 
(“I’ll go hiking if it will be sunny, but reading indoors if rainy”). If agents are driven solely by curiosity 
but do not explicitly evaluate instrumental benefits, they may fail to discern relevant and useful 
information from irrelevant and useless one, which is problematic especially when information is costly. 
At the neural level, aforementioned curiosity-related dopaminergic activity is not sufficient for evaluation 
of instrumental benefits. It thus remains an open question to what extent goal-directed, forward-looking 
information acquisition is mediated by neural systems related to other types of reward and valuation. 
 
The importance of instrumental benefit evaluation has been long recognized in economic and ethological 
studies of decision-making, owing to abundance of information acquisition in problems ranging from 
comparison shopping to job/mate search18-20. Standard economic accounts presume that agents are 
forward-looking and acquire information as a consequence of reward maximization. Information is 
acquired only if its cost is outweighed by value of information (VOI), i.e., how much the information 
would improve their choices and increases overall expected utility (EU). Although VOI calculation may 
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be computationally more complex than more basic rewards (e.g., food or money), subsequent processes of 
cost-benefit analysis and action selection can be similar to other types of value-driven choices.  
 
That the motivation to acquire information may be index by a single value measure opens up a number 
interesting possible hypotheses. First, dopamine reward system may drive information acquisition not 
only by encoding simplistic utility bonus but also by explicitly representing instrumental benefit. More 
precisely, while information acquisition may be driven by the combination of instrumental benefit and 
some non-instrumental motives (curiosity and/or utility bonus), valuation signals may multiplex these 
factors with each other and with other types of rewards. If this is the case, we would expect that VOI is 
represented on a neural common scale with other, more basic rewards21. Neural common currency is 
particularly advantageous when brains need to compare information acquisition actions against 
alternatives on the basis of their action values (i.e., exploration-exploitation dilemma)5,22. Although neural 
common currency has been examined in humans and monkeys21,23-26, it has never been tested with VOI, 
particularly when information is evaluated in the forward-looking manner. 
 
To examine whether VOI is represented on neural common currency, we conducted an fMRI study where 
subjects made choices on costly, but directly actionable, information. Subjects were presented with a 
lottery with two monetary outcomes (a gain and a loss) and asked to choose whether to accept or reject it. 
The outcome probability was initially hidden and described as fair, but subjects could purchase the 
information to reveal the true probability. This information has direct instrumental benefit because 
subjects could change their choice flexibly based on the revealed probability. For instance, a subject may 
play a fair lottery with a large gain and a small loss, but reject it if the loss turns out to be more likely. 
Although there is a chance that the loss probability turns out to be smaller and she retains her original 
choice, she may purchase the information if the benefit of avoiding the loss is large enough to justify the 
cost. 
 
We observed that subjects’ information acquisition behavior was indeed largely driven by instrumental 
benefit. Subjects’ information purchase choice was systematically sensitive to lotteries’ outcomes and 
possible probabilities, consistently with the standard VOI prediction. We further examined the 
contribution of additional non-instrumental motives. While we found no evidence for simplistic constant 
utility bonus, the utility of anticipation improved behavioral modeling. Next, using support vector 
regression (SVR) on voxel-wise BOLD signals, we found that the composite VOI was represented in 
traditional valuation regions, striatum and ventromedial prefrontal cortex (VMPFC). Importantly, cross-
categorical decoding revealed that these representations were on a common scale with more basic values. 
 
 
Results 
Information acquisition is sensitive to instrumental benefits. To characterize the extent to which 
human information acquisition is sensitive to instrumental benefits, we used a two-stage task (Fig. 1a). 
Subjects were first asked whether to accept or reject a lottery with two outcomes (x1 and x2), assuming 
they would not receive further information (under the initial belief s0: P(x1) = P(x2) = 0.5). Next, two 
possible probability distributions were presented, s1 (P(x1) = π) or s2 (P(x1) = 1 – π), one of which would 
be true but revealed only if subjects purchased the information (Fig. 1b). π was manipulated on a trial-by-
trial basis, either 2/3, 5/6, or 1. It determined diagnosticity of the information; it would perfectly predict 
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the outcome if π = 1, but not much if π = 2/3. Subjects were then presented with the monetary cost of the 
information and indicated whether they would purchase it. Even though the true probability (s1 or s2) was 
not revealed during the task to prevent learning over trials, subjects were instructed beforehand that they 
would receive the information and could change their original choices after the scanning.  
 
Under standard economic accounts, agents accept the lottery if its EU is higher than the utility of status 
quo u(0), and reject otherwise (Fig. 2a). Furthermore, they purchase the information if its cost is lower 
than VOI and forgo if higher. The information improves the overall expected utility only if their choices 
under s1 or s2 would differ from their choice under s0 (see Methods). VOI captures this marginal 
improvement of expected utility, i.e., the difference in the expected utilities between the decision with the 
information and the decision without. Note that, because agents cannot predict the true probability a 
priori, they need to simulate her own choices under s1 and s2, average their EUs, and compare it against 
EU under s0.  
 
Unlike many other hypothesized motivations of information acquisition, VOI computed as such is 
strongly sensitive to outcomes; VOI is large if both the potential gain and loss are large, and it is small if 
the potential gain is very large and the loss is trivial, or vice versa, because the agent would not change its 
choice irrespective of the true probability in the latter cases. We numerically derived the normative, 
instrumental VOI predictions based on outcomes (x1, x2) and diagnosticity (π), which predict subjects’ 
information purchase choices on a trial-by-trial basis. We found that the instrumental VOI was able to 
explain a substantial portion of the variation in information acquisition choices (evaluated based on binary 
choice likelihood, p < .0005 based on permutation of lotteries and diagnosticity). 
 
We compared the normative instrumental VOI’s predictive power against two popular non-forward 
looking, non-instrumental motives: (i) a constant utility bonus, i.e., some fixed utility for novel 
information5, and (ii) a utility bonus scaled by entropy reduction, which is sensitive to π but still not to 
outcomes2,6,7. We found that VOI provided drastically better model fit (10-times 10-fold cross validation 
across participants, p < 10-3; Fig. 2c). This shows that subjects purchased information based on its 
instrumental benefit, and in particular the magnitudes of future possible outcomes, as normatively 
predicted. 
 
Coexistence of instrumental and non-instrumental motives. Although we found that the instrumental 
benefit is the main driver of information purchase in our task, some non-instrumental motive might 
additionally contribute. We next tested whether adding non-instrumental motives would improve the 
behavioral model fit. We specifically tested three models of non-instrumental motives from the literature: 
the two aforementioned utility bonus accounts (constant and entropy reduction) and anticipatory utility. 
Anticipatory utility, also often called “savoring” and “dread,” has been used in economics to justify 
people’s non-normative preference for information, and in particular timing of information delivery (e.g., 
many prefer to know if they win a raffle prize earlier because of savoring, while they prefer not to know 
the results of their cancer diagnosis because of dread)12,14,27-30. 

 
We incorporated anticipatory utility in VOI calculations using recursive utility theory12,31. Recursive 
utility is similar to the standard VOI theory in that it assumes forward-looking and utility-maximizing 
agents. However, it allows the mere presence of information to increase or decrease the overall utility. 
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Under this assumption, therefore, agents may seek for information, not only because it has some 
instrumental benefit, but also because it improves the overall utility merely due to the difference in 
informational state. Specifically, the theory evaluates the lotteries in our task based on the expectation of 
second-order utility, which aggregates first-order EUs under the possible informational states in a non-
linear manner (Fig. 2a). If the aggregator function is convex, the difference in the overall expected 
second-order utility between choices with and without the information is amplified compared to the 
standard prediction, i.e., higher VOI. Conversely, if the aggregator function is concave, the marginal 
benefit in the expected second-order utility due to information is reduced (or sometimes reversed), 
leading to smaller VOI than the standard prediction. Therefore, recursive utility yields VOI that is the 
composite of instrumental benefit and anticipatory utility. 
 
Importantly, since the non-instrumental component in recursive utility theory depends on the convexity of 
the aggregator function, it is naturally allowed to be dependent on the possible outcomes. This nicely 
echoes the intuitive general notion that savoring and dread tend to grow with the magnitude of the 
anticipated reward and punishment. For our purpose, the outcome-dependence of non-instrumental 
component is an important difference between recursive utility prediction and the other non-instrumental 
utility bonus accounts we deployed. 
 
We found that our subjects’ behavior was consistent with this generalized VOI composed of instrumental 
benefit and anticipatory utility. It explained the observed information purchase better than the 
instrumental-only VOI (p < .001; Fig. 2b, d). On the other hand, neither of the utility bonus accounts 
improved the instrumental-only VOI model (p > .30). The difference in goodness-of-fit between the 
generalized VOI model and the utility bonus models was also significant (p < .001, respectively). These 
support the notion that non-instrumental motive is also sensitive to outcomes. Indeed, we noticed that 
subjects exhibited over-purchase of information, particularly among the lotteries with higher EUs (Fig. 2b 
left), which disappears when the behavior was compared against the anticipatory utility predictions (Fig. 
2b right). 
 
Neural representation of VOI. The above results suggest that participants acquire information based on 
VOI, which is calculated in the forward-looking manner and combines instrumental benefit and 
anticipatory utility. We next sought to investigate the neural representation of VOI and its relationship 
with more basic reward values. In particular, we asked whether the VOI was represented in traditional 
value regions, and if so, whether that representation employs neural common currency. To this and, we 
asked subjects to make two types of value-based choices: whether to gamble on a lottery, and whether to 
acquire information regarding the said lottery. This allowed us to compare two types of value 
representations; the lottery’s EU, which is already widely studied, and VOI, which is the novel 
contribution of the current study.  
 
We first looked for VOI representation during the presentation of the potential information’s 
diagnosticity. Combined with potential outcomes, which were already presented when gamble was first 
presented, the diagnosticity is sufficient for participants to compute subjective benefit of the information, 
both instrumental and non-instrumental components (Fig. 1a).  Trial-by-trial numerical predictions of the 
generalized VOI was obtained from behavioral fitting of the recursive utility model described above. For 
voxel-wise BOLD signals in each searchlight (8mm radius), we conducted one-run-leave-out five-hold 
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cross-validation using support vector regression (SVR) (Fig. 3; see Methods for details). Prediction 
accuracy was measured as correlation between the predicted and actual VOIs. In evaluation of correlation, 
we controlled for information diagnosticity π (i.e., partial correlation). This is to ensure that we detect 
regions engaged in valuation, rather than information-theoretic processing (e.g., responses to entropy 
reduction) or visual processing (π was represented saliently as the angle of the magenta partition; see Fig. 
1a).  
 
Consistent with the idea that dopaminergic reward systems are involved in value-driven information 
acquisition, we found that VOI was decodable from striatum and ventromedial prefrontal cortex 
(VMPFC) (p < .05, corrected for voxel-level whole-brain family-wise error [FWE] based on 
permutation). VOI representation was additionally found in lateral prefrontal cortex (middle frontal gyrus; 
MFG), right superior frontal gyrus (SFG), posterior cingulate cortex (PCC), right angular gyrus, and 
cerebellum (Fig. 4a). Striatum and VMPFC receive dopaminergic inputs and are the two regions that are 
the most associated with valuation in fMRI literature. Indeed, we found that lottery’s EU was represented 
in striatum during the presentation of lottery (p < .05, corrected for whole-brain FWE; Fig. 4a), and it was 
overlapped with VOI cluster, suggesting the involvement of traditional valuation processing in VOI. 
 
Since VOI is correlated with the lotteries’ EU (Pearson’s r = 0.62), some of our VOI decoding 
performance might have been attributable to signals related to EU rather than VOI. Indeed, EU was 
decodable from striatum during the lottery presentation (p < .05; Fig. 4a), which was overlapped with a 
VOI cluster. We confirmed that this was not the case; VOI decoding accuracy in all clusters was above 
chance when measured when EU was controlled for (p < .05; Fig. 4b). This supports that these regions 
use not only outcomes but also information diagnosticity to calculate VOI, as normatively predicted. 
 
Representations of VOI and EU on common currency. Having characterized representations of VOI 
and EU respectively, we next investigated their relationship, and in particular whether they are 
represented on a common neural scale. Although we observed overlap of VOI and EU clusters, this is not 
a strong evidence for a common scale, because these representations could be distinct at a more fine-
grained level. As a more direct test, we adopted cross-categorical decoding approach. 
 
We hypothesized that, if EU and VOI are indeed represented on a common scale in striatum, SVR trained 
based on EU in striatum should be able to decode VOI (Fig. 3). To test if the obtained prediction accuracy 
was above chance while controlling for possible temporal dependency within trials, we obtained null-
hypothesis distribution using permutation. In each iteration, outcomes and disgnosticity were shuffled 
over trials within each run such that dependency across runs was retained (e.g., all trials in which (x1, x2, 
π) = ($12, −$6, 2/3) were treated as if it were ($6, −$9, 1)), and trial-wise VOI labels and EU labels were 
given to each trial accordingly. Group-level prediction accuracy (t-statistics) was obtained for all 
permutation iterations and compared against the accuracy under the ground-truth labels. 
 
We found that the decoder trained by EU could indeed predict VOI above the chance level (p < .05; Fig. 
5a). This holds when information diagnosticity was controlled for in evaluating prediction accuracy, and 
more critically, even when EU under s0 was controlled for. This provides a clear evidence that striatum 
did not just maintain or reactivate EU representation; rather, it flexibly switched the content of 
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representation within each trial from EU and VOI, presumably in preparation for the respective upcoming 
choices. 
 
Lastly, to seek for further evidence for common neural code, we examined if decoders trained by VOI 
could be used to decode EU. To control for FWE over 8 VOI clusters reported above, we constructed 
null-hypothesis distribution based on the highest accuracy (t-statistics) over ROIs in each permutation 
iteration. As a result, EU prediction accuracy was deemed to be above chance in striatum, VMPFC, and 
right MFG (p < .05, Fig. 5b). Although EU was not decodable from VMPFC and right MFG in the 
within-categorical decoding analysis above, it may be because we had used more stringent statistical 
threshold. Together, these results show that human brains use a common scale to represent VOI and EU. 
 
Discussion 
A substantial portion of our daily actions pertains to information acquisition. Particularly in a digital age 
where a tremendous amount of information is available at our fingertips, acquiring relevant information to 
an appropriate degree is as important as making use of acquired information. Going back at least to 
Berlyne3, psychologists studying functions, causes, and consequences of motivation and interests have 
hypothesized the relationship between exploratory and information-seeking behavior and reward system. 
However, only recently have researchers begun to elucidate the neural basis of adaptive information 
acquisition. 
 
In their influential proposal, Kakade and Dayan15 hypothesized that dopamine reward system produces 
information seeking by multiplexing signal on extrinsic reward and some utility bonus and encouraging 
exploration. Consistent with this, putative non-instrumental motives, such as self-reported curiosity or 
stimulus novelty, correlate with BOLD signals in striatum and dopaminergic midbrain regions in humans 
9-11,32-34. More direct evidence for dopaminergic responses to information was provided by Bromberg-
Martin and Hikosaka16, who found that monkeys preferred advanced information on the amount of future 
reward, and that midbrain dopamine neurons encoded information in a highly consistent manner with 
reward prediction error. However, existing studies have been limited to non-instrumental information 
cases, and it remains unclear to what extent dopaminergic reward system is involved in adaptive, forward-
looking information acquisition. 
 
If information acquisition is indeed driven by dopamine reward system in general, we should expect two 
features from dopaminergic responses; first, they should be scaled according to subjective preference for 
information, even when it is sensitive to instrumental benefit, and second, they should be on a common 
scale with signals on extrinsic reward. Our results on the common valuation scale in BOLD from striatum 
and VMPFC are highly consistent with these predictions, because they receive massive dopaminergic 
projection35 and represent various kinds of values36,37, with some evidence for common currency21,23,24,26. 
In particular, our findings expand existing knowledge by showing that striatum also represents forward-
looking instrumental benefits. Furthermore, our cross-categorical decoding approach provides a more 
direct evidence for neural common currency above and beyond regional overlaps as typically reported in 
brain mapping studies. Our results also predict that, when monkeys act on forward-looking instrumental 
benefit of information, it may also be encoded by their midbrain dopamine neurons. 
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We found VOI representation in other areas as well, but evidence for neural common currency was not 
found in most of them; cross-categorical decoding was successful in right MFG but not in the other 
clusters. As VOI computation requires the simulation of agents’ own choices and outcomes under 
possible informational states, it may need more neurocognitive recourses than other valuation, particularly 
working memory and planning. Relatedly, although encoding of non-instrumental information value was 
reported in orbitofrontal cortex (OFC) of monkeys, contrary to midbrain dopaminergic areas, it was 
distinct from reward encoding38. This suggests that, while OFC neurons may encode signals relevant to 
information valuation, they seem not to use a common code with other types of values39,40. Taken 
together, information valuation may be supported by widespread neurocognitive resources, and it may 
converge with other values for the first time in striatum and/or VMPFC. Downstream processes, such as 
action selection, may be largely similar whether they involve information acquisition or not.  
 
Our study also provides insight on cognitive processes underlying information acquisition, and in 
particular the importance of valuation systems. We behaviorally identified at least two motives, forward-
looking instrumental benefit and anticipatory utility. Other models on non-instrumental motives that are 
independent of reward value of outcomes, such as constant utility bonus5, were insufficient in explaining 
the observed behavior. Particularly, consistent with the notion of savoring, we found stake-dependent 
over-purchase of information. Our results extend the findings from the past studies on anticipatory utility, 
which have focused mostly on non-instrumental information and not quantitatively captured concurrent 
contribution of instrumental and anticipatory value for information29,30,41.  
 
The possibility that anticipatory utility is an important component of motivation to acquire information 
opens up several important questions. One particular issue concerns the effect of dread, or utility of 
anticipating negative outcomes42,43. The effect of dread may be large enough for some people to avoid 
potentially negative information even when its instrumental benefit is critical, such as medical 
conditions44-46, but its relative contribution in instrumental information settings is yet to be empirically 
quantified. Our study could not measure its effect reliably because our subjects could reject unfavorable 
lotteries. Second, anticipatory utility provides a possible explanation for the phenomenon of ambiguity 
aversion. Intuitively, the desire for information may be causally linked to aversion to the lack 
thereof13,47,48. It may thus be not a coincidence that non-linearity of the aggregator function that 
determines second-order utility, a critical part of recursive utility theory, is also central to some theories 
on ambiguity and compound lotteries49-51. Our paradigm could be used to quantify anticipatory utility at 
the individual level and correlate with ambiguity attitude. 
 
More generally, little is understood on how humans adopt different strategies on information acquisition 
under various situations, from stable to dynamic environments, and from short to long temporal 
horizons1,4,22. Although we found little support for utility bonus accounts in our experimental paradigm, it 
is entirely possible that they are appropriate description of exploratory behavior in more dynamic settings 
with longer temporal horizon5,52,53. Similarly, other proposed motives we did not study here, such as 
novelty, complexity, or surprise1,3,8,54-57, might be necessary or more suited to ensure adequate degree of 
exploration in certain circumstances, particularly outside value-based decision-making domains. While 
our findings on anticipatory utility cannot be explained by these concepts, it is yet to be quantified when 
and how much these motives contribute to behavior. This issue is interesting particularly under the light 
of recent progress in AI, in which agents who explore the environment based on prediction error alone 
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can acquire knowledge to an appropriate degree and generalize it to novel situations58. Various potential 
motives have been long studied separately in respective fields, and the current study marks an important 
step, both theoretically and empirically, towards integrative understanding.  
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Figure legends 
Figure 1. Experimental task design. (a) Subjects were presented with lotteries with two monetary 
outcomes, gain and loss, shown as a roulette wheel. When played, a green dot appeared at a random 
location on the perimeter, and its side determined the outcome (left or right). Outcomes were initially 
described as equally likely. Subjects indicated whether to accept or reject it, assuming they would not 
receive any further information. Potential information was then presented as a magenta partition. When 
purchased, it would reveal which side of the partition the green dot would appear. Subjects indicated 
whether to purchase it or forgo it given the information cost. Prior to scanning, subjects were informed 
that they could use purchased information to change their choices on lottery later. (b) Top: if subjects did 
not purchase information, they chose whether to accept or reject under the initial assumption (s0). Bottom: 
if subjects purchased information, it revealed that one of the two possible probability distributions, s1 or 
s2, was true. They were characterized by information diagnosticity, π, corresponding to the angle of the 
partition. Because subjects could not predict the true probability in advance, they need to stimulate s1 and 
s2 and average their EUs in order to compute instrumental benefit. 
 
Figure 2. Behavioral results. (a) Left: Under standard VOI prediction, instrumental benefit is captured 
by the difference between the average EU of informed choices (s1, s2) and EU of uninformed choice (s0). 
Deterministic EU-maximizer is assumed, i.e., the lottery is accepted if its EU exceeded u(0). Instrumental 
benefit is positive as far as EU-maximizing choices differ under s1 and s2. Right: In the generalized VOI, 
instrumental benefit is modulated by anticipatory utility. This modulation is explained by non-linear 
second-order utility and may depend on stakes. (b) Left: subjects’ information purchase was sensitive to 
the difference between the instrumental-only VOI and cost. Inset: they exhibited over-purchase, 
particularly in high-EU lotteries (blue) more than low-EU lotteries (red). Right: the generalized VOI 
predicted information purchase better. Inset: stake-dependence in over-purchase is no longer apparent. 
Each dot corresponds to a unique combination of lottery, diagnosticity level, and cost, averaged over 37 
subjects. Solid line curve: soft-max fit. (c) The instrumental-only VOI model achieved better goodness-
of-fit (log likelihood, summed over 37 subjects) than utility bonus accounts. (d) The generalized VOI 
achieved better model fit than the instrumental-only VOI, while the composite model of the instrumental 
VOI and utility bonus did not. ***: p < .001, n.s.: p > 05. 
   
Figure 3. Schematic illustration of decoding analysis. Values were decoded from voxel-wise, trial-wise 
activation in two epochs, lottery presentation (top) and information presentation (bottom), using support 
vector regression (SVR) in searchlight. Decoder was trained using four runs and tested in the hold-out run 
(five-fold leave-one-run-out cross validation). In addition to the traditional (“within-categorical”) 
decoding approach (solid arrows), cross-categorical decoding (dotted arrows) was conducted to test the 
common currency hypothesis; decoder was trained on EU and tested on its predictability of VOI, and vice 
versa.  
 
Figure. 4. Neural representation of VOI and EU. (a) VOI representation was revealed in regions 
including striatum and VMPFC by within-categorical decoding (magenta; voxel-wise p < .05, whole-
brain FWE corrected). EU representation was also found in striatum (green), overlapping with VOI 
(white). In VOI decoding, prediction accuracy was assessed while controlling for diagnosticity (see main 
text). (b) VOI representation found in (a) cannot be explained by re-instantiation or maintenance of EU 
representation. Prediction accuracy was significantly higher than zero even when EU was controlled for 
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(blue; all p < .05, Bonferroni corrected). Accuracy without controlling for diagnosticity or EU was also 
shown for comparison (dotted). VMPFC: ventromedial prefrontal cortex, MFG: middle frontal gyrus, 
SFG: superior frontal gyrus, PCC: posterior cingulate cortex. 
  
Figure 5. Evidence for neural common currency. (a) In striatum (green in Fig. 4a), decoders trained on 
EU predicted VOI. Shown are permutation-based null-hypothesis distribution of t-statistics of prediction 
accuracy (black vertical line: true accuracy). Left: no control, middle: controlling for diagnosticity, right: 
controlling for EU. (b) In striatum, VMPFC, and right MFG (magenta in Fig. 4a), decoders trained on 
VOI predicted EU. To control for familywise error, the null-hypothesis distribution was made of the 
highest accuracy among ROIs for each permutation iteration.  
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Methods 
Subjects and procedure. 47 healthy, naïve subjects were recruited from a subject pool at Virginia Tech. 
Ten subjects were removed due to excessive motion, leaving 37 subjects included in analyses (21 
females, age range = 19-38, average 24.5). They were screened for standard MRI contraindications, 
provided informed consent, received instructions, and practiced the task prior to the scanning. They used 
a MR-compatible button box to interact with the task. The experiment program was on Matlab 
(Mathworks) and Psychtoolbox59,60 on a Windows PC. All protocols were approved by UC Berkeley 
Committee for the Protection of Human Subjects and Virginia Tech Institutional Review Board. 
 
Experiment task design. The task procedure is illustrated in Fig. 1a. In each trial, a lottery with two 
outcomes was presented as a roulette wheel, partitioned by a vertical white line at the middle (3 seconds). 
Ten lotteries were used: (+$12, −$9), (+$9, −$12), (+$9, −$9), (+$12, −$6), (+$6, −$12), (+$9, −$6), 
(+$6, −$9), (+$6, −$6), (+$12, −$3), and (+$3, −$12). After a fixation screen with variable duration (1–4 
seconds), subjects chose whether to play the lottery or not (within 2 seconds). After the presentation of 
the same lottery (1–4 seconds), the information was presented as a magenta partition on the wheel (3 
seconds). The partition was slanted by either 0° (vertical), 30°, 60°, 120°, or 150°. 0° corresponds to 
diagnosticity π of 1, 30° and 150° to 5/6, and 60° and 120° to 2/3, respectively. After another fixation 
screen with variable duration (1–4 seconds), the information cost was presented, and subjects chose 
whether to purchase it or not (within 2 seconds). 
 
Scanning consisted of five runs, each comprised of 30 trials in a randomized order (150 trials in total). 
Each combination of lotteries and diagnosticity was shown once in each scanning run (10 lotteries × 3 
levels of diagnosticity). The information cost was either ¢5 (3 trials per run), $1 (8 trials), $2 (8 trials), $3 
(8 trials), or $9 (3 trials), and varied independently from lotteries and diagnosticity. Trials in which 
subjects did not respond within 2 seconds were discarded from the behavioral and fMRI analysis.  
 
After the scanning, five trials were randomly selected and implemented into the actual monetary payment. 
If they had accepted a selected lottery, a green dot appeared on the wheel’s perimeter, which determined 
the outcome (gain or loss); if they had rejected it, subjects did not receive gain or loss. If subjects had not 
purchased the information, the green dot’s location followed uniform distribution across the perimeter 
(i.e., the two possible outcomes were equally likely). If subjects had purchased the information, one side 
of the magenta partition was brightened, indicating that the dot’s location followed uniform distribution 
within the brightened side. They could change their original choice on the lottery (accept or reject) 
accordingly. The brighter side was chosen randomly. The outcome from the five selected lotteries were 
the averaged and added to the baseline payment for completion. 
 
Behavioral modeling. Unless noted otherwise, free parameters were estimated using the standard 
maximum likelihood estimation procedure (mle function on Matlab). 
 
First, subjects’ group-level utility function was estimated from their choices on lotteries during scanning. 
It involved four free parameters: power on the positive and negative domains, a multiplicative term on the 
negative domain, and the temperature parameter of soft-max binary choice function. The estimated utility 
function was ! " = "$.&'	 " > 0 , −1.74�(−")$.23 " < 0 , indicating strong risk and loss aversion.  
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Second, trial-wise prediction of standard VOI was derived as a function of lottery outcomes (x1 and x2), 
information diagnosticity (π), and the estimated utility function u(.). A fully deterministic, EU-
maximizing (i.e., greedy) policy was assumed. VOI was obtained as the sunk cost at which greedy agents 
are indifferent to information purchase. Therefore, VOI is obtained as the cost c that satisfies 
 
 EU(s0) = 0.5 · EU(s1, c) + 0.5 · EU(s2, c)      (1) 
 
where 
 

EU(s0) = max [0.5 · u(x1) + 0.5 · u(x2), u(0)]     (2) 
EU(s1, c) = max [π · u(x1 − c) + (1 − π) · u(x2 − c), u(−c)] 
EU(s2, c) = max [(1 − π) · u(x1 − c) + π · u(x2 − c), u(−c)] 

 
VOI was numerically obtained by minimizing the absolute difference between LHS and RHS in Equation 
1 (fminsearch function on Matlab). 
 
Third, subjects’ trial-wise information purchase choices were modeled by standard VOI (Fig. 2b). This 
involved only one free parameter: the temperature of the soft-max choice function that maps VOI minus 
the cost onto binary choices. The goodness-of-fit of this model was evaluated as log likelihood of all 
choices (summed over subjects) and statistically tested by permutation, in which null-hypothesis 
distribution was obtained by shuffling the labels of the lottery outcomes (x1 and x2) and the diagnosticity 
(π) for 2,000 times and compared to the ground-truth model fit. 
 
Fourth, standard VOI modeling was compared against the constant bonus account and the entropy bonus 
account. This involved two parameters: the magnitude of bonus (constant term or reduction in entropy, 
log(0.5) − πlog(π) − (1 − π)log(1 − π), respectively) and the temperature parameter of soft-max function. 
To statistically compare their log likelihoods to standard VOI model (Fig. 2c), 10-run, 10-fold cross 
validation across subjects was conducted. The whole data was randomly split into 10 datasets (3 or 4 
subjects each), and bonus parameters were estimated from 9 datasets and evaluated on the hold-out 
dataset (soft max temperature was estimated anew in the hold-out dataset). This procedure was repeated 
for each hold-out dataset, and then for 10 dataset splits. This yielded 100 log-likelihood values. They 
were compared against log likelihood of standard VOI model on the same hold-out dataset using t-test. 
Degree-of-freedom of t-test was set to 10 instead of 99 to correct for dependency among iterations61. 
 
Fifth, the composite models of standard VOI and utility bonus accounts (constant bonus or entropy 
reduction bonus) were tested (Fig. 2f). Two free parameters were estimated: the magnitude of bonus and 
temperature of soft-max function that mapped [VOI plus bonus minus cost] onto binary choices. Their 
goodness-of-fit was compared against standard VOI model using 10-run, 10-fold cross validation, as 
described above. 
 
Sixth, and lastly, the generalized VOI under recursive utility was tested (Fig. 2e). In this model, equations 
(1) and (2) are modified as 
 
 EU(s0) = 0.5 · v(EU(s1, c)) + 0.5 · v(EU(s2, c))      (1’) 
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EU(s0) = max [0.5 · v(u(x1)) + 0.5 · v(u(x2)), v(u(0))]     (2’) 
 
where v(.) is the aggregator function that returns second-order utility. v(.) included three free parameters: 
power on the positive domain, power on the negative domain, and a multiplicative term on the negative 
domain. v(.) and the temperature of the soft-max choice function. Here, because the solution of (1’) has 
non-linear dependence on v(.), this is a two-level estimation problem: we need to find v(.), under which 
estimated VOIs achieve the lowest log likelihood of binary choices. Thus, instead of mle function, we 
estimated v(.) using Nelder-Mead simplex algorithm62 using a custom-made Matlab script. Comparison to 
alternative models (Fig. 2f) were carried out using 10-run, 10-fold cross validation, as described above. 
 
We also evaluated stake-dependent deviations from the instrumental-only and generalized VOI 
predictions (Fig. 2b, e). For each trial in each subject, deterministic trial-wise prediction (purchase or 
forgo) was obtained using best-fit parameters. Next, trials were separated into two categories according to 
lotteries’ EUs under s0 (median split of 10 lotteries). Difference in the predicted and actual purchase 
probability in each category was then averaged across subjects.  
 
MRI acquisition. MR images were acquired by a 3T Siemens Trio scanner and a 12-channel head coil. 
Prior to the task, T1-weighted structural images (1mm × 1mm × 1mm) were obtained using 
magnetization-prepared rapid-acquisition gradient-echo (MPRAGE) pulse sequence. During the task, 
functional images were obtained using T2*-weighted gradient-echo echo-planar imaging (EPI) pulse 
sequence (TR = 2000ms, TE = 30ms, voxel size = 3mm × 3mm × 3mm, inter-slice gap = 0.3mm, in-plane 
resolution = 64 × 64, 32 oblique axial slices). Slices were tilted by approximately 30 degrees from AC-PC 
line to reduce signal dropout from orbitofrontal cortex63.  
 
MRI preprocessing. Motion correction and slice-time correction were applied to EPI images on SPM12 
(http://www.fil.ion.ucl.ac.uk/spm/). Neither smoothing or normalization was applied as a part of 
preprocessing, but after decoding analysis (see below). 
 
MRI analysis. 
General linear modeling (GLM). We used voxel-wise, trial-wise activation estimates as features in 
support vector regression (SVR). They were obtained by GLM on SPM12. Each of the five runs for each 
subject was modeled separately. Each GLM included one regressor modeling lottery presentation (3-
second boxcar) and one regressor modeling information presentation (3-second boxcar) for each trial with 
responses. Additional regressors modeled these epochs in all trials without responses (excluded from the 
following SVR). All button presses were modeled by two additional regressors, one for right-hand 
responses and one for left-hand responses. All of these event-related regressors were convolved with the 
SPM’s double-gamma canonical hemodynamic response function. In addition, GLMs included movement 
parameters estimated in the motion-correction procedure, 128-sec high-pass filtering, and AR(1) model of 
serial autocorrelation. 
 
Within-categorical decoding. Our approach is schematically illustrated in Fig. 3. The decoding analysis 
used custom-made Matlab scripts and adopted linear kernel epsilon-SVR in LIBSVM package64. Cost 
parameter and epsilon parameter were pre-set at 1 and $0.1, respectively.  
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Within-categorical decoding with searchlight was conducted to look for neural representation of VOI and 
EU (Fig. 4a). It consisted of two steps, individual-level and group-level. In individual-level analysis, we 
evaluated SVR’s decoding accuracy of VOI during information presentation and that of EU during lottery 
presentation. Five-fold leave-one-run-out cross validation was conducted for each spherical searchlight 
(radius: 10 mm). In each fold, a decoder was trained on features (trial-wise activation pattern estimated in 
GLM above) from four runs (up to 120 trials) so that it finds a linear model that predicts value labels. The 
trained decoder was then used to predict value labels in the hold-out run. Regarding value labels, we used 
trial-wise VOI estimated under the recursive utility model with best-fit parameters and trial-wise EU 
obtained based on estimated group-level utility function (see above). Due to the design of the task, trial-
wise VOI was highly correlated with information diagnosticity π. In order to find clusters which 
activation was associated with VOI above and beyond π, we measured VOI decoder’s prediction accuracy 
as Pearson partial correlation between predicted and actual VOIs, controlling for π. EU decoder’s 
prediction accuracy was measured as (non-partial) correlation between predicted and actual EUs. 
Measured accuracy was then z-transformed, averaged over the five cross-validation folds, and assigned to 
the central voxel of the searchlight. This created subject-wise prediction accuracy maps, one for VOI and 
one for EU.  
 
For group-level analysis, subject-wise accuracy maps were normalized to MNI template using SPM12’s 
DARTEL procedure. DARTEL consists of two steps: non-linear transformation to the average brain 
among subjects and affine transformation to the template. Normalized maps in MNI space were then 
smoothed with a Gaussian kernel (8-mm FWHM). Group-level statistical significance was evaluated 
using random-effect model as conventional SPM analyses. We used voxel-level threshold p < .05, 
corrected for whole-brain family-wise error (FWE). FWE correction was conducted based on non-
parametric permutation using SnPM13 package65.  
 
In an additional ROI analysis (Fig. 4b), we examined if decoding accuracy could be explained by EU 
representation instead of VOI. ROIs were defined at p < .05 (voxel-level, FWE corrected) and transferred 
to subject-wise local spaces using the reverse transformation of DARTEL. Next, prediction accuracy of 
VOI decoder was tested in searchlights centered on every voxel within each ROI, while controlling for 
EU (instead of π). As a reference, prediction accuracy without any control (non-partial Pearson 
correlation) was also measured. Accuracy measures were then averaged within each ROI, and then across 
subjects. 
 
Cross-categorical decoding. Within-categorical decoding analysis revealed a cluster in striatum from 
which EU was decodable, and eight clusters from which VOI was decodable. We next conducted cross-
categorical decoding to ask if they were represented on a neural common currency. As above, ROIs were 
defined at p < .05 (voxel-level, FWE corrected) and transferred back to local spaces. Prediction accuracy 
was averaged across searchlights centered on voxels within each ROI.  
 
We first examined if decoders trained on EU could predict VOI (Fig. 5a). Decoders trained in within-
categorical decoding were used, but they were applied to activity pattern in information presentation 
epoch to predict VOI (Fig. 4). As before, we evaluated VOI prediction accuracy in three ways: non-partial 
correlation, partial correlation controlling for diagnosticity, and partial correlation controlling for EU. The 
last control is particularly important as it addresses the concern that striatum might re-instantiate (or 
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maintain) EU representation over time. Group-level t-statistics was then obtained over these measures 
averaged within the ROI. 
 
To test if the obtained prediction accuracy was higher than chance, it was important to control for possible 
signal dependency within trials (e.g., signals in information presentation epoch could be dependent on 
signals in lottery presentation epoch due to autocorrelation unexplained in GLM). To do so, we conducted 
permutation with 1,000 iterations. In each iteration, we shuffled value labels over trials within each run, 
but retained the dependency between VOI labels and EU labels, as well as dependency across runs. 
Prediction accuracy measures were then obtained for each iteration exactly as the original analysis (five-
fold, leave-one-run-out cross validation). Fig. 5a shows the histogram of t-statistics under permutated 
labels (i.e., null-hypothesis distribution). 
 
Next, we examined if decoders trained on VOI could predict EU (Fig. 5b). The procedure of this analysis 
(VOI to EU) was overall the same as above (EU to VOI). In order to control for family-wise error among 
8 VOI ROIs, null-hypothesis distribution of t-statistics was formed by the highest t-statistics among 8 
ROIs in each permutation iteration (1,000 iterations in total). As a result, we obtained the null-hypothesis 
distribution which center was shifted positively from zero.  
 
 
 
References 
1. Kidd, C. & Hayden, B. Y. The psychology and neuroscience of curiosity. Neuron 88, 449–460 

(2015). 
2. Loewenstein, G. The psychology of curiosity: A review and reinterpretation. Psychological 

Bulletin 116, 75–98 (1994). 
3. Berlyne, D. E. A theory of human curiosity. British Journal of Psychology. General Section 45, 

180–191 (1954). 
4. Gottlieb, J., Oudeyer, P.-Y., Lopes, M. & Baranes, A. Information-seeking, curiosity, and 

attention: computational and neural mechanisms. Trends in Cognitive Sciences 17, 585–593 
(2013). 

5. Daw, N. D., O'Doherty, J. P., Dayan, P., Seymour, B. & Dolan, R. J. Cortical substrates for 
exploratory decisions in humans. Nature 441, 876–879 (2006). 

6. Dayan, P. & Sejnowski, T. J. Exploration bonuses and dual control. Mach Learn 25, 5–22 (1996). 
7. Ishii, S., Yoshida, W. & Yoshimoto, J. Control of exploitation–exploration meta-parameter in 

reinforcement learning. Neural Networks 15, 665–687 (2002). 
8. Barto, A., Mirolli, M. & Baldassarre, G. Novelty or surprise? Front Psychol 4, 907 (2013). 
9. Bunzeck, N. & Düzel, E. Absolute coding of stimulus novelty in the human Substantia 

Nigra/VTA. Neuron 51, 369–379 (2006). 
10. Wittmann, B. C., Daw, N. D., Seymour, B. & Dolan, R. J. Striatal activity underlies novelty-based 

choice in humans. Neuron 58, 967–973 (2008). 
11. Krebs, R. M., Schott, B. H., Schütze, H. & Düzel, E. The novelty exploration bonus and its 

attentional modulation. Neuropsychologia 47, 2272–2281 (2009). 
12. Kreps, D. M. & Porteus, E. L. Temporal resolution of uncertainty and dynamic choice theory. 

Econometrica 46, 185–200 (1978). 
13. Golman, R. & Loewenstein, G. Information gaps: A theory of preferences regarding the presence 

and absence of information. Decision (2016). doi:10.1037/dec0000068 
14. Caplin, A. & Leahy, J. Psychological expected utility theory and anticipatory feelings. The 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 17, 2018. ; https://doi.org/10.1101/324665doi: bioRxiv preprint 

https://doi.org/10.1101/324665


Quarterly Journal of Economics 116, 55–79 (2001). 
15. Kakade, S. & Dayan, P. Dopamine: generalization and bonuses. Neural Networks 15, 549–559 

(2002). 
16. Bromberg-Martin, E. S. & Hikosaka, O. Midbrain dopamine neurons signal preference for 

advance information about upcoming rewards. Neuron 63, 119–126 (2009). 
17. Iigaya, K., Story, G. W., Kurth-Nelson, Z., Dolan, R. J. & Dayan, P. The modulation of savouring 

by prediction error and its effects on choice. eLife 5, e13747 (2016). 
18. Howard, R. A. Information value theory. IEEE transactions on systems science and cybernetics 2, 

22–26 (1966). 
19. Edwards, W. Optimal strategies for seeking information: Models for statistics, choice reaction 

times, and human information processing. Journal of Mathematical Psychology 2, 312–329 
(1965). 

20. Wendt, D. Value of information for decisions. Journal of Mathematical Psychology 6, 430–443 
(1969). 

21. Levy, D. J. & Glimcher, P. W. The root of all value: a neural common currency for choice. 
Current Opinion in Neurobiology 22, 1027–1038 (2012). 

22. Cohen, J. D., McClure, S. M. & Yu, A. J. Should I stay or should I go? How the human brain 
manages the trade-off between exploitation and exploration. Philosophical Transactions of the 
Royal Society B: Biological Sciences 362, 933–942 (2007). 

23. McNamee, D., Rangel, A. & O'Doherty, J. P. Category-dependent and category-independent goal-
value codes in human ventromedial prefrontal cortex. Nat Neurosci 16, 479–485 (2013). 

24. Gross, J. et al. Value signals in the prefrontal cortex predict individual preferences across reward 
categories. The Journal of Neuroscience 34, 7580–7586 (2014). 

25. Klein, J. T., Deaner, R. O. & Platt, M. L. Neural correlates of social target value in macaque 
parietal cortex. Current Biology 18, 419–424 (2008). 

26. Smith, D. V. et al. Distinct value signals in anterior and posterior ventromedial prefrontal cortex. 
Journal of Neuroscience 30, 2490–2495 (2010). 

27. Wu, G. Anxiety and decision making with delayed resolution of uncertainty. Theory and Decision 
46, 159–199 (1999). 

28. Chew, S. H. & Ho, J. L. Hope: An empirical study of attitude toward the timing of uncertainty 
resolution. J Risk Uncertainty 8, 267–288 (1994). 

29. Eliaz, K. & Schotter, A. Experimental testing of intrinsic preferences for noninstrumental 
information. American Economic Review 97, 166–169 (2007). 

30. Falk, A. & Zimmermann, F. Beliefs and utility: Experimental evidence on preferences for 
information. SSRN (2017). 

31. Ahlbrecht, M. & Weber, M. The Resolution of uncertainty: An experimental study. Journal of 
Institutional and Theoretical Economics 152, 593–607 (1996). 

32. Kang, M. J. et al. The wick in the candle of learning: Epistemic curiosity activates reward circuitry 
and enhances memory. Psychological Science 20, 963–973 (2009). 

33. Jepma, M., Verdonschot, R. G., van Steenbergen, H., Rombouts, S. A. R. B. & Nieuwenhuis, S. 
Neural mechanisms underlying the induction and relief of perceptual curiosity. Front Behav 
Neurosci 6, 5 (2012). 

34. Gruber, M. J., Gelman, B. D. & Ranganath, C. States of curiosity modulate hippocampus-
dependent learning via the dopaminergic circuit. Neuron 84, 486–496 (2014). 

35. Haber, S. N. & Knutson, B. The reward circuit: Linking primate anatomy and human imaging. 
Neuropsychopharmacology 35, 4–26 (2010). 

36. Rangel, A. & Hare, T. Neural computations associated with goal-directed choice. Current Opinion 
in Neurobiology 20, 262–270 (2010). 

37. Rangel, A., Camerer, C. & Montague, P. R. A framework for studying the neurobiology of value-
based decision making. Nat Rev Neurosci 9, 545–556 (2008). 

38. Blanchard, T. C., Hayden, B. Y. & Bromberg-Martin, E. S. Orbitofrontal cortex uses distinct 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 17, 2018. ; https://doi.org/10.1101/324665doi: bioRxiv preprint 

https://doi.org/10.1101/324665


codes for different choice attributes in decisions motivated by curiosity. Neuron 85, 602–614 
(2015). 

39. Wilson, R. C., Takahashi, Y. K., Schoenbaum, G. & Niv, Y. Orbitofrontal cortex as a cognitive 
map of task space. Neuron 81, 267–279 (2014). 

40. Rudebeck, P. H. & Murray, E. A. The orbitofrontal oracle: Cortical mechanisms for the prediction 
and evaluation of specific behavioral outcomes. Neuron 84, 1143–1156 (2014). 

41. Bennett, D., Bode, S., Brydevall, M., Warren, H. & Murawski, C. Intrinsic valuation of 
information in decision making under uncertainty. PLoS Computational Biology 12, e1005020 
(2016). 

42. Berns, G. S. et al. Neurobiological substrates of dread. Science 312, 754–758 (2006). 
43. Lovallo, D. & Kahneman, D. Living with uncertainty: attractiveness and resolution timing. J. 

Behav. Decis. Making 13, 179–190 (2000). 
44. Karlsson, N., Loewenstein, G. & Seppi, D. The ostrich effect: Selective attention to information. J 

Risk Uncertainty 38, 95–115 (2009). 
45. Ganguly, A. & Tasoff, J. Fantasy and dread: The demand for information and the consumption 

utility of the future. Management Science mnsc.2016.2550 (2016). doi:10.1287/mnsc.2016.2550 
46. Leydon, G. M. et al. Cancer patients' information needs and information seeking behaviour: in 

depth interview study. BMJ 320, 909–913 (2000). 
47. Snow, A. Ambiguity and the value of information. J Risk Uncertainty 40, 133–145 (2010). 
48. Heath, C. & Tversky, A. Preference and belief: Ambiguity and competence in choice under 

uncertainty. J Risk Uncertainty 4, 5–28 (1991). 
49. Nau, R. F. Uncertainty aversion with second-order utilities and probabilities. Management Science 

52, 136–145 (2006). 
50. Ergin, H. & Gul, F. A theory of subjective compound lotteries. Journal of economic theory 144, 

899–929 (2009). 
51. Seo, K. Ambiguity and second-order belief. Econometrica 77, 1575–1605 (2009). 
52. Speekenbrink, M. & Konstantinidis, E. Uncertainty and exploration in a restless bandit problem. 

Topics in Cognitive Science 7, 351–367 (2015). 
53. Wilson, R. C., Geana, A., White, J. M., Ludvig, E. A. & Cohen, J. D. Humans use directed and 

random exploration to solve the explore-exploit dilemma. Journal of Experimental Psychology: 
General 143, 2074–2081 (2014). 

54. Berlyne, D. E. Curiosity and exploration. Science 153, 25–33 (1966). 
55. Silvia, P. J. & Kashdan, T. B. Interesting things and curious people: Exploration and engagement 

as transient states and enduring strengths. Social and Personality Psychology Compass 3, 785–797 
(2009). 

56. Baranes, A., Oudeyer, P.-Y. & Gottlieb, J. Eye movements reveal epistemic curiosity in human 
observers. Vision research 117, 81–90 (2015). 

57. Baranes, A. F., Oudeyer, P.-Y. & Gottlieb, J. The effects of task difficulty, novelty and the size of 
the search space on intrinsically motivated exploration. Frontiers in Neuroscience 8, 317 (2014). 

58. Pathak, D., Agrawal, P., Efros, A. A. & Darrell, T. Curiosity-driven exploration by self-supervised 
prediction. in ICML 2017. 

59. Brainard, D. H. The Psychophysics Toolbox. Spatial Vision 10, 433–436 (1997). 
60. Pelli, D. G. The VideoToolbox software for visual psychophysics: Transforming numbers into 

movies. Spatial Vision 10, 437–442 (1997). 
61. Bouckaert, R. R. Choosing between two learning algorithms based on calibrated tests. in ICML 

2003. 
62. Lagarias, J. C., Reeds, J. A., Wright, M. H. & Wright, P. E. Convergence properties of the Nelder-

Mead simplex method in low dimensions. SIAM Journal of Optimization 9, 112–147 (1998). 
63. Weiskopf, N., Hutton, C., Josephs, O. & Deichmann, R. Optimal EPI parameters for reduction of 

susceptibility-induced BOLD sensitivity losses: A whole-brain analysis at 3 T and 1.5 T. 
NeuroImage 33, 493–504 (2006). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 17, 2018. ; https://doi.org/10.1101/324665doi: bioRxiv preprint 

https://doi.org/10.1101/324665


64. Chang, C.-C. & Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. 
Syst. Technol. 2, 1–27 (2011). 

65. Nichols, T. E. & Holmes, A. P. Nonparametric permutation tests for functional neuroimaging: A 
primer with examples. Hum. Brain Mapp. 15, 1–25 (2001). 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 17, 2018. ; https://doi.org/10.1101/324665doi: bioRxiv preprint 

https://doi.org/10.1101/324665

