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predominantly present in the nucleus in UL, but sequestered in the cytoplasm of myometrium44.  

The concomitant increase of p-FOXO1 and reduced expression of 14-3-3γ in UL has been 

suggested to lead to impaired nuclear/cytoplasmic shuttling of p-FOXO1, which promotes cell 

survival44-46. 

 

Next, we conducted a meta-analysis on a total of 8,602,260 SNPs across all cohorts, including a 

total of 35,474 UL cases and 267,505 controls (Supplementary Fig. 1c, Supplementary Table 

2).  Through linkage disequilibrium score (LDSC) regression analysis, an estimated 89.5% of the 

genomic inflation factor (λGC) of 1.12 was attributable to polygenic heritability (intercept = 1.02, 

s.e. = 0.0081).  We observe genome-wide significant associations (P < 5 x 10-8) at 2,045 SNPs 

across 27 independent loci (Supplementary Fig. 4, Supplementary Table 4).  The Manhattan 

plot is shown in Fig. 2.  In addition to 21 loci identified at the discovery stage, we observe six 

novel loci significantly associated with UL (Table 2).  Among the novel, ‘discovery’ loci are three 

genes of interest: HMGA1, BABAM2, and WNT2.  HMGA1 is a member of the high mobility group 

proteins and is involved in regulation of gene transcription47.  Somatic rearrangements of HMGA1 

at 6p21 have been recurrently documented in UL, albeit at a much lower frequency than those of 

HMGA2 – another member of the protein family48-50.  BABAM2 encodes a death receptor-

associating intracellular protein that promotes tumor growth by suppressing apoptosis51.  

Associations at the locus containing WNT2 together with associations observed at the WNT4 locus 

reinforce a possible role for Wnt signaling in UL.  Overall, individual SNP-based heritability (h2) 

was estimated to be relatively low, 0.0281 (s.e. = 0.0029) on the liability scale.   
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Gene-set and tissue enrichment analyses across 5,185 SNPs with suggestive (P < 1 x 10-5) or 

significant (P < 5 x 10-8) UL associations using DEPICT52 reveal significant enrichments (false 

discovery rate (FDR) < 0.05) in gene sets, such as steroid hormone receptor (GO:0035258; P = 

8.09 x 10-6), hormone receptor binding (GO:0051427; P = 1.49 x 10-4), and nuclear hormone 

receptor binding (GO:0035257; P = 9.71 x 10-5) (Supplementary Tables 5 and 6).  The results 

are concordant with the hormone-driven nature of UL.  We also observe enrichment of genes 

associated with expression in female urogenital tissue (P = 6.19 x 10-4)  (Supplementary Fig. 5).  

To identify SNPs with likely regulatory function, we selected up to 30 of the most significant SNPs 

from each of the 27 loci identified in the meta-analysis of GWAS across all cohorts.  Altogether 

429 of 597 SNPs (72%) were present in the RegulomeDB53, and 23 of these have a score < 3, 

indicating potential involvement in gene regulation (Supplementary Table 7).  Based on the 

RegulomeDB, two SNPs (rs498217 at 11p15.5 and rs1641528 at 17p13.1) are indicated as 

potential expression quantitative trait loci (eQTLs) in monocytes for SCGB1C1 and CD68, 

respectively54. 

 

In summary, our GWA analyses uncovered 27 novel genomic loci associated with UL in women 

of white European ancestry.  Many of the candidates fall into two categories:  (1) genomic regions 

containing characterized tumor suppressors and oncogenes, and (2) genes involved in hormone 

signaling pathways previously associated with endometriosis.  Biological overlap between two 

highly common gynecologic diseases, due to similarities in molecular mechanisms and progenitor 

cells, has long been suspected.  Further characterization of the mutual pathogenic mechanisms has 

the capacity to direct not only a deeper understanding of the underlying biology, but also treatments 

for two diseases that cause significant morbidity in roughly one-third of the world’s population.  
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Online Methods 

 

Subjects 

Four population-based cohorts (WGHS, NFBC, QIMR, and UK Biobank) and one direct-to-

consumer cohort (23andMe) from the FibroGENE consortium were included in the study 

(Supplementary Table 1), resulting in 35,474 UL cases and 267,505 female controls of white 

European ancestry.  Detailed descriptions of patient cohorts and sample selection are available in 

Supplementary Notes.  For the current study, sample sizes were maximized using a basic, 

harmonizing phenotype definition to separate cases and controls solely based on either self-report 

or clinically documented UL history.  All participants provided an informed consent in accordance 

with the processes approved by the relevant jurisdiction for human subject research for each 

cohort. 

 

Genotyping 

For the GWAS discovery stage, several different Illumina-based genotyping platforms (Illumina 

Inc., San Diego, CA, USA) were used:  HumanHap300 Duo‘+’ chips or the combination of the 

Human-Hap300 Duo and iSelect chips (WGHS), Infinium 370cnvDuo array (NFBC), 317K, 

370K, or 610K SNP platforms (QIMR).  Genotyping of participants in the UK Biobank was 

performed either on the Affymetrix UK BiLEVE or Affymetrix UK Biobank Axiom® array with 

over 95% similarity.  Genotyping of participants in the 23andMe cohort was performed on various 

versions of Illumina-based BeadChips. 

 

Quality control and imputation 
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Each cohort conducted quality control measures and imputation for their data.  For WGHS, NFBC, 

QIMR, and 23andMe, all cases and controls with a genotyping call rate < 0.98 were excluded from 

the study.  Imputation was performed on both autosomal and sex chromosomes using the reference 

panel from the 1000 Genomes Project European dataset (1000G EUR) Phase 3.  Imputation was 

carried out using ShapeIt2 and IMPUTE2 softwares55,56.  SNPs with call rates of < 99%, and SNPs 

showing deviation from Hardy-Weinberg equilibrium (P ≤ 1 x 10-6) were excluded from further 

analyses.  Population-stratification for the data was examined with principal component analysis 

(PCA) using EIGENSTRAT57.  The four HapMap populations were used as reference groups:  

Europeans (CEU), Africans (YRI), Japanese (JPT), and Chinese (CHB).  All observed outliers 

were removed from the study.  The UK Biobank data QC and imputation was handled by a 

dedicated team headed by the Wellcome Centre for Human Genetics, prior to public release of the 

data.  Genotype data used in the present analyses were imputed up to the Haplotype Reference 

Consortium (HRC) panel.   We applied additional quality control filters to exclude poorly imputed 

SNPs (r2 < 0.4) and SNPs with a MAF of < 1%.  

 

Association analyses 

Using additive encoding of genotypes and adjusting for age, BMI, and the first five principal 

components from EIGENSTRAT, WGHS, NFBC, QIMR, and 23andMe cohorts in both the 

discovery and replication stage performed logistic regression analysis and provided summary 

statistics, including beta coefficients, 2 values, and standard errors, for the genotyped and imputed 

SNPs.  The UK Biobank association analyses were conducted using a linear mixed model (BOLT-

LMM v.2.3.2)58 adjusting for the two array types used, age and BMI (fixed effects) and a random 

effect adjusting for relatedness between women.  Effect size estimates (β and SE) from the linear 
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mixed-model were converted to log-odds scale prior to meta-analysis.  Two fixed-effects, inverse 

variance weighted meta-analyses on summary statistics were conducted using METAL59, one in 

the discovery stage and the other across all cohorts.  For discovery-phase meta-analysis, 8,292,290 

biallelic SNPs for which data were available in at least two of the four cohorts were analyzed.  A 

total of 8,602,260 SNPs were available from at least two of the five cohorts for the meta-analysis 

across all cohorts.  Quantile-quantile plots of the results from meta-analysis of population-based 

cohorts and across all GWAS cohorts are shown in Supplementary Fig. 1.  Details on the overall 

genomic inflation factor and number of analyzed SNPs for each cohort are provided in 

Supplementary Table 2.  Independence of genetic association with UL was defined as SNPs in 

low linkage disequilibrium (LD; r2 < 0.1) with nearby (≤ 500kb) significantly associated SNPs.  

Individual loci correspond to regions of the genome containing all SNPs in LD (r2 > 0.6) with 

index SNPs.  Any adjacent regions within 250 kb of one another were combined and classified as 

a single locus of association. 

 

FOXO1 immunohistochemistry and genotyping 

FOXO1 immunostaining was performed on two replicate tissue microarrays (TMAs) containing 

335 UL and 35 patient-matched myometrium tissue samples from 200 white women of European 

ancestry obtained from myomectomies and hysterectomies.  Tissue cores on the replicate TMAs 

represent different regions of the same samples, which include corresponding tumor-normal tissue 

pairs from 34 women.  Immunohistochemistry was carried out using the BOND staining system 

(Leica Biosystems, Buffalo Grove, IL) with a primary antibody dilution of 1:100 (clone C29H4, 

Cell Signaling Technology, Danvers, MA) and hematoxylin as the counterstain.  Immunostaining 

was analyzed using Aperio ImageScope software (Leica Biosystems).  Each core was evaluated 
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for the ratio of stain to counterstain taking into account variable cellularity between cores.  Only 

nuclear labeling of the protein was evaluated.  The average stain-to-counterstain ratio was 

compared between patient-matched UL and myometrium samples using a paired t-test (two-

tailed), while an unpaired t-test (Welch’s t-test, two-tailed) was applied to compare all UL and 

myometrium samples.  Genomic DNA from 109 UL on the TMA was available for genotyping.  

These UL were genotyped for two SNPs with genome-wide significance at the 13q14.11 locus: 

rs6563799 and rs7986407.  For each SNP, the average FOXO1 stain-to-counterstain ratio was 

compared across increasing dosage of the risk allele using a one-way analysis of variance test 

(two-tailed).  We also performed an unpaired t-test to compare mean expression of UL 

homozygous for the risk variant against the other genotypes (Welch’s t-test, two-tailed).  P-values 

< 0.05 were considered statistically significant. 

 

Linkage disequilibrium score regression (LDSC) 

Analysis of residual inflation in test statistics was conducted using univariate LDSC regression.  

Individual χ2 values for each SNP analyzed in the GWAS meta-analysis were regressed onto LD 

scores estimated from the 1000G EUR panel.  Heritability calculations can be derived from 

analyzing the slope and y-axis intercept of the slope of the regression line.  Percent impact of 

confounders, such as population stratification, on test statistic inflation are quantified as the LDSC 

ratio [((intercept – 1)) / ((mean χ2 – 1))] * 100%.  Remaining effects [(1 – LDSC ratio) * 100%] 

represent the percentage of inflation attributed to polygenic heritability.  Univariate LDSC 

regression was conducted using the LDSC software (https://github.com/bulik/ldsc.git).  

Adjustment of heritability (h2) calculations to the liability scale were performed by accounting for 

the prevalence of UL in the sample (~0.132) compared to the general population (~0.300). 
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Gene-set and tissue enrichment analyses 

Summary statistics from the set of 5,185 SNPs with suggestive (P < 1 x 10-5) or significant 

associations (P < 5 x 10-8) were analyzed for gene-set and tissue enrichment using the Data-driven 

Expression-Prioritized Integration for Complex Traits (DEPICT) software52.  Using the 1000G 

EUR panel as a reference for LD calculations and the ‘clumping’ algorithm in PLINK60, we 

identified 162 independent loci at the suggestive threshold for DEPICT analyses (Supplementary 

Table 5).  FDR < 0.05 was considered statistically significant. 

 

URLs 

WHS, http://whs.bwh.harvard.edu/; NFBC, http://www.oulu.fi/nfbc/; QIMR, 

http://www.qimrberghofer.edu.au/; UK Biobank, http://www.ukbiobank.ac.uk/; 23andMe, 

https://research.23andme.com/; METAL, http://csg.sph.umich.edu/abecasis/metal/; LDSC, 

https://github.com/bulik/ldsc.git; DEPICT, https://data.broadinstitute.org/mpg/depict/; 

RegulomeDB, http://www.regulomedb.org/; PLINK, http://pngu.mgh.harvard.edu/purcell/plink/ 

 

Supplementary Material 

Supplementary Material includes Supplementary Notes, five figures, and seven tables. 
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Fig. 1  Manhattan plot for discovery-phase meta-analysis.  Meta-analysis of GWAS across 

244,324 women of white European ancestry conducted in population-based cohorts identifies 24 

independent loci associated with UL.  Red and blue horizontal lines indicate genome-wide 

significant (P < 5 x 10-8) and suggestive (P < 1 x 10-5) thresholds. 

 

 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 18, 2018. ; https://doi.org/10.1101/324905doi: bioRxiv preprint 

https://doi.org/10.1101/324905


24 
 

 

 

Fig. 2  Manhattan plot for meta-analysis across all cohorts from the FibroGENE consortium. 

Meta-analysis of GWAS across 302,979 women of white European ancestry across all cohorts 

identifies 27 independent loci associated with UL.  Red and blue horizontal lines indicate genome-

wide significant (P < 5 x 10-8) and suggestive (P < 1 x 10-5) thresholds.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 18, 2018. ; https://doi.org/10.1101/324905doi: bioRxiv preprint 

https://doi.org/10.1101/324905


25 
 

Tables 

 

Table 1. Seventeen loci identified in discovery-phase GWAS meta-analysis and replicated in 

an independent cohort from 23andMe 

Locus rsID PDisc OR (95% CI) P23andMe OR (95% CI) Genes of interesta 

1p36.12b rs2235529 7.39e-21 1.14 (1.11 - 1.17) 2.55e-10 1.13 (1.09 - 1.17) WNT4, CDC42 

2p25.1b rs10929757 1.19e-12 1.07 (1.05 - 1.10) 9.35e-07 1.07 (1.04 - 1.10) GREB1 

4q12 rs4864806 5.95e-14 1.16 (1.12 - 1.21) 3.27e-05 1.11 (1.06 - 1.17) LNX1, PDGFRA 

4q13.3 rs12640488 3.83e-10 1.06 (1.04 - 1.09) 1.38e-05 1.06 (1.03 - 1.09) SULT1B1 

5p15.33 rs2242652 4.68e-13 1.10 (1.07 - 1.13) 2.41e-09 1.12 (1.08 - 1.16) TERT 

5q35.2 rs2456181 5.62e-09 1.07 (1.05 - 1.09) 2.43e-04 1.05 (1.02 - 1.08) ZNF346, UIMC1 

6q25.2b rs58415480 3.65e-32 1.18 (1.15 - 1.21) 2.31e-25 1.22 (1.18 - 1.27) SYNE1, ESR1 

10q24.3c rs9419958 1.20e-09 1.09 (1.06 - 1.12) 4.58e-09 1.12 (1.08 - 1.17) OBFC1, SLK 

11p15.5c rs547025 4.77e-13 1.15 (1.11 – 1.19) 1.47e-03 1.09 (1.03 - 1.14) RIC8A, BET1L 

11p14.1b rs11031006 2.91e-08 1.08 (1.05 - 1.12) 4.23e-09 1.12 (1.08 - 1.17) FSHB, ARL14EP 

11p13 rs11031731 2.04e-21 1.14 (1.11 - 1.17) 4.36e-06 1.09 (1.05 - 1.13) WT1 

11p13 rs2553772 1.20e-08 1.06 (1.04 - 1.08) 8.75e-07 1.07 (1.04 - 1.10) PDHX, CD44 

11q22.3 rs149934734 7.05e-19 1.34 (1.26 - 1.43) 1.39e-10 1.31 (1.21 -1.42) C11orf65, KDELC2 

12q13.11 rs2131371 1.63e-09 1.07 (1.05 - 1.09) 5.60e-12 1.10 (1.08 - 1.14) SLC38A2 

13q14.11 rs1986649 2.52e-10 1.31 (1.21 - 1.43) 3.68e-05 1.27 (1.14 - 1.43) FOXO1 

17p13.1 rs78378222 3.84e-26 1.64 (1.50 - 1.80) 2.21e-07 1.38 (1.22 - 1.56) SHBG, TP53 

22q13.1c rs12484776 4.08e-12 1.09 (1.06 - 1.12) 4.22e-05 1.07 (1.04 - 1.11) TNRC6B 

PDisc, P-value in discovery-phase meta-analysis;  P23andMe, P-value in 23andMe cohort; OR, odds ratio; CI, confidence interval 

Threshold for significance in replication set was P < 2.08 x 10-3. 
a ≤ 300 kb distant from association signal 
b Loci previously associated with endometriosis15-18 
c Loci previously associated with UL4 
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Table 2. Six novel genome-wide significant loci identified in meta-analysis across all cohorts 

 

Locus rsID PMeta OR (95% CI) Genes of interesta 

2p23.2 rs55819434 5.59e-09 1.09 (1.06 – 1.12) BABAM2 

4q22.3 rs4699299 4.72e-08 1.05 (1.03 – 1.07) PDLIM5 

6p21.31 rs116251328 2.95e-08 1.15 (1.09 – 1.21) GRM4, HMGA1 

7q31.2 rs2270206 4.64e-08 1.06 (1.04 – 1.09) WNT2 

10p11.22 rs10508765 1.51e-10 1.07 (1.05 – 1.09) ZEB1, ARHGAP12 

12q15 rs11178393 3.34e-08 1.08 (1.05 – 1.10) PTPRR 

OR, odds ratio; CI, confidence interval 
a ≤ 300 kb distant from association signal 
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