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Abstract 14 

Data visualization is an important tool for exploring and communicating findings from genomic 15 

and health datasets. Yet, without a systematic way of understanding the design space of data 16 

visualizations, researchers do not have a clear sense of what kind of visualizations are possible, 17 

or how to distinguish between good and bad options. We have devised an approach using both 18 

literature mining and human-in-the-loop analysis to construct a visualization design space from 19 

corpus of scientific research papers. We ascertain why and what visualizations were created, and 20 

how they are constructed. We applied our approach to derive a Genomic Epidemiology 21 

Visualization Typology (GEViT) and operationalized our results to produce an explorable 22 

gallery of the visualization design space containing hundreds of categorized visualizations. We 23 

are the first to take such a systematic approach to visualization analysis, which can be applied by 24 

future visualization tool developers to areas that extend beyond genomic epidemiology. 25 

Introduction 26 

Cheaper and more accurate genomic sequencing technologies are enabling public health decision 27 

makers, from doctors to epidemiologists to researchers to policy makers, to make more informed, 28 
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near real-time, data-driven decisions toward pathogen diagnosis1, routine surveillance2,3, and 29 

public health interventions4. Yet as pathogen genomic data become more ubiquitous and are 30 

combined with other sources of routinely collected public health data, analysts and decision-31 

makers are forced to confront the dimensionality challenges that attend such “big data”, with 32 

interpretability of results being chief amongst them.  33 

 34 

Data visualization is an emergent solution to address interpretability challenges.  It has been 35 

shown to improve comprehension of numerical results in medical risk communication5,6, but that 36 

context is much less complex than the heterogeneous datasets used in modern genomic 37 

epidemiology, which can include, amongst other things, genomic, patient, clinical, 38 

epidemiological, and geographic data elements. While the rise of public health genomics has 39 

been met with concrete efforts to visualize ‘omics data7, including Nextstrain8 and Microreact9, 40 

few of these visualizations have been tested with target end-users to assess a visualization’s 41 

utility and usability in decision-making contexts10. What is absent is a notion of a visualization 42 

design space – the combinatorial space of visualizations that can be produced using basic 43 

graphical primitives (points, lines, areas) and aesthetic properties (position, color, size, and so on) 44 

to depict input data – and a way to systematically construct and analyze this design space to 45 

inform the design and evaluation of public health genomic data visualizations.  46 

 47 

Design spaces are common in number of disciplines, ranging from architecture to computer 48 

science, but are absent in bioinformatics research, resulting in missed opportunities. 49 

Visualization design spaces could arguably be inferred from the byproducts of search engines 50 

such as Google Image Search or PubMed Search, or more complex scholarly literature analysis 51 
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tools such as Semantic Scholar and SourceData11. However, the construction and exploration of 52 

a design space from these search results would require extensive additional intellectual 53 

investment. Other more explicit attempts to describe a design space exist in the form of web 54 

galleries such as SetVis12,TreeVis13, Visualizing Health(http://www.vizhealth.org/), or BioVis 55 

Explorer14, but while these are closer to the spirit of our definition of a design space they lack the 56 

systematicity of ours and are limited to specific subsets of possible visualizations designs. Thus, 57 

there remains the need to enable researchers, bioinformaticians, and other software tool 58 

developers to generate broad and explorable visualization design spaces. 59 

 60 

Here we propose a systematic approach to constructing a data visualization design space by 61 

analyzing figures from the existing public health genomic research literature. Our human-in-the-62 

loop approach blends automated algorithmic with manual curation steps that inject contextual 63 

knowledge into the design space construction process. Our approach specifically aims to 64 

systematically construct a design space that incorporates information about why researchers 65 

visualize data, what visualizations they use and how those visualizations are constructed, and 66 

finally to understand how many examples of specific data visualizations there are in our dataset. 67 

We demonstrate a concrete instantiation of this approach for a specific use case through the 68 

generation of a Genomic Epidemiology Visualization Typology (GEViT). We also provide a 69 

browsable gallery of categorized visualizations that supports exploration of the GEViT 70 

visualization design space. Our findings from GEViT itself have the most direct implications for 71 

microbial genomic research, but our approach can be applied more generally to other disciplines.  72 

We demonstrate that rigor is both desirable and achievable in data visualization design and 73 

evaluation. 74 
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Results 75 

Our results are divided into two sections, a literature analysis and a visualization analysis. The 76 

purpose of the literature analysis was to derive an underlying structure of the document corpus in 77 

order to intelligently sample a variety of visualizations. The visualization analysis portion 78 

describes the construction of GEViT using iterative open and axial coding techniques and a 79 

descriptive quantitative analysis of the visualizations based upon GEViT. That analysis makes 80 

use of the visualization theory and terminology succinctly summarized in co-author Munzner's 81 

textbook15. A detailed overview of our methodology is provided in the Online Methods, and 82 

Supplementary Figures S1, S2, and S3. Additionally, we provide all analysis notebooks and 83 

datasets online at: https://github.com/amcrisan/gevitAnalysisRelease 84 

 85 

LITERATURE MININ 86 

Literature mining identified article clusters according to disease pathogen 87 

We assembled a document corpus of 17,974 articles pertaining to infectious disease genomic 88 

epidemiology research published in the past 10 years (Figure 1). Using article titles and abstracts 89 

we derived topic clusters in an unsupervised manner, and classified articles as either belonging to 90 

a named topic cluster, not belonging to a cluster under current parameter settings, or never being 91 

clustered under any parameter settings (Figure 2a, also see Online Methods). Articles that never 92 

formed part of a cluster were removed from further analysis, leaving 15,315 documents of which 93 

11,416 (75% of the initial document corpus) formed 32 topic clusters (Figure 2b). Clusters were 94 

assigned topics via the top two most frequent terms within the cluster, revealing that infectious 95 

disease genomic epidemiology literature is primarily structured around pathogens. We validated 96 

our results by comparing our automatically derived cluster naming to the distribution of 97 
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pathogen terms from an external list (Table S1, Figure 2c), and found there to be a strong 98 

correspondence between the automatically derived cluster topics and the propensity for pathogen 99 

terms to appear within clusters of the same name (for example, the term “Influenza Virus” occurs 100 

primarily within the “influenza-viru” cluster). Some notable exceptions are Escherichia coli, 101 

Helicobacter pylori, and Human Immunodeficiency Virus, which spread across more clusters in 102 

addition to having their own defined cluster; they frequently co-occur with other infections. We 103 

also found that clusters with more generic names (for example “viru-sequenc”, or “geno-104 

sequenc”) contain pathogens that likely had too few articles to form their clusters, possibly 105 

because they are part of more recent outbreaks (i.e., Zika, Ebola), while pathogens that tend to be 106 

more consistently studied (i.e. Mycobacterium tuberculosis, Influenza Virus) and hence have 107 

more articles tend to form their own clusters. While t-SNE based results (see online methods) 108 

should be interpreted cautiously with respect to proximity and cluster density, we found the 109 

trends in the literature analysis were well matched to domain knowledge. We filtered the corpus 110 

by limiting to pathogens with 40 or more articles, resulting in 6,350 articles within 35 pathogen 111 

clusters, then further simplified to 18 clusters: a final set of 17 pathogen clusters that had 100 or 112 

more documents and one “other” cluster. 113 

 114 

Linking pathogens to a priori concepts 115 

The findings from the literature mining were at odds with our own a priori assumptions that 116 

articles would cluster according to more general concepts, for example drug resistance, 117 

surveillance, outbreak responses, and so on, which cross-cut all pathogens. We chose to link the 118 

data-driven pathogen clusters to these a priori concepts because we envision this taxonomy 119 

being used by people specifically interested in them. We did so by analyzing bigrams that 120 
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occurred within and between pathogen topic clusters, and manually annotating those bigrams to 121 

map to some a priori concept; for example, the bigram “vancomycin resistance” was mapped to 122 

concept of “drug resistance” (Table S2). We mapped a total of 23 a priori concepts to 404 123 

bigrams, categorized into three groups: genomic concepts (drug resistance, genome, genotype, 124 

molecular biology, pathogen characterization, phylogeny, and population diversity); 125 

epidemiology concepts (clusters, disease reservoirs, geography, outbreaks (international, 126 

community, hospital), surveillance, transmission, vaccine, and vectors), and medical concepts 127 

(clinical, cancer, diagnosis, outcome, and treatment). Some bigrams were not mapped to a priori 128 

concepts, often because they were standard technical writing phrases (e.g. “statistically 129 

significant”, “data show”). A priori concepts did not occur uniformly across pathogen clusters 130 

(Figure S4A) and a variable number of bigrams mapped to individual a priori concepts, with 143 131 

bigrams mapped to “drug resistance” and only one bigram mapped to “disease reservoirs” and 132 

topic clusters (Figure S4B).  133 

 134 

Document sampling was stratified according to pathogen and a priori concepts 135 

We then performed two rounds of stratified sampling using pathogens and a priori concepts as 136 

strata. The sampling resulted in 204 unique articles to which we manually added 17 additional 137 

articles that we deemed contained interesting data visualizations (these are clearly tagged in our 138 

analysis), for a total of 221 articles (Table S3) from which we extracted a total of 770 figures, 139 

including a small number (45) of ‘missed opportunity’ tables. 140 

 141 

 142 

 143 
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VISUALIZATION ANALYSIS 144 

 145 

Developing GEViT – A Genomic Epidemiology Visualization Typology 146 

Using the analysis set of harvested figures, we used iterative open and axial coding techniques to 147 

devise a systematic way to describe how data visualizations are constructed. For analysis, we 148 

used whole figures and did not split them up into smaller parts. We began by classifying the 149 

types of charts in figures, further evolving to also classifying how charts were combined, and 150 

finally we also classified how charts were enhanced. We found that these three descriptive axes 151 

allowed us to sufficiently describe all visualizations in our dataset (see Online Methods for 152 

detailed sufficiency criteria). For each of these descriptive axes we also derived a controlled 153 

vocabulary (taxonomy). Collectively, we refer to this result of the descriptive axes and their 154 

associated taxonomies as GEViT (Genomic Epidemiology Visualization Typology). Below, we 155 

describe each of GEViT’s descriptive axes and interleave descriptive statistics to show the 156 

distribution of taxonomic codes across these axes to provide an overview of the visualization 157 

design space. We also operationalized our analysis to produce a browsable gallery 158 

(https://gevit.net) that allows others to explore this GEViT design space through the classified 159 

figures (including their captions), where each figure is linked back to the original PubMed 160 

articles. 161 

 162 

Chart Types in GEViT. We identified seven classes of chart types that form the basis of the 163 

data visualizations in our dataset (Figure 3): Common Statistical; Area; Relational; Temporal; 164 

Spatial; Tree; and Genomic. We compiled a taxonomy of common chart names to classify 165 

specific instances of chart types with each class. When applicable, we also defined special cases 166 
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of a specific chart; for example, epidemic curves are a special case of bar chart. We also defined 167 

one ‘Other’ category, which included entities that accompanied data visualizations but were not 168 

themselves data visualizations, such as tables and images, and miscellaneous visualizations that 169 

did not fit elsewhere. In total we observed 23 distinct chart types (plus one miscellaneous 170 

category), and found that the most commonly occurring types within data visualizations included 171 

Phylogenetic Trees (17.7% of all data visualizations, although some type of tree was present in 172 

23.7% of all visualizations), followed by Tables (9.7%), Bar Charts (8.9%), Genomic Maps 173 

(6.9%), Line Charts(6.8%), and Images (5.7%, typically  a Gel Image of Pulsed Field Gel 174 

Electrophoresis). See Figure S5 for the occurrence of all chart types. The pervasive presence of 175 

tables, either alone or in combination with some other chart types, is a notable finding since it 176 

indicates missed opportunities for visualization.  177 

 178 

Chart Combinations in GEViT. Although the majority of figures were composed of a single 179 

chart type (40.1,%), there were distinct and common patterns of combining chart types to create 180 

more complex, and often linked, multi-part figures (Figure 4). Composite charts (20.3%) 181 

contained multiple chart types that were spatially aligned – for example, a heatmap and tree 182 

(dendrogram) that are spatially aligned to indicate both a hierarchical clustering and the 183 

underlying data for the clustering. A tree and heatmap can also be visualized independently of 184 

each other, but their combined value is evidently relevant for many researchers. Small Multiples 185 

(17.3%) showed different aspects of the data through multiple instances of the same chart type. 186 

Many Types Linked combinations (13.5%) used multiple different chart types that were visually 187 

linked, for example using a common color to denote some property of the data across the 188 

different charts, but not spatially aligned (in contrast to Composite charts). Finally, Many Types 189 
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General combinations (8.8%) describe a data visualization in which there are multiple chart types, 190 

and there does not appear to be any sort of spatial or visual link between them. This situation 191 

often arises when authors put many unrelated charts into a single figure due to space restrictions. 192 

It was not always straightforward to distinguish between some instances of Many Types Linked 193 

and Many Types General, and in such cases we resolved the ambiguity in favor of the latter 194 

classification. We also observed instances of Complex Combinations (11.9%) that developed 195 

data visualizations using two of the previously describes types of chart combinations. It was 196 

notable that trees were mostly commonly combined with other chart types. 197 

 198 

Chart Enhancements in GEViT. Lastly, we noted that standard chart types were often 199 

enhanced to add metadata through the addition or changing of graphical marks - the basic 200 

graphical element corresponding to a data record (e.g. a patient), or derived data value (e.g. the 201 

total number of patients). Basic marks are points, lines, areas, and (perhaps surprisingly) text, 202 

which are endowed with aesthetic properties of size, shape, color, and texture that can be 203 

modified to encode data (Figure 5a). For example, a phylogenetic tree encodes evolutionary 204 

relationships inferred from DNA data (among other sources) as lines of some calculated length 205 

that are precisely positioned in space (Figure 5b). By default, the lines of a phylogenetic tree are 206 

often black, however those lines can be re-encoded to incorporate data from some additional 207 

source – for example, coloring lines according to geographic regions. Instead of re-encoding a 208 

mark, it is also possible to add marks to the base chart type, for example, adding colored point 209 

marks to a tree’s leaf positions (Figure 5b), or to add linear brackets and text to delineate groups 210 

(the most common reason text and lines with bracket shapes are used in our corpus). We did not 211 
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consider axis text, titles, or data labels to be added marks, subsuming them as constituent parts of 212 

the base chart type. 213 

 214 

It is also possible to add more complex types of marks, which are specific instances of the basic 215 

marks types presented in Figure 5a. Connection marks are a specific instance of line marks that 216 

connect two other marks. Containment marks are a specific instance of area marks that enclose 217 

other marks. Finally, a glyph is a complex mark that could itself be a type of chart, but that is 218 

smaller than the base chart type and embedded within it (in contrast, we define that composite 219 

chart types have the same frame size and one chart is not embedded within the other). The only 220 

glyph we identified within our dataset was a pie chart, which was often added to geographic 221 

maps or node-link graphs (Figure 5b) to denote proportion variability in the data. 222 

 223 

We differentiate between the instances when chart enhancements are added consistently, or just 224 

as one-off marks. When the addition or re-encoding of marks is applied consistently to the base 225 

chart type, for example re-encoding all or many lines in a tree, or adding points to all or many 226 

leaf nodes, we defined these as structured enhancements. Adding one-off marks, even if they are 227 

driven by the data or the addition of some arbitrary ink, was considered to be an annotation and 228 

defined as an unstructured enhancement. It was not always easy to differentiate between 229 

structured and unstructured enhancements, and in such cases we resolved ambiguities by 230 

choosing structured enhancement when analyzing figures. 231 

 232 

In our dataset we observed that most figures were enhanced (83.8% of all chart types), typically 233 

through the addition of lines, points, or text (59.6%) while re-encoding of marks was less 234 
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common (45.6%). The use of text as a graphical mark with aesthetic properties that can be 235 

manipulated to convey information was common in our dataset, either by adding text marks to a 236 

base chart type, or re-encoding of text labels by manipulating the font face. The text itself ranged 237 

from the very simple case of a single letter or number, to a full word, to a complex concatenated 238 

string of metadata such as specimen ID, location, and year. Annotations were also less common 239 

(33.6%), and were most commonly an arrow to text, or a containment mark that highlighted only 240 

a single group. 241 

Discussion 242 

Data visualization is an increasingly important analytic tool for exploring and communicating 243 

results from large genomic and health datasets, but efforts to harness its potential power are 244 

impeded when visualization creators make ad hoc choices rather than systematically consider 245 

visualization design alternatives. While we found some instances of quite impressive and well 246 

thought out data visualizations, the systematic nature of our GEViT design space construction 247 

allowed us to assess the considerable variability of visualization design quality and revealed the 248 

unexplored potential within the design space. GEViT presents a higher level of abstraction than 249 

the existing grammar of graphics proposed by Wilkinson16 and famously instantiated by 250 

Wickham17 in the R tidyverse, yet is developed in the same spirit of standardizing, generalizing, 251 

and simplifying the construction of data visualizations from individual components. We found 252 

this high level of abstraction to be useful for exploring design spaces, while lower level 253 

abstractions are needed for implementation. Software tools designed with awareness of the 254 

visualization design space for genomic epidemiology could better support figure creators to 255 

make reasoned and informed choices and to avoid the ad hoc random walk through the set of 256 

possibilities. Compared to the robust and systematic use of statistical techniques in genomic 257 
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epidemiology, there is far to go before genomic epidemiology data visualization becomes truly 258 

mature.  259 

 260 

Delineating a design space, as we have done through GEViT, is just a first step; the obvious next 261 

step is to provide robust guidance on good or bad practice in a way that is more targeted to the 262 

genomic epidemiology than the existing general visualization literature. Even this first step of 263 

establishing the design space shows gaps that require attention and provides design alternatives 264 

against which future researchers and practitioners could test and calibrate any new solutions. We 265 

emphasize the importance of using empirical studies of visualizations, with multiple design 266 

alternatives, in order to triangulate optimal design patterns for different contexts and tasks.  267 

 268 

Two notable findings pertain to missed opportunities involving text: the pervasive use of tables 269 

(often combined with other chart types) where visualization could have been used but was not, 270 

and the practice of encoding information with aesthetic properties such as color and size applied 271 

to long text string labels. The visualization literature discourages the use of text as a mark type 272 

because reading text imposes cognitive load, whereas the goal of using aesthetic properties to 273 

encode information is to support purely perceptual processing15. We suspect that the widespread 274 

use of text marks in this hybrid way stems from an incomplete knowledge of the design space 275 

and the lack of tools to support the visualization of complex and heterogenous data.  276 

Showing raw data through text also compounds another notable tendency of these visualizations 277 

to show all data records, which limits their scalability. An under-explored alternative would be to 278 

visually summarize the data at multiple levels of detail. Another finding was the pervasiveness of 279 

phylogenetic trees. Although few researchers in genomic epidemiology would consider this 280 
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finding surprising, we note that our own prior work suggested that phylogenetic tree 281 

visualizations have unclear utility for clinical and public health stakeholders18.  Perhaps the 282 

convention of showing them routinely in a genomics research context has prevented the 283 

community from seeing the forest for the trees, so to speak. Further innovation in visualization 284 

design may result in different default choices.    285 

We have presented an approach to systematically develop an explorable visualization design 286 

space through a human-in-the-analysis-loop model that exploits the strengths of both automatic 287 

processing for speed and low effort, and manual curation where human judgment is harnessed to 288 

integrate data-driven insights with human expertise. The exploratory rather than confirmatory 289 

nature of our study is both its strength and its primary limitation. While we have made all of our 290 

intermediate analysis outputs available in the spirit of transparency, the qualitative manual 291 

analysis phase are unlikely to yield identical results if undertaken by a different researcher. 292 

Although our approach will surely benefit from ongoing innovations in image recognition, 293 

machine learning, and natural language processing, we argue that attempting to fully automate 294 

the entire process would be premature. Developing a faster process that still provides a way to 295 

include a human in the analysis loop will be fruitful future work for us.  296 

 297 

There are many other ways that our resulting design space could be explored, and for brevity we 298 

have only touched upon a few selected findings. Nevertheless, these results have allowed us to 299 

appreciate the expressiveness of visualization designs in infectious disease genomic 300 

epidemiology. Our results provide guidance to both software tool developers, including 301 

bioinformaticians, and to researchers engaged with creating their own visualizations: we provide 302 

a concrete terminology for describing data visualizations, and a source of inspiration through the 303 
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exploration of a design space. Most importantly, our work demonstrates that it is possible to 304 

think systematically and rigorously about data visualizations and that there exist open, complex, 305 

interesting, and impactful problems in visualization design and analysis. 306 

 307 

Online Methods 308 
See Online Methods Document 309 
 310 

Acknowledgements 311 
The authors appreciate discussions with the InfoVis Group at the University of British Columbia 312 

and the Bedford lab at the Fred Hutch Institute. The authors would also like to acknowledge their 313 

funding sources. AC is supported by a CIHR Vanier Scholarship, JG by the Canada Research 314 

Chairs Program and a Michael Smith Foundation for Health Research Scholar award, and TM by 315 

the NSERC Discovery Program. 316 

 317 

Author Contributions 318 
AC, JG, and TM devised and interpreted the analysis and jointly wrote the paper. 319 
 320 
Competing Interests Statements 321 
The authors declare no competing interests. 322 
 323 

References 324 
 325 
1. Pankhurst, L. J. et al. Rapid, comprehensive, and affordable mycobacterial diagnosis with 326 

whole-genome sequencing: A prospective study. Lancet Respir. Med. 4, 49–58 (2016). 327 
2. Faria, N. R. et al. Mobile real-time surveillance of Zika virus in Brazil. Genome Med. 8, 328 

97 (2016). 329 
3. Quick, J. et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 530, 330 

228–32 (2016). 331 
4. Bradley, P. et al. Rapid antibiotic-resistance predictions from genome sequence data for 332 

Staphylococcus aureus and Mycobacterium tuberculosis. Nat. Commun. 6, 10063 (2015). 333 
5. Zipkin, D. A. et al. Evidence-based risk communication: A systematic review. Annals of 334 

Internal Medicine 161, 270–280 (2014). 335 
6. Ancker, J. S. & Kaufman, D. Rethinking Health Numeracy: A Multidisciplinary Literature 336 

Review. J. Am. Med. Informatics Assoc. 14, 713–721 (2007). 337 
7. Gehlenborg, N. et al. Visualization of omics data for systems biology. Nat. Methods 7, 338 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 22, 2018. ; https://doi.org/10.1101/325290doi: bioRxiv preprint 

https://doi.org/10.1101/325290
http://creativecommons.org/licenses/by/4.0/


S56--68 (2010). 339 
8. Hadfield, J. et al. Nextstrain: real-time tracking of pathogen evolution. bioRxiv (2017). 340 
9. Argimón, S. et al. Microreact: visualizing and sharing data for genomic epidemiology and 341 

phylogeography. Microb. Genomics (2016). doi:10.1099/mgen.0.000093 342 
10. Carroll, L. N. et al. Visualization and analytics tools for infectious disease epidemiology: 343 

A systematic review. J. Biomed. Inform. 51, 287–298 (2014). 344 
11. Liechti, R. et al. SourceData: A semantic platform for curating and searching figures. 345 

Nature Methods 14, 1021–1022 (2017). 346 
12. Alsallakh, B. et al. Visualizing Sets and Set-typed Data: State-of-the-Art and Future 347 

Challenges. in Eurographics conference on Visualization (EuroVis)– State of The Art 348 
Reports 1–21 (2014). doi:10.2312/eurovisstar.20141170 349 

13. Schulz, H. J. Treevis.net: A tree visualization reference. IEEE Comput. Graph. Appl. 31, 350 
11–15 (2011). 351 

14. Kerren, A., Kucher, K., Li, Y.-F. & Schreiber, F. BioVis Explorer: A visual guide for 352 
biological data visualization techniques. PLoS One 12, e0187341 (2017). 353 

15. Munzner, T. Visualization Analysis and Design. (CRC Press, 2014). 354 
16. Wilkinson, L. The grammar of graphics. Wiley Interdisciplinary Reviews: Computational 355 

Statistics 2, 673–677 (2010). 356 
17. Wickham, H. A layered grammar of graphics. J. Comput. Graph. Stat. 19, 3–28 (2010). 357 
18. Crisan, A., McKee, G., Munzner, T. & Gardy, J. L. Evidence-based design and evaluation 358 

of a whole genome sequencing clinical report for the reference microbiology laboratory. 359 
PeerJ 2018, (2018). 360 

19. Meirelles, I. Design for Information: An Introduction to the Histories, Theories, and Best 361 
Practices Behind Effective Information Visualizations. (Rockport Publishers, 2013). 362 

20. Bertin, J. Semiology of graphics: diagrams, networks, maps. Components (1983). 363 
doi:10.1037/023518 364 

 365 
 366 

FIGURE LEGENDS 367 
 368 
Figure 1 Summary of literature analysis steps and document sampling. 369 

Figure 2 Summary of literature analysis results. a) Documents were classified according to 370 

whether they were part of a cluster (green), unclustered under current parameter settings (purple), 371 

or never formed part of cluster (orange). The 32 cluster boundaries were automatically 372 

determined and are shown as light grey ovals. b) Clustered documents and their topics, which are 373 

automatically assigned based upon top two terms with the cluster. c) Verification of cluster 374 

topics against an external list of pathogens. The small multiples show the distribution across the 375 
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clusters of the pathogen named in the panel header, for the 35 pathogens with 40 or more 376 

matching documents. 377 

 378 

Figure 3 Chart Types in GEViT. We used common names for chart types and also separated 379 

them into seven main classes and also one Other class. Special cases of chart types were defined 380 

only when there were multiple instance of the same specific chart across our dataset. Chart types 381 

with an asterisk mark (*) indicate that they are included in the analysis through manually added 382 

articles. 383 

 384 

Figure 4 Chart Combinations in GEViT. The six combination types differ based on the 385 

number of chart types, the number of charts, and the approach to linking them together.   386 

 387 

Figure 5 Chart Enhancements in GEViT. a) Our characterization of marks and their 388 

associated aesthetics properties is based on longstanding conventions in the visualization 389 

literature15,19 with roots in Bertin’s Semiology of Graphics20. Illustrative examples are shown for  390 

b) a tree and c) node-link chart types 391 

 392 

Figure 6. GEViT Gallery. A screen shot of the resulting GEViT gallery, available online at: 393 

http://gevit.net. Images in the GEViT gallery are intentionally blurred for this publication. The 394 

GEViT gallery provides links back to the original source publication and presents the images 395 

under fair use copyright terms. 396 

 397 
 398 
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Figure 1 Summary of literature analysis steps and document sampling.
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Figure 2 Summary of literature analysis results. a) Documents were classified according to whether they 
were part of a cluster (green), unclustered under current parameter settings (purple), or never formed part of 
cluster (orange). The 32 cluster boundaries were automatically determined and are shown as light grey ovals.
b) Clustered documents and their topics, which are automatically assigned based upon top two terms with 
the cluster. c) Verification of cluster topics against an external list of pathogens. The small multiples show the 
distribution across the clusters of the pathogen named in the panel header, for the 35 pathogens with 40 or 
more matching documents.
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Figure 3 Chart Types in GEViT. We used common names for chart types and also separated them into seven 
main classes and also one Other class. Special cases of chart types were defined only when there were 
multiple instance of the same specific chart across our dataset. Chart types with an asterisks mark (*) indicate 
that they are included in the analysis through manually added articles.
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Figure 4 Chart Combinations in GEViT. The six combination types differ based on the number of chart 
types, the number of charts, and the approach to linking them together. 
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Figure 5 Chart Enhancements in GEViT. a) Our characterization of marks and their associated aesthetics 
properties is based on longstanding conventions in the visualization literature15,19 with roots in Bertin’s
Semiology of Graphics20. Illustrative examples are shown for b) a tree and c) node-link chart types
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Figure 6. GEViT Gallery. A screen shot of the resulting GEViT gallery, available online at: http://gevit.net. 
Images in the GEViT gallery are intentionally blurred for this publication. The GEViT gallery provides links 
back to the original source publication and presents the images under fair use copyright terms.



 1 

Online Methods for 1 
 2 

A method for systematically surveying data visualizations 3 
 in infectious disease genomic epidemiology  4 

Anamaria Crisan, Jennifer Gardy, and Tamara Munzner 5 
 6 

As with the presentation of the results, the methods are split up into the literature mining and 7 

visualization analysis phases. A detailed step-by-step overview of our methods are also shown in 8 

supplemental Figures S2 and S3. Our analysis notebooks, data, and associated documents are 9 

available online at: https://github.com/amcrisan/GEViTAnalysisRelease 10 

 11 

Importantly, we use, analyze, and present figures from research articles under “Fair Use Terms”, 12 

which allows us to use copyrighted materials for research purposes. We make provisions to link 13 

back to the original work from which figures are extracted, and do not make any other materials 14 

available beyond the figures and article metadata data obtained from PubMed. 15 

 16 

LITERATURE ANALYSIS 17 

Aspects of our literature analysis have, with some modification, been turned into an R package 18 

called Adjutant, which is available at https://github.com/amcrisan/adjutant. A pre-print 19 

for Adjutant is available online at 20 

https://www.biorxiv.org/content/early/2018/03/27/290031 and describes the 21 

methodology we have used. We do not repeat that methodology in detail here, but we do 22 

describe it, and indicate where there are discrepancies between Adjutant’s final implementation, 23 

and this analysis.  24 



 2 

Search Terms. We searched for articles related to infectious disease genomic epidemiology that 25 

were published within the past ten years. We used two queries, 1) (genome AND (outbreak OR 26 

pandemic OR epidemic)) OR "genomic epidemiology" and 2) (genomic epidemiology 27 

OR molecular epidemiology) AND (bacteri* OR vir* OR pathogen) AND Genome 28 

combined their results and retaining only unique records for further analysis.   29 

 30 

Data Preparation. The document corpus included only PubMed IDs, year of publication, 31 

authors, article titles, article abstract, and associated Medical Subject Heading (MeSH) terms (if 32 

there were any). Titles and abstracts were decomposed into single terms, stemmed, and filtered 33 

as described in the Adjutant paper. We calculated the term frequency inverse document 34 

frequency (td-idf) metric each term, created a sparse Document Term Matrix (DTM) for further 35 

analysis. A separate dataset of bigram terms was also prepared but used only for purposes of 36 

linking articles to a priori concepts (see Main text). 37 

 38 

Unsupervised Clustering. We used the t-SNE and hdbscan algorithms to perform an 39 

unsupervised clustering using the DTM. While numerous sources advise against clustering on t-40 

SNE results we found that on large document corpuses this approach worked well as we verified 41 

with the validity checks described below. We used the Barnes-Hut implementation of t-SNE21, 42 

which allows for some acceleration at the cost of accuracy, with the perplexity parameter set to 43 

100 and otherwise default parameters of the R package implementation22. We then used 44 

hdbscan23 on the t-SNE co-ordinate to derive the topic clusters. Clusters are sensitive to the 45 

minimum number of cluster points (minPts) parameter supplied to the hdbscan, and so we tried 46 

different minPts values (50, 75, 100, 125, 150, 250, 500, 1000), observing how the cluster 47 

compositions changed. We observed that some articles never held membership in any cluster 48 



 3 

irrespective of the parameter settings and labelled those as “never clustered”, in contrast to 49 

articles that were simply not clustered with our specific final parameter settings that are labeled 50 

as “currently unclustered”. The final set of clusters are a blend of separate parameters (75 and 51 

150). The topic of each cluster is assigned by using the top two most frequent terms within each 52 

cluster. Upon observing the cluster results, we validated our clusters using an external list of 53 

human pathogens and assessed the correspondence between pathogen terms and cluster topics. 54 

 55 

Linking To A Priori Concepts. We used the dataset of bigrams and filtered out those that 56 

occurred in fewer than 10 articles within a cluster or fewer than 10% of bigrams across bigrams 57 

in the corpus. The remaining bigrams were mapped to a set of a priori defined concepts, except 58 

for bigrams excluded because they were common writing colloquialisms or could not be clearly 59 

mapped. This mapping was conducted through iterative internal discussions, in a similar spirit to 60 

the visualization analysis described below. We deemed this result acceptable for our analysis 61 

needs and did not attempt to further validate it.  62 

 63 

Document Sampling. We sampled one document for each a priori concept within each topic 64 

cluster. Each sampled article was examined and either considered acceptable for further analysis 65 

or rejected. Reasons for rejection included: article did not contain any figures (main reason); full 66 

text article not accessible; article not in English; article was mainly about a technique (i.e. 67 

laboratory technique or bioinformatics method); article did not include humans (animals only, 68 

which we considered out of scope); article was a systematic review (figures were mainly 69 

illustrations and not data visualizations). For each rejected article, we resampled two additional 70 

articles and chose only one article (assuming both were not rejected) for further analysis. Based 71 



 4 

upon the analysis of the first round of sampling, the second round only sampled articles from 72 

2011 onwards to increase the chance of sampling articles containing figures, and also attempted 73 

to sample underrepresented a priori concepts from the first round. Table S3 contains a list of all 74 

the articles, which round they were sampled in, whether they were included or rejected, and the 75 

reason for rejection. 76 

 77 

Figure and Table Extraction. To properly capture the figures and their captions, we manually 78 

extracted them from PDFs of the sampled articles. Images were only excluded if they were 79 

CONSORT diagrams, flow diagrams (excepted only if a data visualization was overlain) or were 80 

illustrations. We also included a small number of “missed opportunity” tables, which were stand-81 

alone tables that we felt could have been visualized. This determination was subjective but 82 

included tables that were matrices of numbers or large tables of patient metadata where each row 83 

consisted of a patient (but demographic tables and statistical summaries were not considered 84 

missed opportunity tables).  85 

 86 

VISUALIZATION ANALYSIS 87 

  88 

Figure Analysis. We analyzed whole figures; we did not break them up into individual parts 89 

because we wanted to understand the potential interplay between subfigures. For example, if a 90 

paper contains three figures (Fig. 1, Fig.2, and Fig. 3) each figure was analyzed separately, 91 

whereas if the third figure contains two parts (i.e. Fig. 3A, Fig 3B) those two parts were analyzed 92 

together.  93 

 94 



 5 

We generated a descriptive mechanism using qualitative open and axial coding techniques that 95 

are routinely used within human-computer interaction (HCI) research24, which grew out of the 96 

Grounded Theory Method developed in the social science fields of sociology, psychology, and 97 

anthropology25. As we assume that many readers are quantitative researchers, we will briefly 98 

describe these techniques in more detail. Grounded Theory refers to a general set of methods 99 

used by qualitative researchers to inductively analyze and construct a theory about some 100 

phenomenon that is “grounded” in data24. In general terms, the idea of Grounded Theory is 101 

similar in spirt to unsupervised analysis methods that are applied in quantitative research26 since 102 

both approaches rely on emergent pattern matching that is found within the data rather than 103 

applying a specific hypothesis or theory; in qualitative methods the human resolves the relevant 104 

patterns, in quantitative methods generally the algorithm does. Curating and labelling data is also 105 

standard practice for developing image-based machine learning training datasets and these 106 

approaches likely use qualitative techniques without referring to them. We have also found that 107 

qualitative research approaches are useful when trying to explore some data without any pre-108 

conceived notions of what the outcomes should be.  109 

 110 

The core foundation of Grounded Theory Methods (GTM) rests upon different approaches for 111 

assigning descriptive codes to data, typically chunks of text, that become the basis for further 112 

analysis25. Two widely used approaches are open and axial coding, the latter allowing a 113 

researcher to develop hierarchical relationships between codes. Codes are subjectively assigned 114 

to data and refined over multiple rounds of data interrogation until a final set of descriptive codes 115 

are agreed upon. Notions of validity and generalizability within qualitative research are different 116 

than within quantitative research, but there is a notion of at least internal validity for qualitative 117 



 6 

research and some agreed upon conventions to assess the robustness of the work (see Maxwell27, 118 

Chapter 6), which we have applied in our own research.  119 

 120 

We note that the application of GTM is different between the social sciences and HCI, with one 121 

large difference being that HCI and information visualization (infovis) researchers frequently 122 

apply GTM to text28, video, and image data29 whereas social scientists tend to primarily use 123 

interview text (although some examples of image analysis with social sciences exist30). Our 124 

application of GTM, and especially open and axial coding, is drawn from the HCI infovis 125 

research traditions, and we also build upon established terminology and ideas from Munzner’s 126 

Visualization Analysis and Design15. We ourselves are primarily quantitative researchers and 127 

thus further apply a specific interrogative lens to the way we use GTM. There exists a fascinating 128 

and broader discussion about mixed methods approaches to augment the best properties of both 129 

qualitative and quantitative research methods31 , which is beyond the application of this work but 130 

that the reader should be aware of. 131 

 132 
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Supplemental Figures 
Figure S1 Overview of our approach to construct a visualization design space. This 
approach is split into two distinct, but connected phases, consisting of a literature analysis and 
followed by a visualization analysis phase that itself consists of a qualitative and quantitative 
analysis component. We overlay these phases as concrete steps in resolving our primary research 
objective, which is stated below.  
 
  



Figure S2 Literature Mining Methods. 
 

 
 
 
Figure S3 Qualitative and Quantitative Visualization Analysis Methods. 
 

  



Figure S4 A priori concepts distributed among pathogens (a) and the number to bigram assigned 
to each concept (b). 
 

 
 
 
Figure S5 Distribution of chart types of chart type across articles (a) and the co-occurrence of 
chart types with figures (b) 
 
 
 

 
 



Supplemental Table Captions 
 
Table S1 External list of pathogens. A list of human pathogens and their associated disease 
taken from Wikipedia (https://en.wikipedia.org/wiki/List_of_infectious_diseases) 
and used to validate the topic clustering by assessing whether the pathogen strings occur in 
clusters with the same name. Both the disease and the source of the disease were checked for a 
match within each document.   
 
Table S2 Mapping of bigrams to concepts. 
 
Table S3 Master list of sampled articles. 
 
 


