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ABSTRACT 

Phenotypic complexity is caused by the contributions of environmental factors and multiple 

genetic loci, interacting or acting independently. Studies of yeast and Arabidopsis found that the 

majority of natural variation across phenotypes is attributable to independent additive quantitative trait 

loci (QTL). Detected loci in these organisms explain most of the estimated heritable variation. By 

contrast, many heritable components underlying phenotypic variation in metazoan models remain 

undetected. Before the relative impacts of additive and interactive variance components on metazoan 

phenotypic variation can be dissected, high replication and precise phenotypic measurements are 

required to obtain sufficient statistical power to detect loci contributing to this missing heritability. 

Here, we used a panel of 296 recombinant inbred advanced intercross lines of Caenorhabditis 

elegans and a high-throughput fitness assay to detect loci underlying responses to 16 different toxins, 

including heavy metals, chemotherapeutic drugs, pesticides, and neuropharmaceuticals. Using 

linkage mapping, we identified 82 QTL that underlie variation in responses to these toxins and 

predicted the relative contributions of additive loci and genetic interactions across various growth 

parameters. Additionally, we identified three genomic regions that impact responses to multiple 

classes of toxins. These QTL hotspots could represent common factors impacting toxin responses. 

We went further to generate near-isogenic lines and chromosome-substitution strains and then 

experimentally validated these QTL hotspots, implicating additive and interactive loci that underlie 

toxin-response variation. 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INTRODUCTION 

Rapid advances in sequencing technologies enabled the collection of high-quality genomic 

datasets for many species (Mardis 2017). These data, paired with a broad range of high-throughput 

phenotypic assays, made quantitative genetics a powerful tool in biology. Linkage mapping has been 

used to identify quantitative trait loci (QTL), leading to profound impacts on human health (Easton et 

al. 1993; Cowley 2006; Altshuler, Daly, and Lander 2008), agriculture and livestock (Rothschild, Hu, 

and Jiang 2007; Johnsson et al. 2015; Leal-Bertioli et al. 2015; Shang et al. 2016), and basic biology 

(T. F. Mackay 2001; Peng et al. 2016; Andersen et al. 2015). Despite the growing number of detected 

QTL across numerous traits, these QTL often do not explain the complete heritable component of trait 

variation (Rockman 2012). This missing heritability can be attributed to undetected small-effect 

additive loci and/or interactions between QTL (Bloom et al. 2015). Although some studies contend 

that epistatic effects among QTL might explain missing heritability (Nelson, Pettersson, and Carlborg 

2013; T. F. C. Mackay 2015; Lachowiec et al. 2015; Malmberg et al. 2005; Zuk et al. 2012), others 

argue that missing heritability comprises small-effect additive loci that remain undetected in cases 

where statistical power is too low (Hill, Goddard, and Visscher 2008; Mäki-Tanila and Hill 2014; 

Ehrenreich 2017; Yang et al. 2010). Quantitative geneticists have leveraged large numbers of 

recombinant strains in both yeast and Arabidopsis to overcome power limitations and concluded that, 

when power is sufficient, small-effect additive components can be identified that account for nearly all 

of the heritability of a given trait (Bloom et al. 2015, 2013; Simon et al. 2008). We require a metazoan 

system with high statistical power to determine whether this predominantly additive-QTL model 

remains broadly applicable in animals. 

One such tractable metazoan is the roundworm nematode Caenorhabditis elegans. The 

genetic variation among a panel of recombinant inbred advanced intercross lines (RIAILs) generated 

between the N2 and CB4856 strains of C. elegans (Rockman and Kruglyak 2009; Andersen et al. 

2015) has been leveraged in many linkage mapping analyses (McGrath et al. 2009; Bendesky et al. 
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2011; Lee et al. 2017; Bendesky et al. 2012; K. D. Singh et al. 2016; Schmid et al. 2015; Balla et al. 

2015; Zdraljevic et al. 2017; Zamanian et al. 2018a; Andersen et al. 2014; Bendesky and Bargmann 

2011; Viñuela et al. 2010; Doroszuk et al. 2009; Snoek et al. 2014; Rodriguez et al. 2012; Kammenga 

et al. 2007; Gutteling, Riksen, et al. 2007; Li et al. 2006; Gutteling, Doroszuk, et al. 2007; Glater, 

Rockman, and Bargmann 2014; Reddy et al. 2009; Rockman, Skrovanek, and Kruglyak 2010; Seidel 

et al. 2011; Seidel, Rockman, and Kruglyak 2008). Additionally, a high-throughput phenotyping 

platform to rapidly and accurately measure animal fitness could provide the replication and precision 

required to detect small-effect additive loci and to determine the relative contributions of additive and/

or epistatic loci to trait variation (Andersen et al. 2014; Zdraljevic et al. 2017). Notably, the 

combination of this panel and phenotyping platform have facilitated linkage mappings of multiple 

distinct fitness parameters, resulting in the detection of a single QTL, in fact a single quantitative trait 

gene (QTG), that underlies several fitness-related traits (Andersen et al. 2014; Zdraljevic et al. 2017). 

This example of pleiotropy suggests that large-scale studies could reveal additional pleiotropic 

effects.  

Such large-scale studies have implicated pleiotropic QTL that impact the expression of a broad 

range of genes (Keurentjes et al. 2007; Breitling et al. 2008; Rockman, Skrovanek, and Kruglyak 

2010; Hasin-Brumshtein et al. 2016). Variation in the master regulators that are within these 

expression QTL hotspots have downstream effects on the transcription of many genes. Similarly, 

other QTL hotspots could impact multiple traits, such as responses to various conditions. In yeast, 

most chemical-response QTL are thought to be unique to one or a few conditions, whereas few QTL 

have been found to have pleiotropic effects across many conditions (Ehrenreich et al. 2012; U. M. 

Singh et al. 2017; Knoch et al. 2017). Although QTL underlying responses to individual conditions 

have been identified across multiple animal models (Najarro et al. 2015; Marriage et al. 2014; Highfill 

et al. 2017; Bubier et al. 2014; Crusio et al. 2016), the existence of QTL hotspots that influence 

multiple condition responses has yet to be observed broadly in metazoans.  
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Here, we performed a set of linkage-mapping experiments with a large panel of recombinant 

lines to identify QTL implicated in responses to 16 different toxins and found three QTL hotspots that 

underlie many of these responses. We demonstrated how high replication in the high-throughput 

fitness assay can enable the identification and validation of QTL, even in cases of small phenotypic 

effects. Additionally, we analyzed relative contributions of additive and epistatic genetic loci in various 

toxin responses. Finally, we discovered evidence for interactions between loci of the N2 and CB4856 

strains that impact several toxin responses and could suggest how large regions of the genome were 

swept across the species. 

MATERIALS AND METHODS 

Strains: Animals were grown at 20ºC using OP50 bacteria spotted on modified nematode growth 

medium (NGMA), containing 1% agar and 0.7% agarose to prevent animals from burrowing. For each 

assay, strains were propagated for five generations after starvation to reduce transgenerational 

effects of starvation (Andersen et al. 2014). Recombinant inbred advanced intercross lines (RIAILs) 

used for linkage mapping were constructed previously (Andersen et al. 2015). The construction of 

near-isogenic lines (NILs) and chromosome substitution strains (CSSs) is detailed below, and all 

strains are listed in the Supplementary Information. Strains are available upon request.  

High-throughput toxin response assay: We used a modified version of the high-throughput fitness 

assay described previously (Zdraljevic et al. 2017). Populations of each strain were passaged for four 

generations, amplified, and bleach-synchronized. Approximately 25 embryos from each strain were 

then aliquoted to 96-well microtiter plates at a final volume of 50 µL of K medium (Boyd, Smith, and 

Freedman 2012). Embryos hatched overnight and arrested in the L1 larval stage. The following day, 

arrested L1 animals were fed HB101 bacterial lysate (Pennsylvania State University Shared 

Fermentation Facility, State College, PA; (García-González et al. 2017)) at a final concentration of 5 
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mg/mL in K medium and were grown to the L4 larval stage for 48 hours at 20ºC with constant 

shaking. Three L4 larvae were then sorted using a large-particle flow cytometer (COPAS BIOSORT, 

Union Biometrica, Holliston, MA) into microtiter plates that contained HB101 lysate at 10 mg/mL, K 

medium, 50 µM kanamycin, and either diluent (1% DMSO or 1% water) or diluent and a toxin of 

interest. The sorted animals were then grown for 96 hours at 20ºC with constant shaking. During this 

time, the sorted animals matured to adulthood and laid embryos, yielding a population of parent and 

progeny in each microtiter well. Prior to the measurement of fitness parameters from the populations, 

animals were treated with sodium azide (50 mM in M9) to straighten their bodies for more accurate 

growth-response parameter measurements. Traits that were measured by the BIOSORT include 

brood size (n), animal length (time of flight, TOF), and optical density (extinction time, EXT). 

Toxin-response trait calculations: Phenotypic measurements collected by the BIOSORT were 

processed using the R package easysorter, which was specifically developed for processing this type 

of data set (Shimko and Andersen 2014). Briefly, the function read_data imported raw phenotypic 

data then identified and eliminated bubbles. Next, the remove_contamination function discarded wells 

that contained bacterial or fungal contamination (determined by visual inspection) prior to analyzing 

population parameters. The sumplate function then calculated normalized measurements and 

summary statistics of the assayed traits for the population of animals in each well. The number of 

animals in each well was divided by the number of animals sorted into that well, yielding a normalized 

brood size (norm.n). Additionally, optical density (EXT) of each animal was divided by animal length 

(TOF), resulting in a normalized optical density (norm.EXT) for each animal in each well. The 

norm.EXT measurement represents the optical density without conflating variation in body length. The 

summary statistics calculated for each population include 10th, 25th, 50th, 75th, and 90th quantiles, 

mean, and median measurements of TOF, EXT, and norm.EXT as well as variance for TOF and EXT. 

Previously, each of these summary statistics has been shown to reveal distinct genetic architectures 

underlying trait variation, suggesting values to demonstrate the range of biological phenomena that 
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can be captured using this platform (Andersen et al. 2015). In total, this analysis resulted in 24 

phenotypic measurements for each condition tested. When strains were measured across multiple 

assay days, the regress(assay=TRUE) function was used to fit a linear model with the formula 

(phenotype ~ assay) to account for differences among assays. Next, outliers were removed by 

eliminating phenotypic values that were outside two standard deviations of the mean (unless at least 

5% of the strains were outside this range in the case of RIAIL assays). Finally, toxin-specific effects 

were calculated using the regress(assay=FALSE) function from easysorter, which fits a linear model 

with the formula (phenotype ~ control phenotype) to generate residual phenotypic values that account 

for differences between populations that were present in control conditions. For this reason, strain 

phenotypes in control conditions can influence regressed toxin effects and trait categorizations 

(below). 

Dose-response assays: For each toxin, a dose-response experiment was performed using 

quadruplicates of four genetically diverged strains (N2, CB4856, DL238, and JU258). Animals were 

assayed using the high-throughput fitness assay, and toxin-response trait calculations were 

performed as described above (File S1). The concentration of each toxin that provided a highly 

reproducible toxin-specific effect with variation between N2 and CB4856 across three distinct traits 

(brood size - norm.n, mean length - mean.TOF, and mean optical density - mean.norm.EXT) was 

selected for linkage mapping experiments. The chosen concentrations and diluents of each toxin are 

as follows: cadmium 100 µM in water, carmustine 250 µM in DMSO, chlorothalonil 250 µM in DMSO, 

chlorpyrifos 1 µM in DMSO, cisplatin 250 µM in water, copper 250 µM in water, diquat 250 µM in 

water, fluoxetine 250 µM in DMSO, FUdR 50 µM in water, irinotecan 125 µM in DMSO, 

mechlorethamine 200 µM in DMSO, paraquat 500 µM in water (50 µM was used for the CSS and NIL 

assays), silver 150 µM in water, topotecan 400 µM in water, tunicamycin 10 µM in DMSO, and 

vincristine 80 µM in water (Table S1). The concentration of paraquat differs the concentration used 

previously (Andersen et al. 2015), suggesting why the genetic architectures are different between the 
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two studies. Toxins assayed in this manuscript were purchased from Fluka (chlorothalonil, 

#36791-250MG; chlorpyrifos, #45395-250MG; diquat dibromide monohydrate, #45422-250MG-R), 

Sigma (vincristine sulfate salt, #V8879-25MG; cisplatin, #479306-1G; silver nitrate, #209139; 

carmustine, #1096724-75MG; topotecan hydrochloride, #1672257-350MG), Calbiochem 

(tunicamycin, #654380), Aldrich (mechlorethamine hydrochloride, #122564-5G, cadmium chloride 

#01906BX), Alfa Aesar (irinotecan hydrochloride trihydrate, #AAJ62370-MD), Bioworld (5-fluoro-2'-

deoxyuridine, #50256011), Enzo Life Sciences (fluoxetine, #89160-860), Mallinckrodt (cupric sulfate, 

#4844KBCK), and Chem Service (paraquat, #ps-366). 

Principal Component Analysis of RIAILs: A total of 296 RIAILs were assayed in the high-

throughput fitness assay described previously in the presence of each toxin listed above as well as 

control conditions (water or DMSO, File S2). Because some of the 24 population parameters 

measured by the BIOSORT are highly correlated, a principal component analysis (PCA) was 

performed. For each growth-response trait, RIAIL phenotypic measurements were scaled to have a 

mean of 0 and a standard deviation of 1. The princomp function within the stats package in R (R Core 

Team 2017) was used to run a principal component analysis for each toxin. For each toxin, the 

minimum number of principal components (PCs) that explained at least 90% of the total phenotypic 

variance in the RIAILs was mapped through linkage mapping (File S3, Table S2). A total of 97 PCs 

were mapped. 

Linkage mapping: Linkage mapping was performed on each of the 97 PCs (described above) using 

the R package linkagemapping (www.github.com/AndersenLab/linkagemapping, File S4). The 

genotypic data and residual phenotypic data were merged using the merge_pheno function. 

Quantitative trait loci (QTL) were detected using the fsearch function, which scaled phenotypes to 

have a mean of zero and variance of one, then calculated logarithm of odds (LOD) scores for each 

marker and each trait as , where r is the Pearson correlation coefficient between RIAIL genotypes at 
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the marker and trait values (Bloom et al. 2013). We note that this scaling of the data did not impact 

mappings in that scaled mappings and unscaled mappings were identical. The phenotypic values of 

each RIAIL were then permuted randomly while maintaining correlation structure among phenotypes 

1000 times to calculate a significance threshold based on a genome-wide error rate of 5%. This 

threshold was set for each mapped PC independently to avoid biases introduced by performing large 

numbers of mappings. The marker with the highest LOD score was then set as a cofactor and 

mapping repeated iteratively until no significant QTL were detected. Finally, the annotate_lods 

function was used to calculate the fraction of variation in RIAIL phenotypes explained by each QTL. 

95% confidence intervals were defined by markers within a 1.5-LOD drop from the marker with the 

maximum LOD score. We additionally performed a two-dimensional genome scan using the function 

scantwo() in the qtl package (Broman et al. 2003) for all 47 significantly mapped PCs (File S5). 

Significant interactions were determined by permuting the phenotype data for each PC 1000 times 

and determining the 5% genome-wide error rate for QTL detection. 

  

Heritability estimates: Broad-sense heritability was estimated for each of the 97 PCs using the 

formula H2 = (σR2 -σP2)/σR2 where σR2 and σP2 are the variance among the RIAIL and parental (N2 and 

CB4856) phenotypic values, respectively (Brem and Kruglyak 2005). A variance component model 

using the R package regress was used to estimate the fraction of phenotypic variation explained by 

additive genetic factors (‘narrow-sense’ heritability) (David Clifford And 2014, 2006; Bloom et al. 

2015). The additive relatedness matrix was calculated as the correlation of marker genotypes 

between each pair of strains. In addition, a two-component variance component model was 

calculated with both an additive and pairwise-interaction effect (File S6). The pairwise-interaction 

relatedness matrix was calculated as the Hadamard product of the additive relatedness matrix. 

Calculation of hotspots: We estimated cM distances from recombination events in the RIAIL panel 

to account for non-uniform distribution of genetic diversity across the genome. The genome was 
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divided into 65 total bins with each bin containing 26 cM. To determine if the 82 QTL significantly 

clustered around particular genomic regions, we set a threshold for significant QTL hotspots based on 

the 99th percentile of a Poisson distribution with a mean of 1.2 QTL (total QTL/total bins). 

Generation of near-isogenic lines (NIL): NILs were generated by crossing selected RIAILs to each 

parental genotype. For each NIL, eight crosses were performed followed by six generations of 

propagating isogenic lines to ensure homozygosity of the genome. For each cross, PCR amplicons 

for insertion-deletion (indel) variants on the left and right of the introgressed region were used to 

confirm progeny genotypes and select non-recombinants within the introgressed region. NILs were 

whole-genome sequenced as described below to confirm their genotype (File S7). Reagents used to 

generate NILs and a summary of each introgressed region are detailed in the Supplementary 

Information. A statistical power calculation was used to determine the minimal number of technical 

replicates required to observe the predicted phenotypic effect of each QTL at 80% power. These 

calculations are listed in Table S3. The number of technical replicates tested per assay for any given 

toxin did not exceed 100 because of experimental timing constraints. The principal components that 

mapped to each NIL region are those with a QTL with a confidence interval that overlaps with or 

spans the entire introgressed region in the NILs (Table 1, Table S4).  

Whole-genome sequence library prep and analysis: DNA was isolated from 100-300 µL of packed 

animals using Qiagen's Blood and Tissue kit (catalog # 69506). Following the ATL lysis step, 4 µl of 

100 mg/mL RNAse was added to each sample and allowed to incubate for two minutes at room 

temperature. DNA concentration was determined using the Qubit dsDNA BR Assay Kit (catalog # 

Q32850). For each strain, a total of 0.75 ng of DNA was combined with 2.5 µL transposome (Illumina; 

kit # FC-121-1011) diluted 35x with 1x Tris Buffer (10x Tris Buffer: 100 mM Tris-HCl pH 8.0, 50 mM 

MgCl2) in a 10 µL final volume on ice. This reaction was incubated at 55°C for 10 minutes. The 

amplification reaction for each strain contained (final concentrations): 1x ExTaq Buffer, 0.2 mM 
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dNTPs, 1 U ExTaq (Takara, catalog # RR001A), 0.2 µM primer 1, 0.2 µM primer 2, and 5 µL of 

tagmentation material from the previous step in a 25 µL total volume. Each strain had a unique pair of 

indexed primers. We first made a master mix containing buffer, water, dNTPs, and ExTaq then 

aliquoted the appropriate volume of this mix into each well. We added the specific primer sets to each 

well and finally the tagmentation reaction. The amplification reaction was incubated in a thermocycler 

with the following conditions: 72°C for three minutes (1x); 95°C for 30 seconds (1x); 95°C for 10 

seconds, 62°C for 30 seconds, 72°C for three minutes (20x); 10°C on hold. We combined 8 µL from 

each amplification reaction to generate a pool of libraries. A portion of the libraries was 

electrophoresed on a 2% agarose gel. DNA was excised and gel purified using Qiagen's Gel 

Purification Kit (catalog # 28706). The libraries were sequenced on the Illumina HiSeq 2500 platform 

using a paired-end 100 bp reaction lane. Alignment, variant calling, and filtering were performed as 

described previously (Cook, et al. 2016a). NIL and CSS genotypes were called using the VCF file and 

a Hidden Markov Model as described previously (Cook and Andersen 2017). 

Generation of chromosome substitution strains (CSS): CSSs were generated by crossing N2 and 

CB4856 parental strains and mating cross progeny to each parental genotype. For each CSS, eight 

crosses were performed followed by six generations of propagating isogenic lines to ensure 

homozygosity of the genome. For each cross, PCR amplicons for indels on the left and right of the 

introgressed region were used to confirm progeny genotypes and select non-recombinants within the 

introgressed region. CSSs were whole-genome sequenced as described above to confirm their 

genotype (File S7). Reagents used to generate CSSs are detailed in the Supplementary 

Information. As described for NIL assays, power calculations were performed to determine the 

number of technical replicates required to observe the predicted phenotypic effect of the CSSs. 

Selection of traits to categorize in CSS and NIL assays: Pairwise correlations of RIAIL 

phenotypes among the 24 growth-response traits measured by the BIOSORT were calculated using 
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the cor function within the stats package in R with the use argument set to “pairwise.complete.obs”. 

For each toxin, hierarchical clustering was performed using the function hclust from the stats package 

(R Core Team 2017). Cutree was then used to group the resulting dendrogram into k groups, where k 

is equal to the minimum number of principal components that explained at least 90% of the 

phenotypic variance in the RIAILs. For each principal component that mapped to a hotspot, the 

growth-response trait that was most correlated to that principal component, as well as all growth-

response traits within that cluster of the dendrogram, were assayed in NIL and CSS experiments (File 

S8, Table 2).  

Categorization of CSS and NIL results: Toxin responses for NILs and CSSs were tested using the 

high-throughput fitness assay for traits correlated with mapped principal components as described 

above (Table 2, File S9). Complete pairwise statistical analyses of strains was performed for each 

trait tested in all CSS and NIL assays (Tukey honest significant difference (HSD) test, File S10). A p-

value of p < 0.05 was used as a threshold for statistical significance. NIL recapitulation was defined 

by the significance and direction of effect of the NIL compared to the parental strains. Six categories 

were defined: 1) no parental difference, 2) recapitulation, 3) no QTL effect, 4) bidirectional interaction, 

5) unidirectional interaction, and 6) miscellaneous (Table 3). Traits for which N2 and CB4856 

phenotypes were not statistically different comprise the ‘no parental difference’ category and were not 

further categorized. Traits in the ‘recapitulation’ category must satisfy the following criteria: significant 

difference between the parental strain phenotypes, significant difference between phenotypes of each 

NIL and the parent that shares its background genotype, and both NILs must display the expected 

direction of effect of the introgressed genotype. Traits with ‘no QTL effect’ displayed a significant 

parental phenotypic difference and the phenotype of each NIL was not statistically different from the 

phenotype of the parent sharing its background genotype. Traits that have a ‘bidirectional interaction’ 

must display a significant parental phenotypic difference, the phenotypes of both NILs must be 

significantly different from phenotypes of both parents, and the phenotypes of both NILs must be 
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transgressive (lie beyond the phenotypic range of the parental strains). Lastly, traits with a 

‘unidirectional interaction’ were categorized similarly to the bidirectional interaction, except only one 

NIL must display a transgressive phenotype and the other NIL either shows no QTL effect or 

recapitulation. Traits that did not fit these descriptions were categorized as ‘miscellaneous’. 

 Traits in the chromosome V hotspot were further categorized using the combined data from 

both the CSS and NIL assays. Seven categories were defined: 1) no parental difference, 2) 

recapitulation, 3) no QTL effect, 4) external inter-chromosomal interaction (uni- or bidirectional), 5) 

internal inter-chromosomal interaction (uni- or bidirectional), 6) intra-chromosomal interaction (uni- or 

bidirectional), and 7) miscellaneous (Table 4). ‘No parental difference’ was defined by traits in which 

the parental strains were either not significantly different from each other or did not have the same 

direction of effect in both the CSS and NIL assays. ‘Recapitulation’ and ‘no QTL effect’ traits were 

defined by traits that were classified as either recapitulating or no QTL effect, respectively, in both 

assays. Traits displaying an ‘external inter-chromosomal interaction’ show evidence for interaction in 

the CSS but no interaction (either recapitulating or no QTL effect) in the NIL. On the other hand, traits 

displaying an ‘internal inter-chromosomal interaction’ showed evidence of the same interaction for 

both the CSS and the NIL assays. Finally, traits displaying an ‘intra-chromosomal interaction’ showed 

evidence of an interaction in the NIL but not in the CSS assay. All other traits that did not fit these 

descriptions were categorized as ‘miscellaneous’ (File S11). 

Statistical analysis: All statistical tests of phenotypic differences in the NIL and CSS assays were 

performed in R (version 3.3.1) using the TukeyHSD function (R Core Team 2017) on an ANOVA 

model with the formula (phenotype ~ strain). The p-values of individual pairwise strain comparisons 

were reported, and a p-value of p < 0.05 was deemed significant. The direction of effect of each NIL 

was determined by comparing the median phenotypic value of the NIL replicates to that of each 

parental strain. NILs whose phenotypes were significantly different from both parents and whose 

median lied outside of the range of the parental phenotype medians were considered hypersensitive 
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or hyper-resistant. Comparing LOD scores and variance explained between traits with no parental 

effect and traits with a significant parental effect in the NIL assays was performed using a Wilcoxon 

rank sum test with continuity correction using the wilcox.test() function in R (R Core Team 2017). 

Data availability: File S1 contains results of the dose response assays for all toxins. File S2 

contains the residual phenotypic values for each RIAIL for each trait. File S3 contains the phenotypic 

values for each RIAIL for each of the significant principal components. File S4 contains the annotated 

QTL and confidence intervals identified through linkage mapping. File S5 contains the results of a 

two-factor genome scan for all traits with a significant QTL identified with linkage mapping. File S6 

contains the broad-sense heritability estimates as well as additive and interactive components of 

heritability for each trait. File S7 is a VCF file for all NILs and CSSs mentioned in this manuscript. File 

S8 contains each of the 97 significant PCs and the corresponding correlation value with each growth-

response trait. File S9 contains the residual phenotypic data for all strains, including parents, tested 

in the NIL and CSS assays. File S10 contains the statistical significance for all pairwise combinations 

of strains tested for each trait. File S11 contains the assay categorization for all traits tested with the 

NIL and CSS strains. The datasets and code for generating figures can be found at http://github/

AndersenLab/QTLhotspot. All supplemental files, tables, and figures were uploaded to 

gsajournals.figshare.com.  

RESULTS 

Identification of QTL underlying variation in responses to 16 diverse toxins 

Using a high-throughput fitness assay (Materials and Methods), we tested variation in 24 

fitness-related traits in responses of four genetically divergent strains to different concentrations of 16 

toxins, comprising chemotherapeutics, heavy metals, pesticides, and neuropharmaceuticals (Figure 

S1, File S1, Table S1). A concentration of each toxin was selected that minimized within-strain 
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variation and maximized variation 

between two of these divergent 

strains, N2 (the laboratory strain) and 

CB4856 (a wild isolate from Hawaii) 

(Table S1 ) . For the selected 

concentration of each toxin, we 

assayed 24 growth-response traits 

for a panel of 296 recombinant 

inbred advanced intercross lines 

(RIAILs) generated between the N2 

and CB4856 parental genet ic 

backgrounds (File S2) (Andersen et 

al. 2015). Because some of the 

growth-response traits are highly 

c o r r e l a t e d ( F i g u r e S 2 ) , w e 

performed  principal component 

analysis (PCA) for each toxin. The 

minimum number of principal components (PCs) that explained at least 90% of the total phenotypic 

variance within each toxin was selected for mapping, for a total of 97 PCs across all toxins (minimum 

of five PCs and a maximum of eight PCs per toxin, Table S2, File S3). We then used linkage 

mapping to identify quantitative trait loci (QTL) that underlie variation in these 97 PCs.  

We detected a total of 82 significant QTL (across 47 PCs) from the 97 PCs tested (Figure 1, 

Figure S3, File S4). We did not find a single toxin-response QTL shared robustly across all of the 

various PCs and toxins tested nor across all PCs within any one toxin. However, the majority of QTL 

on chromosome I were detected in responses to chemotherapeutics. Additionally, almost every toxin 

(with the exception of FUdR) had QTL that underlie trait variation on at least two different 
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Figure 1 Diverse genetic architectures are implicated in responses to 16 
toxins. Linkage mapping results for principal components that represent 
82 QTL across 16 toxins, comprising chemotherapeutics (teal), heavy 
metals (orange), pesticides (purple), and neuropharmaceuticals (pink) 
are plotted. Genomic position (Mb) is shown along the x-axis, split by 
chromosome, and each of the 47 principal components with a significant 
QTL is plotted along the y-axis. Each QTL is plotted as a point at the 
location of the most significant genetic marker and a line indicating the 
95% confidence interval. QTL are colored by the logarithm of the odds 
(LOD) score, increasing in significance from blue to green to yellow.
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chromosomes, highlighting the diverse architectures implicated across traits, even within a single 

toxin. Despite the seemingly independent distributions of QTL, we found that the majority of the QTL 

(61%) mapped to chromosomes IV and V. 

Both additive and interactive QTL underlie toxin responses 

For each of the PCs that were impacted by the 82 QTL identified using linkage mapping, we 

calculated the broad-sense heritability, the proportion of broad-sense heritability that could be 

attributed to additive genetic components (narrow-sense heritability) (Figure 2A), and the proportion 

of narrow-sense heritability that was explained by QTL detected through linkage mapping (Figure 2B, 

File S6, Materials and Methods). In many cases, additive genetic components could not explain all of 

the phenotypic variation predicted to be caused by genetic factors. These results suggest that other 

additive loci with small effect sizes impact toxin responses, but we failed to detect these QTL by our 

linkage mapping analyses, potentially because of high complexity and/or insufficient statistical power. 

Alternatively, this missing heritability could be indicative of genetic interactions (Bloom et al. 2013). 
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Figure 2 Additive genetic components identified by linkage mapping do not explain all heritable contributions to toxin-
response variation. For 47 principal components representing the 82 QTL, we compared (A) the broad-sense heritability 
(x-axis) calculated from the RIAIL phenotypic data versus the narrow-sense heritability (y-axis) estimated by a mixed 
model and (B) the narrow-sense heritability (x-axis) versus the variance explained by all QTL detected by linkage 
mapping (y-axis). In both plots, each principal component is plotted as a point whose color indicates drug class 
(chemotherapeutic, heavy metal, neuropharmaceutical, or pesticide). The diagonal line represents y = x and is shown as 
a visual guide.
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To determine how much of the phenotypic variance comes from additive or interacting genetic 

components, we fit a linear mixed-effect model to the RIAIL phenotype data for the 47 PCs controlled 

by the 82 QTL. We observed a range of additive and epistatic components contributing to phenotypic 

variation across toxin classes (Figure S3, Figure S4, File S6). On average, cisplatin, topotecan, and 

FUdR are primarily explained by additive models (Figure S3). Alternatively, paraquat, irinotecan, 

vincristine, and mechlorethamine have a larger fraction of their phenotypic variance attributable to 

genetic interactions than additive effects (Figure S3). To localize potential genetic interactions for 

these 82 QTL, we scanned the genome for interactions between pairs of markers that might affect the 

phenotypic distribution of the RIAIL panel (Materials and Methods). We identified three significant 

interactions (File S5). This two-factor genome scan was unable to localize all epistatic components 

identified by the linear mixed-effect model (Figure 2), perhaps because of missing small-effect 

additive loci in the model and/or insufficient statistical power to identify small-effect interactions.  

Three QTL hotspots underlie variation in responses to diverse toxins 

The majority of toxin-response QTL cluster on chromosomes IV and V (Figure 1). We sought 

to determine if such QTL clustering could be expected by chance or if this clustering is indicative of 

toxin-response QTL hotspots. To account for the higher rate of recombination, and thus more genetic 
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Figure 3 Three QTL hotspots impact toxin responses. Each chromosome is divided into equal bins of 26 cM, resulting in 
a total of 65 bins across the genome. The x-axis shows the genomic position (Mb), and the y-axis shows the number of 
QTL that lie within the corresponding bin. The red line indicates the 99th percentile of a Poisson distribution with a mean 
of 1.26 QTL (total QTL/total bins).
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d i v e r s i t y , o n t h e  

c h r o m o s o m e a r m s 

(Rockman and Kruglyak 

2009), we divided the 

genome evenly into 65 

bins and calculated the 

number o f QTL tha t 

mapped to each b in 

(Figure 3, Materials and 

Methods). Three bins with 

more QTL than expected 

based on a Po isson  

distribution (Brem and 

Kruglyak 2005) were 

classified as hotspots. These hotspots are located on the center of chromosome IV, the right of 

chromosome IV, and the center of chromosome V and are hereby denoted as IVL, IVR, and V, 

respectively. Importantly, these hotspots are not driven by multiple principal components within a 

single toxin. Instead, hotspots comprise multiple QTL across a variety of principal components and 

toxins. In fact, 14 of the 16 toxins tested have a principal component that maps to at least one of the 

three hotspots (Table 1). Of the 82 QTL, 18 mapped to IVL, 8 mapped to IVR, and 9 mapped to V. In 

total, 33 QTL map to a hotspot (note that two QTL have confidence intervals that span both hotspots 

on chromosome IV). We sought to experimentally validate the predicted additive and epistatic effects 

on toxin responses for QTL that mapped to the three hotspots.  

Near-isogenic lines recapitulate some of the predicted QTL effects 

To experimentally validate the QTL identified from linkage mapping, we created near-isogenic 

lines (NILs) for the IVL, IVR, and V hotspots. Each NIL has a small genomic region introgressed from 
!19

Toxin Class PCs in IVL PCs in IVR PCs in V

Cadmium Heavy Metal 0 0 0

Carmustine* Chemotherapeutic 1* 0 1*

Chlorothalonil* Pesticide 2* 1* 1*

Chlorpyrifos Pesticide 1 1 0

Cisplatin* Chemotherapeutic 2* 1 2*

Copper Heavy Metal 2 0 0

Diquat Pesticide 0 0 0

Fluoxetine* Neuropharmaceutical 1 2* 0

FUdR Chemotherapeutic 1 1 0

Irinotecan* Chemotherapeutic 0 1* 2

Mechlorethamine Chemotherapeutic 0 0 1

Paraquat* Pesticide 0 0 1*

Silver* Heavy Metal 3* 0 1*

Topotecan Chemotherapeutic 1 0 0

Tunicamycin Chemotherapeutic 2* 0 0

Vincristine Chemotherapeutic 2 1 0

Table 1: Toxins and principal components mapped per hotspot

*Denotes a toxin tested with NIL and/or CSS assays
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one parental strain into the genome of the opposite parental strain (Materials and Methods). These 

NILs were whole-genome sequenced and found to match the expected genotype in the hotspot 

region; however, occasionally additional breakpoints were observed (Material and Methods, File S7). 

We tested each NIL in our high-throughput fitness assay for a subset of the toxins with a QTL that 

maps to a given hotspot, choosing QTL with small, medium, and large effect sizes to test our ability to 

recapitulate various effect sizes (Table 1, Table 2, Table S4). We tested five toxins (ten QTL) with the 

IVL NILs, three toxins (four QTL) with the IVR NILs, and five toxins (six QTL) with the V NILs. In total, 

we tested 20 QTL across eight toxins for recapitulation using the NILs. 

For each of these 20 QTL, we identified the toxin-response trait that is most correlated with the 

principal component controlled by that QTL. We then assayed the NILs for that toxin-response trait as 

well as all toxin-response traits within its same trait cluster, because each principal component 

comprises multiple toxin-response traits (Table 2, Materials and Methods). We tested 42 toxin-

response traits with the IVL NILs, 12 toxin-response traits with the IVR NILs, and 45 toxin-response 

traits with the V NILs (Figure S5, Table 2, File S9). In total, we performed 99 tests of recapitulation of 

QTL effects for toxin-response traits. The results of these tests allowed us to sort QTL effects into six 

different categories: ‘no parental effect’, ‘recapitulation’, ‘no QTL effect’, ‘unidirectional transgressive’, 

‘bidirectional transgressive’, or ‘miscellaneous’ (Figure S6, Table 3, File S11).  

Of these 99 tests, 23 did not display a significant phenotypic difference between the parent 

strains (N2 and CB4856) in the NIL assay and were categorized as ‘no parental effect’ (Materials and 

Methods, Figure S5, Table 3). The remaining 76 tests in which a significant parental difference was 

observed were classified further. We predicted that if a single QTL in the introgressed region 

contributed to the parental phenotypic difference, then each NIL would have a phenotype significantly 

different than the parental strain with the same genetic background. Furthermore, we expected each 

NIL to have a phenotype similar to the parental strain of its introgressed genomic region. This 

‘recapitulation’ model was consistent for four tests (Figure S5, Table 3). The normalized brood size 

trait in cisplatin (cisplatin.norm.n in cisplatin PC4) is one such example of a trait in which the NILs on 
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the center of chromosome V recapitulated the expected parental phenotype (Figure 4A). For 11 of 

the remaining 72 tests, the phenotype of each NIL was not significantly different from the phenotype 

of the parental strain sharing its background genotype (Figure S5, Table 3). This phenotype indicates 

that the introgressed NIL region was not affecting the toxin-response phenotype. This lack of QTL 

effect suggests that the genetic architecture is more complex, we lacked sufficient statistical power to 

detect the QTL effect, or the real QTL is outside the introgressed region. The NILs on the center of 

chromosome V showed this result for median animal length in silver (silver.median.TOF in silver PC1) 
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PC Hotspot Correlated Traits Correlation 
Range

carmustine.PC1 V mean.EXT, mean.TOF, q75.EXT, median.EXT, median.TOF, q75.TOF, 
median.norm.EXT, q90.TOF, q90.EXT

0.72-0.95

carmustine.PC6 IVL q25.norm.EXT, q10.norm.EXT 0.33-0.39

chlorothalonil.PC1 V mean.EXT, q75.EXT, mean.TOF, median.EXT, median.TOF, q75.TOF 0.73-0.95

chlorothalonil.PC2 IVL cv.TOF, cv.EXT 0.72-0.90

chlorothalonil.PC3 IVL, IVR mean.norm.EXT, q75.norm.EXT, q90.norm.EXT, median.norm.EXT 0.50-0.65

cisplatin.PC1 IVL, V mean.EXT, mean.TOF, median.EXT, median.TOF, q75.TOF, q75.EXT, 
q90.EXT, q90.TOF

0.78-0.97

cisplatin.PC3 IVL var.TOF, var.EXT 0.38-0.54

cisplatin.PC4 V norm.n, n 0.76-0.80

fluoxetine.PC1 IVR mean.norm.EXT, q75.norm.EXT, mean.EXT, q75.EXT, q90.norm.EXT, 
q90.EXT

0.79-0.96

fluoxetine.PC5 IVR q90.norm.EXT, q75.norm.EXT, mean.norm.EXT, q75.EXT, mean.EXT, 
q90.EXT

0.07-0.40

irinotecan.PC2 IVR cv.TOF, cv.EXT 0.57-0.84

paraquat.PC1 V median.EXT, mean.EXT, q25.EXT, q75.EXT, mean.TOF, q75.TOF, 
q10.EXT, q90.EXT, q90.TOF, median.TOF, q25.TOF, q10.TOF

0.75-0.95

silver.PC1 V mean.EXT, median.EXT, q75.EXT, mean.TOF, q90.EXT, q90.TOF, 
median.TOF, q75.TOF

0.77-0.96

silver.PC3 IVL q10.norm.EXT, q25.norm.EXT, mean.norm.EXT, median.norm.EXT, 
q75.norm.EXT, q90.norm.EXT

0.32-0.64

silver.PC4 IVL n, norm.n 0.84-0.84

silver.PC5 IVL n, norm.n 0.41-0.41

tunicamycin.PC1 IVL median.EXT, q75.EXT, mean.TOF, q75.TOF, median.TOF, 
median.norm.EXT, q90.EXT, q90.TOF, mean.EXT, q75.norm.EXT, 

mean.norm.EXT, q25.norm.EXT, q90.norm.EXT, q10.norm.EXT

0.69-0.96

tunicamycin.PC3 IVL norm.n, n 0.47-0.50

Table 2: All traits tested in NIL and CSS assays
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(Figure 4B). The phenotypes of the NILs for the 

remaining 61 tests cannot be explained by a single 

QTL model. For many of these tests, we observed 

NIL phenotypes that are more sensitive or more 

resistant than both parental strains, suggesting that 

loci of opposite genotypes act additively or interact 

in the NILs to create transgressive phenotypes 

(Dittrich-Reed and Fitzpatrick 2013). This finding was supported by the mixed-effects model, which 

suggested that both additive and interacting QTL remained undetected by linkage mapping (Figure 

2). We further explored the results of these 61 tests by characterizing them based on the patterns of 

the transgressive phenotypes we observed. 

For 38 of these 61 tests, only one NIL showed a transgressive phenotype (Table 3, Figure 

S5). Some of these 38 ‘unidirectional transgressive’ phenotypes seem to show an antagonism that 

counteracted the effect of the introgressed region (a predicted sensitive phenotype becomes hyper-

resistant or a predicted resistant phenotype becomes hypersensitive, e.g. carmustine.median.EXT in 

carmustine PC1, Figure 4C). Other phenotypes displayed synergy that increased the effect of the 

introgressed region (a predicted sensitive phenotype becomes a hypersensitive phenotype or a 

predicted resistant phenotype becomes a hyper-resistant phenotype, e.g. cisplatin.q90.EXT in 

cisplatin PC1, Figure 4D). Interestingly, in most cases (82%), the transgressive phenotype was 

observed in the strain with the N2 genotype introgressed into the CB4856 background.  

In addition to unidirectional transgressive phenotypes, we identified seven tests with suggested 

‘bidirectional transgressive’ phenotypes in which both NILs showed an extreme phenotype compared 

to the parental strains (Figure S5, Table 3). Some of these ‘bidirectional transgressive’ phenotypes 

were suggestive of purely antagonistic effects (e.g. tunicamycin.mean.norm.EXT, Figure S5), but 

others suggested an antagonistic effect in one NIL and a synergistic effect in the other (e.g. 

paraquat.median.TOF, Figure S5). We identified no cases of bidirectional synergistic effects. The 
!22

Primary Category Number of tests (99)

No Parental Effect 23

Recapitulation 4

No QTL Effect 11

Unidirectional Transgressive 38

Bidirectional Transgressive 7

Miscellaneous 16

Table 3: Categorization summary from NIL 
phenotypes
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remaining 16 tests of the 76 with a parental difference did not fall into any of the above categories 

and were classified as ‘miscellaneous’ (Table 3).  

The toxin-response traits tested above for recapitulation of QTL effects were selected to 

represent principal components that were mapped with linkage mapping. We wanted to compare the 

NIL assay categorizations for the toxin-response traits that underlie each principal component to 

analyze the overall QTL effect (Figure S7). For example, two traits, n and norm.n, were selected to 
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no rm.n , PC4) , (B ) I n te r -
c h r o m o s o m a l e x t e r n a l 
b i d i r e c t i o n a l l o c i ( s i l v e r 
median.TOF, PC1), (C) Inter-
c h r o m o s o m a l i n t e r n a l 
unidirectional loci (carmustine 
median.EXT, PC1), and (D) 
I n t r a - c h r o m o s o m a l 
unidirectional loci (cisplatin 
q90.EXT, PC1). In each case, 
we show results from (i) the NIL 
assay (left) and CSS assay 
(right) plotted as Tukey box 
plots. The y-axis indicates 
residual phenotypic values for 
the given trait. Different letters 
(a-d) above each Tukey box plot 
represent significant differences 
(p < 0.05) while the same letter 
represents non-s igni f icant 
differences between two strains 
(Tukey HSD). The genotype of 
each strain on the x-axis is 
m o d e l e d b y t h e c o l o r e d 
rectangles beneath the plots 
(N2 genotypes are orange, 
CB4856 genotypes are blue). (ii) 
A stacked bar plot shows the the 
p ropo r t i on o f pheno typ i c 
variation attributable to additive 
(light blue with dashed error 
bars) and interactive (dark blue 
with solid error bars) genetic 
f a c t o r s o f t h e p r i n c i p a l 
component represented by each 
trait, based on a mixed model.
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represent cisplatin PC4 (Table 2). Both of these toxin-response traits were placed into the 

‘recapitulation’ category from the NIL assay results (Figure S5, Figure S7). These results suggest 

that a single additive QTL underlies the brood size variation captured by PC4. Fourteen tunicamycin-

response traits were selected to represent tunicamycin PC1 (Table 2). Eight of these 14 traits 

displayed unidirectional transgressive phenotypes, four traits displayed bidirectional transgressive 

phenotypes, and the remaining two traits did not have a significant parental phenotypic difference 

(Figure S5, Figure S7). Regardless of the classification, we see the same trend of resistance 

(ECA231 > N2 > CB4856 > ECA229) across 11 of the 14 traits representing this principal component. 

Therefore, our strict significance thresholds for categorization might have caused some phenotypes 

to be mis-categorized (usually into the miscellaneous or no parental/QTL effect categories). The 

prevalence of transgressive phenotypes in tunicamycin-response traits suggests that multiple QTL, 

acting additively or interacting, might impact tunicamycin responses.  

We next sought to compare categorizations of toxin-response traits and QTL effect sizes of the 

PCs for those traits. The QTL underlying cisplatin PC4 explains about 7% of the total phenotypic 

variance (Table S4). The traits selected to represent cisplatin PC4 were placed into the 

‘recapitulation’ category, despite the small effect size of the QTL (Figure S5, Figure S7). In the other 

example above, the QTL underlying tunicamycin PC1 explains almost 16% of the total phenotypic 

variance, which is one of the highest effect sizes mapped in this study (Table S4). The toxin-response 

traits selected to represent this principal component showed mostly transgressive phenotypes, 

indicating undetected additive or interacting QTL despite the seemingly large-effect additive QTL 

identified in linkage mapping (Figure S5, Figure S7). 

Chromosome-substitution strains localize QTL underlying transgressive phenotypes 

Because we found evidence of loci where opposite genotypes at each locus cause 

transgressive phenotypes, we attempted to further characterize these loci (Figure 5, Figure S6). To 

define each set of loci as either intra-chromosomal or inter-chromosomal, we built reciprocal 
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chromosome-substitution strains (CSSs) for the hotspot on chromosome V that had the entire 

chromosome V introgressed from one parental strain into the genome of the opposite parental strain 

(Materials and Methods). The hotspot on chromosome V was chosen to isolate the effects of one 

hotspot and avoid complications arising from traits whose confidence intervals might lie within both of 

the hotspots on chromosome IV. The CSSs were whole-genome sequenced and found to have the 

expected genotype at all markers (Materials and Methods, File S7), except for the chromosome I 

incompatibility locus (Seidel et al. 2011; Seidel, Rockman, and Kruglyak 2008). We performed tests of 

recapitulation of QTL effects with the CSSs for each of the 45 toxin-response traits across the five 

toxins tested with the chromosome V NILs (Figure S5, Table 2, Table S4, File S9). 

For traits in which the parental phenotypic difference was significant and consistent across the 

NIL and CSS tests, NIL and CSS phenotypes could be compared across assays. Eight traits across 

five toxins fit this criterion (File S11, Table 4). One trait (cisplatin.norm.n) displayed phenotypic 
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Figure 5 A model for potential locations of two loci is shown, according to toxin-response phenotypes of near-isogenic 
lines (NILs) and chromosome-substitution strains (CSSs). The NILs are represented on the left, and the CSSs are 
represented on the right. The strain genotype is indicated by colored rectangles. N2 is orange, and CB4856 is blue. 
Brackets indicate the genomic region that is introgressed in the NILs. White asterisks represent a potential location for 
additive or epistatic loci underlying transgressive phenotypes. Although bidirectional transgressive phenotype models 
are shown, each model could be bidirectional (both reciprocal introgressed strains show transgressive phenotypes) or 
unidirectional (only one reciprocal introgressed strain shows a transgressive phenotype). Models showing (A) inter-
chromosomal external effects between a locus outside of the introgressed region in the NILs and a locus on another 
chromosome, (B) inter-chromosomal internal effects between a locus within the introgressed region in the NILs and a 
locus on another chromosome, and (C) intra-chromosomal effects between a locus within and a locus outside of the 
introgressed region in the NILs are drawn.
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‘ r e c a p i t u l a t i o n ’ o f t h e  

introgressed region in both the 

N I L a n d t h e C S S t e s t s , 

suggesting a single QTL model 

( F i g u r e 4 A , Ta b l e 4 ) . 

Alternatively, transgressive 

phenotypes are indicative of a 

multi-QTL model, and locations 

of additive or interacting QTL 

can be surmised by comparing results from the NIL and CSS tests. Transgressive phenotypes 

controlled by inter-chromosomal loci are defined by two loci on separate chromosomes that act 

additively or epistatically. Because NILs and CSSs have introgressed genotypes on chromosome V, 

we can deduce that at least one of the two inter-chromosomal loci is located on chromosome V. We 

further divided the inter-chromosomal class into two categories: ‘inter-chromosomal external’, in 

which the chromosome V locus is outside the region introgressed in the NILs (Figure 5A) and ‘inter-

chromosomal internal’, in which the chromosome V locus is within the region introgressed in the NILs 

(Figure 5B). For an ‘inter-chromosomal external’ model, we expect only the CSSs to display 

hypersensitivity or hyper-resistance, because both loci share the same genotype in the NILs (Figure 

5A) and would therefore not result in a more extreme phenotype than both parents. We found one 

such trait that fits a ‘bidirectional inter-chromosomal external’ loci model (silver.median.TOF) (Figure 

4B, Table 4). For an ‘inter-chromosomal internal’ model, we expected both the CSSs and the NILs to 

display the same hypersensitivity or hyper-resistance, because both strains share the same genotype 

across the introgressed region in the NILs (Figure 5B). We identified one such trait that fits a 

‘unidirectional inter-chromosomal internal’ loci model (carmustine.median.EXT) (Figure 4C, Table 4). 

To identify intra-chromosomal loci that underlie transgressive phenotypes in the remaining 10 traits, 

we searched for traits that display evidence of either a uni- or bidirectional transgressive phenotype in 
!26

Secondary Category Number of 
Traits (8)

Traits

Recapitulation 1 cisplatin.norm.n

Inter-chromosomal 
(external)

1 silver.median.TOF (bidirectional)

Inter-chromosomal 
(internal)

1 carmustine.median.EXT (unidirectional)

Intra-chromosomal 2 cisplatin.q90.EXT (unidirectional), 
cisplatin.q90.TOF (unidirectional)

Miscellaneous 3 cisplatin.n, 
paraquat.q10.TOF, 
silver.median.EXT

Table 4: Categorization summary from combined NIL and CSS 
phenotypes

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 21, 2018. ; https://doi.org/10.1101/325399doi: bioRxiv preprint 

https://doi.org/10.1101/325399
http://creativecommons.org/licenses/by/4.0/


the NILs but not in the CSSs (Figure 5C). This result would suggest that two loci of opposite 

genotypes on chromosome V, one within and one outside the region introgressed in the NILs, act 

additively or epistatically to cause transgressive phenotypes. We found two examples of such 

‘unidirectional intra-chromosomal’ loci models (e.g. cisplatin.q90.EXT, Figure 4D, Table 4). The 

remaining three traits could not be characterized beyond their NIL assay characterization based on 

the results of the CSS assay (Table 4). 

We revisited the two-factor genome scan results for each of these eight empirically classified 

traits and compared the findings from these two independent methods used to identify multiple 

additive or epistatic QTL. No traits with significant interaction terms were identified by the two-factor 

genome scan. Although many other pairs of loci show suggestive evidence of additive or interacting 

effects (File S5), an increase in statistical power is required to definitively compare these suggestive 

findings to our empirically derived model. Overall, this study highlights the benefits of leveraging both 

experimental and computational strategies to further dissect genetic components that underlie 

quantitative traits in a metazoan model. 

DISCUSSION 

 Here, we show that three QTL hotspots underlie differences in responses to 16 diverse toxins. 

We further characterized these QTL using both modeling and empirical approaches. Through the use 

of near-isogenic lines and chromosome-substitution strains, we confirmed small-effect QTL and 

attempted to identify and localize genomic regions causing transgressive phenotypes. Finally, we 

used statistical analyses to computationally identify loci that might support some of our empirical 

findings. Although the number of biological replicates and recombinant strains in this study increased 

our power to detect QTL compared to previous studies, we are still too underpowered to definitively 

assess if missing heritability is composed of small additive effects or genetic interactions.  

Pleiotropic regions underlie QTL shared between and among toxin classes 
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 We performed principal component analysis on toxin-response phenotypes collected for a 

panel of RIAILs and used linkage mapping to identify 82 toxin-response QTL. Although some of these 

QTL are unique to one particular toxin, others suggest the existence of pleiotropic QTL that underlie 

responses to a diverse set of toxins. In particular, three QTL hotspots across chromosomes IV and V 

were enriched for toxin-response QTL and were investigated further. Because the molecular 

mechanisms implicated in responses to each toxin differ drastically, the notion that a single gene in 

each hotspot is regulating the response to several toxins is unlikely. However, the possibility exists 

that a single gene involved in drug transport could underlie one or several of these hotspots. More 

likely, multiple genes in close proximity, each regulating a process controlling cellular proliferation and 

survival, might underlie these hotspots. Notably, two of the three QTL hotspots are in swept regions 

with lower genetic diversity at the species level (Andersen et al. 2012; Laricchia et al. 2017; Cook, et 

al. 2016a; Cook, et al. 2016b). The laboratory strain, N2, has experienced each of the selective 

sweeps, and CB4856 has not. Linkage mapping using a panel of RIAILs built between these two 

strains could identify QTL that underlie phenotypic differences between swept and non-swept strains. 

Moreover, identifying QTL in these swept regions that underlie variation in fitness-related traits might 

indicate selective pressures that could have led to these chromosomal sweeps. For example, N2 is 

more resistant than CB4856 to tunicamycin (Figure S5), an antibiotic and chemotherapeutic 

produced by the soil bacterium Streptomyces clavuligerus (Price and Tsvetanova 2007). This result 

might suggest that selective pressure toward responses to antibiotic compounds played a role in 

driving resistance-conferring alleles, such as those present in N2, to a high frequency. Alternatively, 

climate conditions could also impact local niche environments to sensitize toxin responses (Evans et 

al. 2017). We observed that N2 is more resistant than CB4856 in responses to the majority of 

conditions, which could indicate that alleles present in swept strains confer robustness in responses 

to many conditions. This result emphasizes the importance of genetic background when considering 

toxin effects (Zdraljevic and Andersen 2017). 
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In addition to the three QTL hotspots, pleiotropic QTL across toxins within certain classes are 

suggested by our linkage mapping results. We observed an enrichment of QTL from the 

chemotherapeutic class on chromosome I, which could be representative of QTL that underlie a 

common mechanism targeted by these toxins, such as DNA damage or cell-cycle control. However, 

because many of these chemotherapeutics have distinct mechanisms of action and share these 

mechanisms with other toxin classes, this enrichment is likely caused by an overrepresentation of 

chemotherapeutics in our study. Direct comparisons of toxins with similar cellular mechanisms could 

provide more insights. For example, irinotecan and topotecan are both chemotherapeutics that cause 

DNA damage by inhibiting topoisomerase I (Pommier 2006) and share a QTL on the center of 

chromosome I. However, each of these chemotherapeutics also maps to distinct regions of the 

genome. For example, the irinotecan-response QTL on the right arm of chromosome V is not mapped 

for topotecan response and the topotecan-response QTL on the left arm of chromosome II is not 

mapped for irinotecan response. Vincristine also maps to this same region, however its mechanism of 

action is distinct from irinotecan and topotecan. The combination of overlapping and distinct genetic 

architectures underlying these highly similar compounds suggest that although some genetic variation 

implicated in responses to irinotecan and topotecan is shared, other QTL are specific to each 

compound and not representative of a general topoisomerase I inhibition mechanism. We have also 

observed this phenomenon of distinct genetic architectures underlying similar compounds for 

benzimidazole responses (Zamanian et al. 2018).  

   

A multi-faceted approach suggests that undetected epistatic loci impact toxin responses 

 To determine if we had sufficient power to experimentally validate even small-effect QTL, we 

constructed NILs for the three hotspots and assayed them in responses to multiple toxins. Because 

each principal component comprises multiple toxin-response traits, we measured NIL phenotypes for 

the most correlated toxin-response traits for each principal component to test recapitulation of QTL 

effects. For some of these tests of recapitulation for small-effect QTL, NILs showed a significant 
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phenotypic effect. One such example is cisplatin.norm.n and cisplatin.n which represent the QTL 

mapped by cisplatin.PC4 that only explains 7% of the phenotypic variance. Our ability to recapitulate 

such a small effect suggests that our assay had sufficient power to detect small phenotypic effects in 

at least some cases. We postulated that our inability to recapitulate other QTL effects could be 

attributed to either insufficient power or additional additive or epistatic QTL that were undetected by 

linkage mapping. Particularly in cases where the NILs displayed transgressive phenotypes, 

undetected loci of opposite genotypes, acting additively or epistatically, likely caused these effects. 

Therefore, we investigated these interactions and found evidence for additional QTL that interact with 

the originally detected loci. However, we must note that whole-genome sequence data revealed that 

three of our NILs had a portion of the genome from the background of the starting RIAIL (File S7). 

Although we do not believe that these small regions are responsible for the unexpected phenotypes 

observed, this explanation could be a consideration for certain silver, cisplatin, carmustine, and 

chlorothalonil PCs, as they have significant QTL in these identified regions. This example emphasizes 

the importance of whole-genome sequencing NILs to verify the expected genotypes before making 

conclusions about phenotypic effects of a targeted QTL.  

We used the results from the NIL assays to classify each test into a category that predicts a 

genetic model that might underlie NIL phenotypes. Categorizations were consistent across traits 

representing a principal component, with most of these traits falling into one or a few categorizations. 

This widespread consistency suggests that similar genetic architectures underlie phenotypes for 

these grouped traits. Furthermore, this consistency highlights the reproducibility of our high-

throughput toxin response assay, because results from independent assays (trait correlations,  

linkage mappings from RIAIL assays, and phenotype classifications from NIL assays) often align to 

support the same conclusion obtained from the individual experiments. 

The majority of cases of transgressive phenotypes occurs when the N2 genotype is 

introgressed into the CB4856 genome. This trend might indicate allele-specific unidirectional 

incompatibilities between the two strains, and localizing these interactions could improve our 
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understanding of the evolutionary processes driving such incompatibilities. However, identifying the 

loci that underlie these unidirectional transgressive phenotypes using a mixed-effect model or a two-

factor genomic scan is difficult, because only a small number of the RIAILs have the required allelic 

combinations to quantify such an effect. For example, cisplatin.q90.EXT, a trait chosen to represent 

cisplatin PC1, fits a unidirectional intra-chromosomal model. The results of the NIL and CSS assays 

show that, although the CSSs seem to display no QTL effect, the NIL with the N2 genotype 

introgressed into the CB4856 genome displays strong hypersensitivity (Figure 4D). All of the narrow-

sense heritability for cisplatin PC1 (25%) predicted by the mixed-effect model is explained by the 

three QTL identified through linkage mapping (the variance explained estimates of these three QTL 

add up to 26%, File S4, File S6). This finding suggests that most of the additive loci have been 

identified through linkage mapping. Therefore, the intra-chromosomal loci are likely acting 

epistatically to cause a unidirectional transgressive phenotype. However, using our mixed-model 

approach, we do not find a significant interaction component for cisplatin PC1, the principal 

component that is represented by cisplatin.q90.EXT. A two-dimensional genome scan for multiple loci 

that underlie cisplatin PC1 provides suggestive evidence for a two-QTL model over a one-QTL model, 

with or without interaction between the loci (File S5). These two loci are located on the left of 

chromosome V (outside the NIL interval) and in the center of chromosome V (inside the NIL interval) 

and match our empirical evidence of two intra-chromosomal loci underlying the transgressive 

phenotype observed (Figure 5C). Because the transgressive phenotype is unidirectional, RIAILs 

without the allelic combination that causes extreme phenotypes could dilute our power to detect the 

loci. For this reason, combining both computational models and empirical investigation facilitates the 

detection of loci that control transgressive phenotypes. Additionally, future studies should include 

even larger RIAIL panels than what we used here to empower approaches to investigate the 

contributions of interactive loci. 

 Although we are statistically underpowered to identify some small-effect additive and 

interacting loci through modeling, the combination of three methods of searching for potential 
!31

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 21, 2018. ; https://doi.org/10.1101/325399doi: bioRxiv preprint 

https://doi.org/10.1101/325399
http://creativecommons.org/licenses/by/4.0/


interactions suggests that not all fitness traits in C. elegans are composed of additive effects. Our two 

computational methods were used to identify additive and epistatic loci underlying many toxin 

responses, but their power was limited in cases of unidirectional transgressive phenotypes. 

Alternatively, the NIL and CSS phenotypic assays were able to identify unidirectional transgressive 

phenotypes, but they were restricted by their inability to distinguish between additive and epistatic 

loci. Constructing double CSS strains or multi-region NILs in which pairwise combinations of two 

genomic regions are introgressed within the opposite genotype could help to further define loci 

underlying transgressive phenotypes. However, each locus must be isolated to determine if the two 

loci act additively or epistatically. The results from the two-dimensional genome scan might provide 

insights into where to begin this approach. In cases where all three of our techniques suggested 

epistasis, we suspect that these QTL are not purely additive. Generating an even larger panel of 

recombinant strains and assaying a much larger number of biological replicates might allow us to 

further address the debate about how heritable loci contribute to trait variation in metazoans.  
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