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Abstract 
 
Almost all models of visual memory implicitly assume that mnemonic representations are 

linearly related to distance in stimulus space. Here, we show that neither memory nor 

perception are appropriately scaled in stimulus space; instead, they are based on a transformed 

similarity representation that is non-linearly related to stimulus space. This result calls into 

question a foundational assumption of virtually all extant models of visual working memory. 

Once psychophysical similarity is taken into account, aspects of memory that have been thought 

to demonstrate a fixed working memory capacity of ~3-4 items and to require fundamentally 

different representations -- across different stimuli, tasks, and types of memory -- can be 

parsimoniously explained with a unitary signal detection framework. These results have 

significant implications for the study of visual memory and lead to a substantial reinterpretation 

of the relationship between perception, working memory and long-term memory. 
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Working memory is typically conceptualized as a fixed capacity system, with a discrete number 
of items, each represented with a certain degree of precision1,2. It is thought to be a core 
cognitive system3,4, with individual capacity differences strongly correlating with measures of 
broad cognitive function such as fluid intelligence and academic performance5,6. As a result, 
many researchers are deeply interested in understanding and quantifying working memory 
capacity.  
 
Continuous feature spaces are often used to investigate working memory, as they allow the 
precise quantification of information stored in memory. In one prominent paradigm, researchers 
present a set of stimuli to remember and then probe one item after a delay, asking participants 
to report the target by clicking on a circular stimulus report wheel (Fig. 1A). The data are 
typically analyzed using the circular difference between the true stimulus and reported stimulus, 
which is then modeled to quantify memory performance7,8. Such models appear to make critical 
distinctions between distinct kinds of memories: either how many items are represented vs. how 
precisely they are represented7 or between items encoded with high precision vs. extremely low 
precision8.   
 
Here we show that taking into account the globally non-linear function of psychophysical 
similarity between test stimuli opens the door to a new model of visual working and visual long-
term memory, one that is both more parsimonious and more powerful than existing models. The 
new model suggests that all memories arise fundamentally from a single process, rather than 
from different memory states or degrees of encoding precision, and it uniquely permits 
parameter-free generalization across different stimulus spaces and different tasks. The model 
operates in a signal detection framework, as most models of long-term memory do, suggesting 
a unified framework can be used to understand the nature of mnemonic representations and 
decision-making across working memory and long-term memory. We begin with working 
memory for color as our main case study and then expand the psychophysical similarity 
framework and resulting model to encompass working memory for faces (a multi-feature 
stimulus space) and long-term memory for real-world objects. 
 
Results 
Psychophysical scaling. While previous work has documented local inhomogeneities in 
stimulus space9-11, we measured the global structure of the working memory color space. That 
is, we measured how similarity scales with distance measured in terms of degrees along the 
color wheel. To do so, we tested how accurately participants could determine which of two test 
colors was more similar to a target color using a triad task12,13. This is a perceptual task, but it is 
analogous to the working memory situation where participants have a target color in mind and 
are asked to compare other colors to that target. We found that with a fixed 30° distance 
between two color choices, participants are significantly more accurate at determining which 
color is closer to the target when the two colors are nearby in color space compared to when 
they are far from the target (Fig. 1C, S1; ANOVA F(12,384) = 71.8, p<0.00001, η2=0.69). In 
other words, in a purely perceptual task, participants largely could not tell whether a color 
120°or 150° from the target was closer to the target, whereas this task is trivial if the colors are 
5° and 35° from the target. To compute a full psychophysical similarity function, we utilized the 
just-described triad task with additional distance pairs. We then applied the maximum likelihood 
difference scaling technique13  (MLDS) commonly used for perceptual scaling to estimate how 
differences between color stimuli are actually perceived. The estimated psychophysical 
similarity function falls off in a nonlinear, exponential-like fashion with respect to distance (Fig. 
1F). In color space, it is also well-matched by a smoother measure that requires substantially 
less data, namely, the pairwise similarity ratings of colors at different distances along the color 
wheel using a Likert scale (Fig. 1F, S1).  
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Thus, while there are small local inhomogeneities (Fig 1D, S5), that fact is orthogonal to the 
argument we advance here. Our theory is based on the completely separate fact that the global 
structure of similarity space is deeply non-linear, in agreement with decades of work suggesting 
psychological similarity is globally exponential (e.g., the universal law of generalization14,15), with 
additional local confusions caused by perceptual noise16 (measured here using a perceptual 
matching task; Fig 1E, F). 
 

 
Figure 1. (A) A widely used method in working memory is to select a color circle from a slice of color 
space, show memory items drawn from this circle, and then, at test, probe the contents of a memory item 
by presenting the entire continuous circle to participants to make a response. Similar response wheels 
are used for other features, such as face identity. (B) A histogram of results generally observed for such 
tasks, traditionally plotted as a function of distance in degrees of error along the response wheel. There is 
a ‘long tail’ of errors far from 0 that is often interpreted as evidence for distinct memory states (e.g., 
guesses or items encoded with very low precision). (C) In a triad psychophysical scaling task, participants 
had to say which of two colors in the bottom row was more similar to the top (target) color. Despite the 
difference between the two choice colors always being 30° on the color wheel, sensitivity (d′) dramatically 
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decreased as the choices became more distant from the target. Error bars are within-subject S.E.M. and 
dots represent individual trials. (D) We can use the data from another similarity task, a simple pairwise 
Likert rating of similarity, to infer the global psychophysical distance of colors at different physical 
distances along the color wheel. Here we plot this data for sets of target colors, demonstrating previously 
observed local non-uniformities in color space as the small differences across rows (see Bae et 
al.9).Critically, all of these row demonstrate a much larger global structure, separate from this local 
structure: overall similarity falls in an approximately exponential manner. This insight about the shape of 
the global psychological similarity function has not been taken into account by previous models or 
theories of visual working memory. (E) Some aspects of this similarity must derive from perceptual 
discrimination failures (e.g., there are not really 360 independent colors on the color wheel). To estimate 
this underlying perceptual noise, we use a continuous report task where participants must match a visible 
color using the same color wheel. (F). We can plot the global psychophysical function -- averaged over all 
target colors -- using the triad task or the Likert task. Both are very similar and show the same underlying 
shape. Consistent with previous work, we find this similarity function is exponential once perceptual noise 
is taken into account (e.g., an exponential convolved with the measured perceptual noise function 
provides an excellent fit to this data).  
 
A key implication of these scaling results is that the axis of error along the response wheel 
previously used to analyze working memory capacity does not capture the psychological 
representation of the stimuli. Since participants are essentially incapable in a perceptual task of 
discerning whether an item 120° or 180° from the target in color space is more similar to the 
target, it is not surprising that they confuse these colors equally often with the target in memory.  
 
Incorporating psychophysical similarity into a signal detection model. Psychophysical 
scaling formalizes how similar two stimuli are perceived to be, a necessary precursor to 
developing models of memory. In fact, by taking this scaling -- a seemingly fixed perceptual 
property of the stimulus space -- into account, we find working memory is accurately described 
by an extremely straightforward one-parameter signal detection model that treats the average 
memory-match signal generated by each color on the wheel as arising from its psychophysical 
similarity to the target. 
 
The model we propose here is, fundamentally, the same longstanding signal detection model 
often used across decades of research on long-term memory and perception17-19, modified to 
take into account psychological similarity. When an item is cued at test, each test option (in this 
case, each of the 360 colors presented on the wheel) generates a noisy, cue-dependent 
familiarity signal, and the color that generates the maximum familiarity signal is selected (Fig. 2). 
The stronger the maximum signal is, the higher the confidence in the selected color.  
 
In a standard signal detection model of an n-alternative forced-choice task, it is generally 
assumed that exactly one item has been previously seen, so its familiarity is centered on d′, 
whereas the other n - 1 items are equally unfamiliar and therefore centered on zero18. However, 
when memory is tested using a continuous stimulus space, it would be implausible to assume 
that a color 1° away in color space from the target would have no added familiarity and would 
have noise that is totally uncorrelated with the target. Thus, in our model, the mean memory 
signal for a given color x on the color wheel, denoted dx, is based on that color’s measured 
similarity to the target, i.e., dx = d′ f(x), where d′ is the model’s only free parameter (memory 
strength) and f(x) is the empirically determined psychophysical similarity function. The noise 
added to each color is correlated between nearby colors according to the empirically measured 
proportion of how often colors at that distance are confused in a perceptual matching task (Fig 
1E, S2).  
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Because of the nonlinear similarity function, colors in the >~90° physical distance range do not 
cover a great psychological expanse but instead all cluster near f(x)≈f(x)min  such that dx≈0 for 
x~=90° to 180°. Thus, when participants encode a color -- say, purple -- it increases the average 
familiarity signal in the purple channel and also in nearby (similar-to-purple) channels while 
having almost no effect in dissimilar color channels (Fig. 2B). The familiarity signals in each 
channel are then corrupted by noise, and the resulting reports are based on this noisy signal. In 
the case of continuous report, people theoretically report the color with maximum familiarity. 
 

 
Figure 2. (A) Our TCC model applied to a hypothetical 10-alternative forced-choice memory test. In 
standard 2-alternative long-term recognition memory experiments, “new” items sometimes feel more 
familiar or less familiar, and the memory-match signals generated by new items are therefore modeled as 
a normal distribution with a mean of 0 and standard deviation of 1. By contrast, on average, “old” items 
(encoded previously) elicit higher familiarity on average, modeled (in the simplest case) as a normal 
distribution with a mean of d′ and standard deviation of 1, so that d′ indicates how many standard 
deviations of memory strength is added to old items. In the case of a 10 alternative forced-choice, when 
asked to choose which of these alternatives corresponds to the old item, the simplest strategy is to 
sample a familiarity value from each distribution and then choose the alternative that generates the 
highest memory signal. To specify this model, we thus only need to specify the memory-match strength of 
every lure. Usually, all 9 lures are assumed to be centered on 0 when modeling such tasks18. However, in 
a continuous space this is not plausible. Thus, in TCC, we propose that familiarity spreads according to 
similarity: the mean of each lure’s familiarity distribution is simply its similarity the target. In other words, if 
the target is purple, people will choose a slightly different purple lure much more often than an entirely 
unrelated lure (such as green in this example). The slightly different purple lure generates a much 
stronger familiarity signal than the green lure because of its greater similarity to the target. Examples of 
d′=3 and d′=1 illustrate the idea that as memory signal strength for the target decreases, more of the lure 
distributions cluster near the target -- and at d′=1, all of the far away colors are in a position to sometimes 
‘win the competition’, but will do so on average equally often. The 10-AFC logic provided here can then 
simply be adapted to 360-AFC to model continuous report, but with the added knowledge that very similar 
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colors also have correlated noise (measured using the perceptual matching function); i.e., there are not 
360 independent colors on the color wheel. (B) An alternative way of plotting the same model is to 
consider a single trial, rather than the distribution of memory strengths across trials. When we encode a 
purple color, with memory strength d’=3, the familiarity of purple as well as similar colors is increased 
(according to the measured psychophysical similarity function). Then, we add SD=1 noise -- in this case, 
the noise is not totally independent across color channels, but locally correlated (with this correlation 
empirically determined from the perceptual matching data). The resulting familiarity values, after being 
corrupted by noise, guide participants decisions. In a continuous report task, people simply report the 
color that generates the maximum familiarity value.  
 
Remarkably, this Target Confusability Competition (TCC) model, a straightforward signal 
detection model combined with measured psychophysical similarity, can explain all the key 
features of visual working memory. In particular, it accurately characterizes memory 
performance across a variety of domains, including different set sizes, encoding times and 
delays (Fig. 3, S4). Previous cognitive models of visual working memory allow for many ways in 
which memory can vary  (e.g., guess rate, precision, variation in precision7,8,20). By contrast, 
TCC holds that all manipulations affect only a single fundamental underlying parameter (the 
memory strength parameter, d′). Thus, the fact that manipulations of set size, delay and 
encoding time -- 22 different manipulations in total -- result in distributions that can be accurately 
characterized with only a single varying parameter is strong evidence in favor of TCC, as is the 
fact that it describes the data extremely well despite being markedly simpler than alternative 
theories. It is markedly simpler because it proposes a unified generative process for all 
responses instead of requiring different states to generate different subsets of responses (as in 
the encoding variability or lack of represented items proposed by previous models7-8,20). 
 
While the main evidence in favor of TCC is its ability to parsimoniously characterize the effects 
of qualitatively different experimental manipulations (Fig. 3) and to make precise predictions 
across tasks and stimuli (see below), we also compared the fit provided by TCC to the fit 
provided by mixture models of visual working memory, including the standard two-parameter 
mixture model that interprets performance as arising from distinct concepts of ‘capacity’ and 
‘precision’7 and a three-parameter version of the mixture model that allows for variable 
precision20. Despite being simpler and having fewer parameters, TCC was just as good at 
predicting held-out data in a cross-validation test and was reliably preferred in every subject 
when using metrics preferring simpler models (Table S2). This was true even though TCC fits 
are based on aggregated similarity functions from a different group of participants, suggesting 
the global structure of the psychophysical similarity function is largely a fixed aspect of a given 
stimulus space.  
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Figure 3. (A) TCC fits to data at set size 1, 3, 6, and 8. Even at high set sizes, TCC -- with no concept of 
unrepresented items or guessing or poorly encoded items, and treating all items as encoded equally (i.e., 
with the same d’) -- fits the data accurately because of the noisy nature of the signal detection process 
combined with the non-linear psychophysical similarity function. (B) TCC fits to data with varying delay 
(only set size 6 shown; remainder of data in Fig. S14). (C) TCC fits to data across different encoding 
times (only two set sizes shown; see Fig. S14). Across several key manipulations of visual working 
memory (set size, delay, and encoding time), which drastically alter the response distributions collected, 
TCC accurately captures (with only a single parameter d′) the response distribution typically attributed to 
multiple parameters / psychological states by existing frameworks and models of working memory. Only a 
subset of the delay and encoding time fits are plotted here, but all fits are accurate, as demonstrated by 
the Pearson correlation between the binned data and model fits as a function of set size (A; set size 1: 
R2=0.996, set size 3: R2=0.986, set size 6: R2=0.976, set size 8: R2=0.959,  , all p<0.001), delay (B; set 
size 1, 1s, 3s, 5s: R2=0.997, R2=0.995, R2=0.987, set size 3: R2=0.987, R2=0.984, R2=0.989; set size 6: 
R2=0.977, R2=0.950, R2=0.970; all p<0.001); and encoding time (C; set size 1, 100ms, 500ms, 1.5s: 
R2=0.983, R2=0.994, R2=0.996, set size 3: R2=0.942, R2=0.982, R2=0.990; set size 6: R2=0.950, 
R2=0.987, R2=0.980;  all p<0.001).   
 
While memory strength varies according to a variety of different factors, many researchers have 
been particularly interested in the influence of set size. TCC shows that d′ -- theoretically an 
interval-scale measure of memory strength18,22 -- decreases according to a power law as set 
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size changes (Fig S3), broadly consistent with fixed resource theories of memory22,23. Critically, 
memory strength decreases most at low set sizes (e.g., 1 to 3), suggesting limits of working 
memory may be best studied across lower set sizes, contrary to the majority of the field which 
seeks to pressure “capacity” via high set sizes to understand the nature of working memory.  
 
TCC generates novel predictions about the connection between working memory 
paradigms. Ultimately, evaluating theories based on model comparisons of fit -- when all 
models fit the data well, as here -- is not as useful as investigating what they accurately 
predict24. TCC makes a precise and unique prediction that since all responses are generated 
from the same underlying process, measuring d′ in any way -- even using only maximally 
different changes -- is sufficient to fully characterize memory performance. This is in stark 
contrast to the prediction of mixture models or variable precision models, which propose that 
fundamentally distinct memory states explain close-to-target responses vs. those further from 
the target.  
 

 
Figure 4. (A) Since TCC states that visual working memory performance is determined by simply d’ 
(memory signal strength) once psychological similarity is known, it makes novel predictions no other 
theory of working memory can make. In particular, it predicts that d’ measured with a 180 degree, 
maximally distinct foil should be completely sufficient to predict all of memory performance, unlike models 
where errors to maximally distinct foils arise from different processes than errors to similar foils, e.g., 
where errors to maximally distinct foils solely from ‘guessing’ or extremely poorly encoded items. For 
example, if we’ve measured d’ to a maximally distinct foil, we can predict that since a 24 degree foil is 
~35% similar to the target, people will discriminate it with  35% of the d’ relative to the 180 degree foil. (B) 
On a single trial, this prediction can be visualized in a straightforward way: If we know the target was 
encoded with d’=1.7, then TCC makes a strong prediction about how this familiarity spreads to other 
colors and how it is corrupted by noise. In continuous report, the decision rule is to report the maximum of 
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the resulting color channel familiarity responses; in 2AFC, the decision rule -- based on the exact same 
underlying color response -- is to choose the highest familiarity signal of your response options. Thus, on 
this example trial, the participant would choose 0 over 180, but 24 over 0. Because TCC specifies this 
entire generative process, it thus makes precise predictions about how often people will make errors to 
different distance foils. (C) Here we plot the predicted percent correct of different distances of colors from 
the target (blue), a prediction based only on performance from the 180 degree condition (black) with no 
free parameters. When comparing subject’s performance at different foil distances (gray) we demonstrate 
TCC accurately predicts performance across different foil distances. 
 
We evaluated this prediction in two experiments. In both experiments we had participants 
perform a memory task involving a 2-AFC test with maximally distinct colors (two options: 0° 
away from the target color vs. 180° away from the target color). We used the data from this 2-
AFC task to compute d′ in the standard way and then used TCC -- with this exact d′ -- to 
compute parameter-free predictions for a variety of other conditions.  
 
In one 2-AFC experiment (Fig. 4), we looked at how well participants could discriminate the 
target from more similar foils (e.g., the color they saw vs. a color only 12° away). We found that 
with no information other than the d′ from maximally distinct 2-AFC comparisons, TCC correctly 
predicts memory performance with intermediate foil similarities (Fig 4C). More specifically, with 
no free parameters, TCC accurately predicts performance in intermediate conditions given 180° 
2-AFC performance because it precisely quantifies how similarity impacts performance (see 
also Kahana & Sekuler25; Nosofsky16). By contrast, mixture models, based on the distinct 
concepts of guessing and precision, can use 180° 2-AFC performance only to measure ‘guess 
rate,’ leaving them largely unconstrained and able to predict a wide range of possible outcomes 
on other tasks, depending on the unknown factor of ‘memory precision.’ As a result, TCC is 
strongly preferred to mixture models by a Bayes factor model comparison (group Bayes factor 
preference for TCC > 200:1, individual subjs: t(54)=11.19, p<0.001; Fig. S9). 
 
In a second experiment, we went further, showing that a single measure d′ -- again measured 
with 2-AFC with maximally distinct 180° foils -- can predict how participants perform when there 
are more response options, up to and including continuous report, again with no free 
parameters (Figure 5). In this experiment we again found a strong preference for TCC’s 
prediction over the mixture model models in generalizing from 2-AFC to continuous report, 
which is the only condition the mixture model can be fit to (group BIC preference for TCC > 
650:1, individual subjects: t(51)=7.64, p<0.001), and found that 2-AFC d′ measured in the 
standard way maps directly to TCC’s d’, which explains the full continuous report distribution. 
The lopsided Bayes factors arise because TCC precisely predicts the outcomes (outcomes that, 
when tested, are empirically observed), whereas competing models necessarily claim that the 2-
AFC data are insufficient to completely measure memory since it does not measure the 
‘precision’ of memory. 
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Figure 5. (A) According to TCC, the d’ in a 2AFC task is fundamentally the same d’ in continuous report 
tasks (or any other AFC task). Thus, unlike other models, TCC makes a strong prediction that d’ as 
measured with a 180 degree foil is completely sufficient to predict all of memory across any number of 
options presented at test, including completely sufficient to predict the entire distribution of errors in 
continuous report (since ultimately this distribution does not arise from distinct psychological states, but 
simply from combining the fixed similarity structure of the stimulus space with memory strength). To 
assess this, participants studied 4 items and were then tested with a 2-AFC, 8-AFC, 60-AFC or 
continuous report (360-AFC). During 2AFC trials, the foil was always 180 degrees away, which we used 
to calculate d’. We then used this measured d’ to predict, with no parameters, 8-, 60-, and 360-AFC 
performance via TCC. This provides further evidence there is no need for forgotten or low-precision items 
to account for the tail of continuous report distributions. Instead, for a given stimulus space, the 
continuous report distribution is modulated by memory strength but is otherwise always the same shape, 
determined by the shape of the similarity function for that stimulus space. (B) Taking only the 2-AFC data 
and the continuous report data as an example, we can also independently estimate d’ from the data from 
these two tasks. We find a strong subject-level correspondence between TCC’s continuous-report 
estimate of d’ and d’ estimated from the 2-AFC task in the traditional way, in line with what is expected 
simply from the noise ceiling of these measurements. 
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Thus, with TCC, measuring only how well participants can distinguish between far apart test 
items (0° vs.180°) using a 2-AFC task is sufficient to completely predict the distribution of 
responses from a continuous report task and to predict 2-AFC performance for distinguishing 
targets and foils of varying similarity, so long as the 2-AFC task is not at ceiling or floor. 
Together, these experiments provide strong evidence against previous models of visual working 
memory where the tails of the continuous-report distribution (the only aspect of performance 
measured with 180° foils in 2-AFC) are fundamentally distinct from the center of the distribution 
(e.g., in the competing models responses in the tail result from ‘guesses’ or ‘low precision’, 
whereas the central responses result from high precision memories). In addition, this discovery 
allows the reintegration of a huge literature on change detection with very distinct foils, with 
important theoretical and clinical implications26, as it shows that measuring d′ with maximally 
distinct foils is sufficient to fully understand memory response distributions.  
 
Generalization across different stimulus spaces. So far we have focused largely on color 
space, which is the dominant way visual working memory is studied7. However, TCC is not 
limited to color and can be applied to any stimulus space. To show this generality, we applied 
TCC to the case of face identity, since it is a complex stimulus space that contains multiple low 
and high level features. Using a previously created face-identity continuous report procedure27, 
we collected memory data for set size 1 and 3. We also measured the psychophysical similarity 
function and measured the accuracy of perceptual matching on this face space (Fig. 6). Again, 
we found the TCC fit observed memory data remarkably well across both set sizes 1 and 3 (see 
Fig. 6) and fit reliably better than existing mixture models (Table S3).  
 
Thus, TCC accounts for data across a variety of stimulus spaces: as long as the perceptual 
similarity space of the stimuli is measured using psychophysical scaling, TCC’s straightforward 
signal detection account with only a single d' parameter accurately captures the data. 
 
Generalization across different memory systems. To demonstrate TCC’s applicability to 
multiple memory systems, not just visual working memory, we fit data from a previously 
collected visual long-term memory continuous report task with colors28. Participants performed 
blocks where they sequentially saw 40 real-world objects’ that were randomly colored, and then 
after a delay, were shown each object one at a time in grayscale and reported both whether the 
object was old or new and the color of the object using a color wheel (as in Brady et al.29). Some 
items were seen only once, and some repeated twice in the same color within a block (Fig. 6C). 
We fit color reports for previously seen items that were reported as having been seen (hits; see 
Methods). Again, we found that TCC fit the observed memory data remarkably well across both 
the unrepeated and repeated items (Fig. 6D). Thus, unlike working memory modeling 
frameworks which propose system-specific mechanisms (e.g., population coding combined with 
divisive normalization22), TCC naturally fits data from both visual working memory and long-term 
memory with the same underlying similarity function and signal detection process applicable 
across both memory systems.  
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Figure 6. (A) Using a ‘quad’ similarity task to reduce relational encoding, and the same MLDS method 
and perceptual matching task as with color, we collected a psychophysical distance function for face 
identity. (B) TCC fits to working memory data using face identity at set size 1 and 3 (R2=0.993, p<0.001; 
R2=0.970; p<0.001). TCC accurately captures face identity data, demonstrating its generalizability across 
diverse stimulus spaces. (C) To show generalization to other memory systems, we fit data on a visual 
long-term memory continuous report task with colors28. Participants performed blocks of memorizing 40 
items, and then after a delay, reported the colors of the items using a color wheel. Some items were seen 
only once, and some repeated twice in the same color within a block. (D) TCC fits to visual long-term 
memory data for ‘old’ items reported as ‘old’, for items seen only once and for items repeated twice 
(R2=0.96, p<0.001; R2=0.98; p<0.001). TCC accurately captures visual long-term memory data, 
suggesting the psychological similarity function is a constraint on both working and long-term memory 
systems. Note that long-term memory performance in this task likely depends on a two-part decision -- 
item memory and source memory (e.g., the object itself, and then its color). This two-part decision is 
related to the processes of recollection and familiarity, but we do not address this here because we focus 
on understanding color reports only to items judged as ‘old’ (i.e., conceivably where item memory 
strength was strong).  
 
Implications of TCC: no objective guessing. One particularly important implication of TCC’s 
fit to the data is that there is little-to-no objective “guessing” in working memory, and so its 
strong fit to the data provides evidence against a fixed capacity limit where participants only 
remember ~3-4 items1,2 and consistent with more continuous conceptions of working memory4. 
That is, while colors far from the target in color space sometimes ‘win the competition’, this is 
not because the target was fundamentally unrepresented or varied in encoded memory strength 
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trial to trial. In a stochastic competition, the strongest representation does not always win. 
Moreover, the target will be more likely to lose the competition the weaker its representation is. 
Critically, in TCC, the target is always represented -- that is, people’s familiarity signals are 
never unaffected by what they just saw 1 second ago (as in d′=0). 
 
While these conclusions follow from the excellent fits of the straightforward 1-parameter model 
to a wide variety of data and the generalization from maximally-distinct 2-AFC to other 
conditions, to evaluate this claim further, we assessed a 2-parameter hybrid model based on 
TCC but mixed with objective ‘guessing’. This hybrid model assumes only a subset of items are 
represented and that the remainder have d′=0. Focusing on the highest set sizes (6 and 8), we 
found such a model was dispreferred in model comparisons in 100% of subjects sizes 
compared to TCC (mean BIC: -6.3, SEM: 0.20; p<0.0001). Furthermore, while this hybrid model 
accurately recovered its own parameters from simulated hybrid data, showing it detects 
objective ‘guessing’ if it is present (Fig. 7C), when fit it to empirical data it estimates ‘guessing’ 
rates near 0 in every set size in group data (Fig. 7B), and a guess rate <5% in the majority of 
individual subjects at every set size. Thus, although some items may occasionally have a d′ of 0 
(perhaps because they were completely unattended during encoding), it appears to happen too 
infrequently to appreciably affect the fit, and it happens far less often than required for ‘slot’ 
models of working memory that suppose 4-5 of the 8 items are always entirely unrepresented2. 
This demonstrates it is possible to detect “random guesses” if present in the data, but TCC finds 
no evidence for such objective ‘guessing’. Critically, like any standard signal detection model, 
TCC naturally accounts for the subjective feeling of guessing/low confidence18 (Fig. S10, S11).  
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Figure 7. (A) To validate whether TCC could detect objective guessing  (i.e. a separate psychological 
state with no information) if present in the data, we considered a mixture of responses from TCC plus 
objective guessing, creating a mixture model of TCC and a uniform distribution. (B) Although model 
comparison strongly preferred TCC with no guessing, we nevertheless fit a hybrid TCC+guessing model 
(2 parameters) to real participant data, and found that the guessing parameter in real data is estimated at 
~0 across all set sizes. (C) However, when fitting the hybrid TCC+guessing model to simulated data, we 
observed accurate recovery of guessing if present in the data -- even 20% ‘guesses’ added to set size 8 
d′ levels is accurately recovered and never estimated as 0 (data are violin plots, showing entire 
distribution of recovered parameters). Furthermore, model comparison metrics -- even those, like BIC, 
designed to prefer simpler models -- prefer the hybrid model with the guessing parameter in every 
simulation with guessing added (all BIC>30:1 in favor of hybrid model). This provides strong evidence 
there is not objective guessing in visual working memory data, and that our modeling with TCC would be 
able to detect this guessing if it was present.  
 
Another critical distinction between signal detection models and those that predict a number of 
items which are lost completely or nearly completely7 is that TCC predicts a curvilinear receiver 
operating characteristic (ROCs; as all signal detection models do18), whereas models where 
some items are unrepresented, as previous mixture models claim, predict a linear relationship 
between hit and false alarm rates when foils are very distinct30 (Fig. 8). This is because 
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threshold models predict that represented items contribute only to hit rates, as no represented 
item is ever so-imprecise as to cause people to pick a 180° foil over a target. In contrast, TCC 
makes a clear prediction that ROCs should be curvilinear because all items are stored with 
noise (Fig. 8B). 
 
To generate ROC data, the rating method (based on confidence) is preferable to alternative 
methods that seek to manipulate response bias across conditions (e.g., by varying payoffs or 
signal-presentation probability), which often yield a limited range of data and may also change 
the nature of the underlying internal signal across points31. Thus, we asked participants to 
detect whether a given color is old or new (change detection) and give their confidence, again 
with very distinct foils (180 degrees).  
 
We find clear evidence in favor of a signal detection process underlying working memory 
decisions: ROCs are reliably curvilinear (Fig. 8C) and z-ROCs at the highest set size do not 
show the positive quadratic component predicted by high-threshold models32 (set size 6: mean 
z-ROC quadratic component: -0.13, SEM 0.113,t(52)=1.28, p=0.21). In addition, the ROCs are 
nearly symmetric, consistent with the idea that all items are represented with approximately the 
same underlying memory strength. Unequal memory strength between items results in z-ROC 
slopes below 1.0, but we find these slopes are very close to 1.0 even at set size 6 (z-ROC 
slopes: set size 3, 1.06, SEM 0.18, set size 6: 0.96, SEM 0.04). Together, the ROC analyses 
provide further evidence that all items are represented with noise and with approximately the 
same memory strength. This provides evidence for TCC’s claim that most of the variation in 
response precision arises because of the stochastic noise characteristic of a signal detection 
process, not because some items are unrepresented7 or because items vary widely in encoding 
strength8.  
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Figure 8. (A) Participants completed a change detection task with 180 degree changes. After reporting 
whether the test item was old or new, participants then reported the confidence of their decisions on a 1-6 
scale (1 = no confidence, 6 = extremely confident). (B) We can use the confidence data to create receiver 
operating characteristics (ROC curves), in which signal detection theory makes a clear prediction contrary 
to several existing theories of working memory. For example, a threshold (slot or continuous resource) 
model of working memory predicts ROC curves should be linear, as if some items are forgotten (via 
guesses or having very low precision), only remembered items can add to hits during 180 degree 
changes. In contrast, signal detection theory dictates all items are stored with some noise, and thus the 
ROC should be curvilinear – and if all items are represented with approximately equal d′, the curves 
should also be symmetric. (C) ROC curves are clearly curvilinear across all set sizes (including set size 
1), as predicted by TCC. These ROC curves are approximately symmetric, providing further support for 
the idea that all items are represented with similar d′ as opposed to items varying significantly in d’ from 
each other (which creates an unequal variance ROC).  
 
Discussion 
Most previous theories and models of visual working memory have not considered the 
relationship between stimuli and the psychological similarity of those stimuli. In the absence of 
psychophysical scaling and without regard for its theoretical implications, the use of these 
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models has led to what seem to be illusory independent estimates of ‘capacity’ and ‘precision’ 
and to arguments for limited capacity characterized by so-called “discrete failures” of working 
memory,  attention33, iconic memory34 and long-term memory35. Indeed, claims about selective 
deficits in clinical populations36-38, and even about the nature of consciousness33 have been 
made based on dissociations between model-based estimates of ‘precision’ and ‘capacity’. 
However, we have shown these apparent dissociations are an illusion of modeling the data 
without taking into account the structure of the stimulus space (Fig. S6-8). When the global 
similarity structure of stimuli is taken into account, TCC provides a unifying theory of visual 
memory strength, one that is capable of bridging distinct tasks and stimulus conditions that 
would not be possible using previous models and that undermines the interpretation of apparent 
‘discrete’ failures of attention and memory33-38.  
 
The role for variability between items in the TCC. 
While the TCC rejects the idea that the distribution of responses collected from continuous 
report is explained primarily by remembered and not-remembered items (or items that are 
encoded with extremely different precisions8), this does not mean some variability between 
items is not present in working memory tasks. Psychophysical scaling naturally accounts for 
many stimulus-specific variability effects (Fig. S5). Furthermore, in light of the signal detection 
framework of TCC, much of the existing evidence for ‘variable precision’ does not actually 
provide direct evidence of variability in the d′ parameter of the TCC model. Many aspects of 
variability between items arise in TCC naturally from the independent noise added to different 
items that is at the heart of signal detection, such as the effect of varying confidence on 
continuous report data or allowing participants to choose their best item for report (Fig.S10, 
S11). Thus, it remains an open question to what extent d′ varies between items and trials, with 
the relatively-equal variance ROC data at set size 6 suggesting that there is likely surprisingly 
little variation in memory strength between items even at set size 6. Critically, we show that 
mixing in items that are unrepresented (d′=0) is inconsistent with the data. Thus, any variability 
in d′ that does exist across items likely does not include an appreciable role for items with d′ = 0. 
 
Potential mechanisms 
While TCC is a theory about the fundamental nature of the underlying memory signal in visual 
working and long-term memory tasks, and about how this signal is used to make decisions, 
there are many potential cognitive and neural explanations (shared or independent across 
systems) that may instantiate the model. Indeed, in long-term memory, signal detection models 
have often been conceptualized in relation to neural measures, including both neuroimaging39 
and single-unit recording40.  
 
The central feature of TCC is the psychophysical similarity measurement, which provides the 
basis for the straightforward signal detection model. This similarity function is naturally 
understood using models of efficient coding15  or population coding22. For example, the idea that 
far away items in feature space are all approximately equally similar arises naturally from 
population codes -- if individual neurons’ tuning functions only represent a small part of color 
space (e.g., 15° on the color wheel), there would be extremely limited overlap in the population 
of neurons that code for any two colors even a medium distance apart on the wheel.  
 
Thus, the current model is in many ways related to existing models of working memory based 
on population codes22,41. Indeed, the similarities between the framework of population coding 
and the cognitive model proposed here offers significant promise for bridging across levels of 
understanding in neuroscience, with a population coding implementations of TCC possible42,43. 
However, as compared to existing population-based models22, the cognitive basis of the current 
model -- with the measured scaling function following the well-known cognitive laws of 
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similarity14,16 -- allows us to fit data with an extremely simple 1-parameter model that draws 
strong connections to signal detection theory and long-term memory that are not apparent when 
thinking about population coding alone without this cognitive basis. In addition, framing our 
model in terms of signal detection theory allows a very general model of the decision process, 
compared to population coding models where the decision process is based on variability in 
spikes22, which are hard to reconcile with data from high-level stimuli like faces and data from 
long-term memory.  
 
Previous work has shown psychophysical similarity metrics are likely distinct for different stimuli 
in the same stimulus space (e.g., memory varies across colors9-10; see Fig S5). The underlying 
space upon which the exponential similarity function is imposed may be designed to take 
advantage of efficient coding of environmental regularities44, such that the more frequent the 
stimuli, the more neural resources we devote, giving improved discriminability and predictable 
memory biases45. Taking this into account may allow a simple parameterization of not only the 
average similarity function, but the particular functions for individual stimuli (as in Fig. 1D, S5). 
In addition, psychophysical similarity may not be a fixed property but may be dependent on how 
the current environment affects discriminability46,47. For example, memory biases are altered 
when discriminability is affected by adaptation or contextual effects45.  
 
Signal detection, guessing, and connections to long-term memory. 
A key component of previous mixture model frameworks has been that observers are either in a 
“memory state,” with relatively high-precision information available, or they are in a “guess 
state”, with either no information or (extremely) low information available33-38. Under signal 
detection theory, there is no distinction between “memory” and “guess” states as previously 
theorized. Instead, both high and low confidence and high and low error responses arise 
naturally through the same underlying process. Subjectively, guessing still occurs, but it occurs 
when the information upon which the decision is made is non-diagnostic, not when task-relevant 
information is absent (Fig S11).  
 
The distinction is subtle but critical. In TCC, when d′ is low, all of the stimuli on the response 
wheel may yield similarly low memory-match signals. Because the signals are largely non-
diagnostic, every stimulus is almost equally likely to yield the strongest signal upon which the 
decision is based. Thus, responding will be essentially random, and decisions will feel like 
guessing. Nevertheless, such decisions are still based on information (namely, the strongest 
memory signal, weak as it may be) and are therefore not random guesses akin to a coin flip in 
the absence of information. In addition, TCC (like all signal detection models) is based 
fundamentally on the idea of sampling (and potentially re-sampling48) as the basis of memory 
judgments, providing an alternative explanation for many phenomena in memory that have been 
taken as evidence of a high-threshold view where people are assumed to make many all-or-
none guesses.  
 
TCC provides a compelling connection between working memory and long-term recognition 
memory, which is often conceptualized in a signal detection framework. In particular, it can be 
naturally adapted to explain a number of findings that are in common between the working 
memory and long-term memory literatures but have been difficult to explain with previous 
working memory models, like the relationship between confidence and accuracy49,50 (Fig. S10) 
and the ability of participants to respond correctly when given a second chance even if their first 
response was a ‘guess’ or ‘low precision response’(Fougnie et al. in revision). Thus, despite 
research on working and long-term memory operating largely independent of one another, TCC 
provides a unified framework for investigating the distinctions and similarities in memory across 
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both domains by emphasizing that competition and perceptual confusability between items is a 
major limiting factor across both working memory and long-term memory. 
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Methods  
All conducted studies were approved by the Institutional Review Board at the University of 
California, San Diego, and all participants gave informed consent before beginning the 
experiment. All color experiments used a circle in CIE L*a*b* color space, centered in the color 
space at (L = 54, a = 21.5, b = 11.5) with a radius of 49. Some experiments were run in the lab, 
while others were conducted using Amazon Mechanical Turk. Mechanical Turk users form a 
representative subset of adults in the United States51, and data from Turk are known to closely 
match data from the lab on visual cognition tasks52,53, including providing extremely reliable and 
high-agreement on color report data54. Any systematic differences between the lab studies – 
where we collect most memory data – and the Turk studies – where we collect most similarity 
data – would decrease the appropriateness of the similarity function for fitting the memory data, 
hurting the fit of TCC.   
 
1. Fixed distance triad experiment. N=40 participants on Amazon Mechanical Turk judged 
which of two colors presented were more similar to a target color. The target color was chosen 
randomly from 360 color values that were evenly distributed along a circle in the CIE L*a*b* 
color space, as described above. The pairs of colors were chosen to be 30 degrees apart from 
one another, with the offset of the closest color to the target being chosen with an offset (in deg) 
of either 0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 120, 150 (e.g., in the 150 degree offset 
condition, the two choice colors were 150 and 180 degrees away from the target color; in the 0 
deg offset condition, one choice exactly matched the target and the other was 30 deg away). 
 
Participants were asked to make their judgments solely based on intuitive visual similarity and to 
repeat the word ‘the’ for the duration of the trial to minimize the use of verbal strategies. Each 
participant completed 130 trials, including 10 repeats of each of the 13 offset conditions, each 
with a different distance to the closest choice color to the target, and trials were conducted in a 
random order. The trials were not speeded, and the colors remained visible until participants 
chose an option. To be conservative about the inclusion of participants, we excluded any 
participant who made an incorrect response in any of the 10 trials where the target color exactly 
matched one of the choice colors, leading to the exclusion of 7 of the 40 participants, and based 
on our a priori exclusion rule, excluded any participants whose overall accuracy was 2 standard 
deviations below the mean, leading to the exclusion of 0 additional participants. In addition, 
based on an a priori exclusion rule, we excluded trials with reaction times <200ms or >5000ms, 
which accounted for 1.75% (SEM:0.5%) of trials. The data from a subset of offset conditions is 
plotted in Figure 1C, and the full dataset is plot in Figure S1.  
 
2. Psychophysical scaling triad experiment. N=100 participants on Mechanical Turk judged 
which of two colors presented were more similar to a target color, as in the fixed distance triad 
experiment. However, the pairs of colors now varied in offset from each other and from the 
target to allow us to accurately estimate the psychophysical distance function. In particular, the 
closest choice item to the target color could be one of 21 distances away from the target color: 
0, 3, 5, 8, 10, 13, 15, 20, 25, 30, 35, 45, 55, 65, 75, 85, 100, 120, 140, 160, or 180 degrees. If 
we refer to these offsets as oi, such that o1 is 0 degrees offset and o21 is 180 degrees offset, 
then given a first choice item of oi, the second choice item was equally often oi+1, oi+2, oi+3, oi+4, 
or oi+8 degrees from the target color (excluding cases where such options were >21). 
 
Participants were asked to make their judgments solely based on intuitive visual similarity and to 
repeat the word ‘the’ for the duration of the trial to prevent the usage of words or other verbal 
information. Each participant completed 261 trials, including 3 repeats of each of the possible 
pairs of offset conditions, and trials were conducted in a random order.  The trials were not 
speeded, and the colors remained visible until participants chose an option. Following our a 
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priori exclusion rule, we excluded any participant whose overall accuracy was 2 standard 
deviations below the mean (M=77.5%) leading to the exclusion of 8 of the 100 participants. In 
addition, based on an a priori exclusion rule, we excluded trials with reaction times <200ms or 
>5000ms, which accounted for 1.7% (SEM:0.26%) of trials.  
 
To compute psychophysical similarity from these data, we used the model proposed by Maloney 
and Yang13, the Maximum Likelihood Difference Scaling method. This method can be adapted 
to measure the appropriate psychophysical scaling of similarity between colors as a function of 
the distance between colors along the wheel. In particular, any given trial has a target color, Si, 
and two options for which is more similar, Sj and Sk,. Let lij = Sj – Si, the length of the interval 
between Si and Sj on the color wheel, which is always in the set [0,3,5,...180], and ψij, the 
psychophysical similarity to which this distance corresponds. If people made decisions without 
noise then they should pick item j if and only if ψij > ψik. We add noise by assuming participants 
decisions are affected by Gaussian error, such that they pick item j if ψij + ε > ψik. We set the 
standard deviation of the Gaussian ε noise to 1, consistent with a signal detection model. Thus, 
the model has 20 free parameters, corresponding to the similarity scaling values for each 
possible distance length (e.g., how similar a distance of 5 or 10 on the color wheel really is to 
participants), and then we fit the model using maximum likelihood search (fmincon in MATLAB). 
Thus, these scaled values for each interval length most accurately predict observers’ similarity 
judgments, in that equal intervals in the scaled space are discriminated with equal performance. 
Once the scaling is estimated, we normalize the psychophysical scaling parameters so that 
psychophysical similarity ranges from 0 to 1.   
 
3. Likert color similarity experiment. N=50 participants on Mechanical Turk judged the 
similarity of two colors presented simultaneously on a Likert scale, ranging from 1 (least similar) 
to 7 (most similar). The colors were chosen from a wheel consisting of 360 color values that 
were evenly distributed along the response circle in the CIE L*a*b* color space. The pairs of 
colors were chosen by first generating a random start color from the wheel and then choosing 
an offset (in degrees) to the second color, from the set 0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 
120, 150, 180. Participants were given instructions by showing them two examples: (1) in 
example 1, the two colors were identical (0 deg apart on the color wheel) and participants were 
told they should give trials like this a 7; (2) in example 2, the two colors were maximally 
dissimilar (180 deg apart on the color wheel) and participants were told they should give this 
trial a 1. No information was given about how to treat intermediate trials. Participants were 
asked to make their judgments solely based on intuitive visual similarity and to repeat the word 
‘the’ for the duration of the trial to prevent the usage of words or other verbal information. Each 
participant did 140 trials, including 10 repeats of each of the 14 offset conditions, each with a 
different starting color, and trials were conducted in a random order. The trials were not 
speeded, and the colors remained visible until participants chose an option. 2 participants were 
excluded for failing a manipulation check (requiring similarity >6 for trials where the colors were 
identical). Based on an a priori exclusion rule, we excluded trials with reaction times <200ms or 
>5000ms, which accounted for 3.0% (SEM:0.4%) of trials. Similarity between two colors 
separated by x° was measured using a 7-point Likert scale, where Smin = 1 and Smax = 7. To 
generate the psychophysical similarity function, we simply normalize this data to range from 0 to 
1, giving a psychophysical similarity metric, such that f(x) = ((Sx  - Smin) / (Smax - Smin)). 
 
4. Perceptual matching experiment. N=40 participants on Mechanical Turk were shown a 
color and had to match this color, either using a continuous report color wheel (100 trials) or 
choosing among 60 options (100 trials; spaced 6 degrees apart on the color wheel, always 
including the target color). The 60-AFC version was designed to limit the contribution of motor 
noise, since the colors in this condition were spaced apart and presented as discrete boxes that 
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could not easily be ‘misclicked’. Colors were generated using the same color wheel as other 
experiments, and participants had unlimited time had to choose the matching color. The color 
and color wheel/response options remained continuously visible until participants clicked to lock 
in their answer. The color was presented at one of 4 locations centered around fixation 
(randomly), approximately matching the distance to the color wheel and variation in position 
used in the continuous report memory experiments. 1 participant’s data was lost due to 
experimenter error and 2 participants were excluded for an average error rate greater than 2 
standard deviations away from the mean. 
 
To convert this data into a perceptual correlation matrix -- asking how likely participants are to 
confuse a color x degrees away in a perception experiment -- we relied upon the 60-AFC data 
alone, since this data has no contribution from motor noise and so is solely a measure of 
perceptual noise. However, using the continuous report data instead result in no difference in 
any subsequent conclusions, as the contribution of motor noise in that task appeared to be 
minimal. To create the perceptual correlation matrix, we created a normalized histogram across 
all participants of how often they made errors of each size up to 60 degree errors (-60, -54… 0, 
… 54, 60), and then linearly interpolated between these to get a value of the confusability for 
each degree of distance. We then normalized this to range from 0 to 1.  
 
5. Modeling Data Using the Target Confusability Competition (TCC) Model. The model is 
typical of a signal detection model of long-term memory, but adapted to the case of continuous 
report, which we treat as a 360 alternative forced-choice for the purposes of the model. The 
analysis of such data focuses on the distribution of errors people make measured in degrees 
along the response wheel, x, where correct responses have x=0° error, and errors range up to 
x=±180°, reflecting the incorrect choice of the most distant item from the target on the response 
wheel (Fig. 1B). In the TCC model, when probed on a single item and asked to report its color, 
(1) each of the colors on the color wheel generates a memory-match signal mx, with the strength 
of this signal drawn from a Gaussian distribution, mx ~ N( dx, 1), (2) participants report 
whichever color x has the maximum mx, (3) the mean of the memory-match signal for each 
color, dx, is determined by its psychophysical similarity to the target according to the measured 
function (f(x)), such that dx = d′ f(x) (Figure 2) and the noise is correlated across nearby colors 
according to confusability in a perceptual matching task. As f(x), the psychophysical similarity 
function, we use the smooth function estimated from the Likert similarity experiment although 
the triad task modeled similarity function predicts fundamentally the same results (Fig. S4).  
 
According to the model, the mean memory-match signal for a given color x on the working 
memory task is given by dx = d′ f(x), where d′ is the model’s only free parameter. When x = 0, 
f(x) = 1, so d0 = d′. By contrast, when x = 180, f(x) = 0, so d180 = 0. Then, as noted above, at test 
each color on the wheel generates a memory-match signal, mx, conceptualized as a random 
draw from that color’s distribution centered on dx. That is, if the noise was uncorrelated between 
nearby colors, mx ~ N( dx, 1). The response (r) on a given trial is made to the color on the wheel 
that generates the maximum memory-match signal, r = argmax(m).  
 
Thus, the full code for sampling an absolute value of error from such a TCC-like (uncorrelated 
noise) model is only two lines of MATLAB: 
 
     memoryMatchStrengths = randn(1,180) + similarityFunction * dprime; 
     [~,memoryError] = max(memoryMatchStrengths); 
 
This model fits the data well as-is (see Fig. S2), but as specified so far, this model assumes that 
360 independent color probes elicit independently noisy memory-match signals. The shape of 
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the distributions the model predicts are effectively independent of how many color channels we 
assume, so this number is not important to TCC’s ability to fit working memory data, but the d′  
value in the model does change depending on the number of color channels used, and so to 
make the d’ value in TCC comparable to real signal detection d′ values, it is important to 
consider “how many” color channels people are accessing.   
 
Rather than make this a discrete decision (e.g., people consider 30 channels), we instead 
estimated the covariance between nearby channels in a continuous manner. The familiarity 
value of color 181 and 182 on the wheel cannot possibly be fully independent, since these two 
colors are perceptually indistinguishable. Following this intuition, we make a simple assumption: 
the amount of shared variance in the noise between any two color channels is simply how often 
colors at that distance are confused in a perceptual matching task. Thus, p(x), the correlation in 
the noise between any two colors x apart on the color wheel, is given by Cx / C0, where Cx is how 
often colors x degrees away from the target are chosen in the perceptual matching task (with 
these values interpolated from the histogram of errors; see Methods section 4). On average, 
colors 1 degree away are chosen about 96% as often as the correct color in the matching task, 
so the noise between any two channels 1 degree apart is assumed to share 96% of its variance; 
82% at 5 degrees; etc. Thus, having measured both the similarity function and the perceptual 
matching matrix, to sample from the full (correlated-noise) TCC model, we can use MATLAB 
code that is nearly as straightforward as the uncorrelated model: 
 

memoryMatchStrengths  = mvnrnd(similarityFunction * dprime, percepCorrMatrix); 
[~,memoryError] = max(memoryMatchStrengths); 
 

Thus, in the full version of TCC, the mean of the memory-match signal for each color, dx, is 
determined by its psychophysical similarity to the target according to the measured function f(x), 
which is taken to be symmetrical for the fitting based on the averaged similarity data, such that 
dx = d′ f(|x|), for x’s [-179,180]. The covariance between colors (R) is given by the perceptual 
confusability of colors at that distance, p(x), which is also taken to be symmetric: 

 

R = 

 

p(0) p(1) p(2) ... p(180) p(179) ... p(2) p(1) 

 
p(1) p(0) p(1) ... p(179) p(180) ... p(3) p(2) 
p(2) p(1) p(0) ... p(178) p(179) ... p(4) p(3) 
...        ... 

p(180) p(179) p(178) ... p(0) p(1) ... p(178) p(179) 
p(179) p(180) p(179) ... p(1) p(0) ... p(177) p(178) 

...        ... 
         

p(1) p(2) p(3) ... p(179) p(178) ... p(1) p(0) 

 
To use the perceptual correlation data as the covariance in the correlated model, because it 
might not always be a perfect correlation matrix (e.g., not perfectly symmetric, as it was based 
on real data), we first computed R and then iteratively removed negative eigenvalues from this 
matrix and forced it to be symmetric until it was a valid correlation matrix. This resulted in only 
minimal changes compared to the raw perceptual correlations inferred from the perceptual 
confusability data. 
 
Then let (X-179, ... , X180) be a multivariate normal random vector with mean d, unit variance, and 
correlation matrix R. The winning memory strength (m; i.e., subjective confidence) and reported 
color value, r, are then the max and argmax, respectively, of this vector:  
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 m = max(X-179, ... , X180) 
r = argmax(X-179, ... , X180) 

 
And the error, e, is the circular distance from r to 0. The distribution of m is in theory directly 
computable55, but we rely on sampling from this distribution for the fits in the current paper (see 
below).  

 
Although also not important to the fit of the current data, the model can also be adapted to 
include a motor error component. Whereas existing mixture models predict the shape of the 
response distribution directly and thus confound motor error with the standard deviation of 
memory (see Fougnie et al.56 for an attempt to de-confound these), our model makes 
predictions about the actual item that participants wish to report. Thus, if participants do not 
perfectly pick the exact location of their intended response on a continuous wheel during every 
trial, a small degree of Gaussian motor error can be assumed to be included in responses, e.g., 
the response on a given trial, rather than being argmax(X-179, ... , X180), likely includes motor 
noise of some small amount, for example, 2°: 
 

r ~ N(argmax(X-179, ... , X180), 2°)  
 

In the model fitting reported in the present paper, we include a fixed normally distributed motor 
error with SD=2°, although we found the results are not importantly different if we do not include 
this in the model. 
 
For fits using the uncorrelated noise model, fits of the d’ parameter of the model to datasets 
were performed using the MemToolbox57 making use of maximum likelihood. For fits of the 
correlated model -- which is difficult to compute a likelihood function for but straightforward to 
sample from -- we relied on sampling 500,000 samples from the model’s error at each of a 
range of d’ values (0 to 4.5 in steps of 0.02) and slightly smoothing the result to get a pdf for the 
model at each d’ value. The uncorrelated noise version of TCC -- which can be directly 
maximized -- results in the same fits as the correlated version, with d’ linearly scaled by ~0.65. 
(See Supplement S2). Thus, it is also possible to fit the uncorrelated version through maximum 
likelihood with the appropriate adjustment to d’, and doing so results in the same fits. 
 
6. Continuous color report data (set size 1, 3 and 6, 8). The continuous color report data 
used for fitting the model was collected in the lab to allow a larger number of trials per 
participant. N = 20 participants performed 100 trials of a memory experiment at each of set size 
1, 3, 6 and 8, for a total of 400 trials (plus 4 practice trials). The display consisted of 8 
placeholder circles. Colors were then presented for 1000ms, followed by an 800ms ISI. For set 
sizes below 8, the colors appeared at random locations with placeholders in place for any 
remaining locations (e.g. at set size 3, the colors appeared at 3 random locations with 
placeholders remaining in the other 5 locations). Colors were constrained to be at least 15° 
apart in color space along the response wheel. After the ISI, a target item was probed by 
marking a placeholder circle was marked with a thicker outline, and participants were asked to 
respond on a continuous color wheel to indicate what color had been presented at that location. 
Error was calculated as the number of degrees on the color wheel between the probed item and 
the response. 
 
7. Continuous report memory as a function of delay (set size 1, 3, 6). N = 20 participants in-
lab completed a color working memory task similar to the previous high set size experiment, but 
with the following exceptions. Participants performed 12 blocks of 75 trials (900 trials total). 
Each block contained an equal number of trials at set size 1, 3, and 6. The display consisted of 
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6 placeholder circles. Colors were presented for 500ms, and followed by a delay of either 
1000ms, 3000ms, or 5000ms. Delay time was blocked, and participants were informed at the 
beginning of each block the delay time for that block. Each combination of the 3 set sizes and 
the 3 delays was used in 100 trials.  
 
8. Continuous report memory as a function of encoding time (set size 1, 3, 6). N = 20 
participants in-lab completed a color working memory task identical to the delay experiment, but 
with the following exceptions. Participants performed 12 blocks of 75 trials. Each block 
contained an equal number of trials at set size 1, 3, and 6. Colors were presented for either 
100ms, 500ms, or 1500ms. Encoding time was blocked, and participants were informed at the 
beginning of each block the encoding time for that block. Following encoding, there was a 
1000ms delay before a target item was probed. Each combination of the 3 set sizes and the 3 
encoding times was used in 100 trials.  
 
9. Model comparisons to mixture models. For all model comparisons in the paper, we 
created new versions of mixture models designed to be directly comparable to TCC. In 
particular, to make predictions derived from mixture models comparable to those derived from 
TCC (which specifies a probability of response discretely for each 1 degree of the wheel, not 
over a continuous distribution), we use discrete versions of the 2-parameter and 3-parameter 
mixture models in which the probabilities of the data are normalized over each of 360 possible 
integer error values (not over the continuous space of errors).  
 
We performed two types of model comparisons: one to simply assess the fit of the model to the 
data, and one designed to penalize more complex models. In particular, we first performed a 
cross-validation procedure to assess the fit of each model58. Specifically, we fit the TCC and the 
2- parameter and variable precision mixture models to data from each set of N-1 trials 
separately for each subject and set size and then evaluated the log-likelihood of this model 
using data from the single held out trial. We then assessed the reliability of this likelihood 
difference across subjects separately for each set size. TCC and mixture models provided 
relatively comparable fits (see Table S2), which is to be expected given the mixture model can 
almost perfectly accurately mimic TCC (see Fig. S6) and given that the amount of data used to 
fit the models is much greater than the number of parameters in either model (which ranges 
from 1-3), so cross-validation provides effectively no penalty for complexity.  
 
We then compared how well the competing models (TCC; 2-parameter mixture model; 3-
parameter variable precision mixture model) fit data from individual participants for the color 
report data when using an explicit penalty for the greater complexity of the mixture models. In 
particular, we assessed BIC separately for each set size and each participant. We found a 
strong preference for TCC over both mixture models when penalizing complexity (Table S2). 
Note that this was true even though TCC fits are based on aggregated similarity functions from 
a different group of participants, suggesting the global structure of the psychophysical similarity 
function is largely a fixed aspect of a given stimulus space. Ideally, TCC would be fit with a 
similarity function specific to each individual target color (which can be done and predicts the 
appropriate deviations; see Fig. S5), which would almost certainly improve the fit of TCC even 
further with no added parameters (because the added complexity would simply be more 
measured perceptual data). However, in the current fits we rely solely on averaged similarity to 
demonstrate how it is the global, not local, structure of the similarity space that is critical to the 
fit of TCC.  
 
10. 2-AFC at different foil similarities. N=60 participants on Mechanical Turk completed 200 
trials of a 4-item working memory task. On each trial, they saw 4 colors randomly chosen from 
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the color wheel (subject to the constraint that no two colors were within 15 deg. of each other). 
The colors were presented for 1000ms and then after an 800ms delay, had to answer a 2-AFC 
memory probe about one of the colors. The foil color in the 2-AFC could be offset from the 
target 180, 72, 24, or 12 degrees (50 trials/condition). These conditions were interleaved so that 
participants needed to maintain detailed memories of the color on every trial, since conceivably 
if only 180 degree foils were present for a block or in an entire experiment, participants would be 
likely to encode only categorical, not perceptual information. The response options were 
presented at appropriate locations along a full color wheel -- e.g., the 180 degree foils were 
presented 180 deg. apart on the screen, and the 12 deg. foils were presented 12 deg. apart on 
the screen, to visually indicate the distance between the target and foil in color space. 
 
Performance was scored as the number correct out of 50 at each offset of the memory foil. 5 
participants were excluded for below chance performance in the maximally easy 180 deg. offset 
condition, leaving N=55 participants. 
 
In order to assess the predictions of TCC for this data in a way amenable to the use of Bayes 
factors, we took the number correct out of 50 in the 180 deg. foil condition and used this to 
calculate a distribution over d’ values (e.g., any given d’ predicts, according to the binomial 
function, a likelihood over all numbers of correct responses). In TCC, a given d′ value for 180-
foils predicts d′ for all other offsets straightforwardly, although for the correlated-noise TCC, 
performance is not simply d’ modulated by similarity (for similar foils, the correlated noise plays 
a role). Thus, to predict performance we sampled from the model repeatedly, e.g., for 24 deg. 
foils, in MATLAB notation: 
 

memoryMatchStrengths  = mvnrnd(similarityFunction * dprime180, percepCorrMatrix, 50); 
isCorrect=memoryMatchStrengths0deg>memoryMatchStrengths24deg 

 
In other words, to assess performance in the 24 deg. offset condition, we assumed responses 
were generated according to the argmax of only these values: 
 

r = argmax(X0, X24) 
 
To preserve all uncertainty, we marginalized over the distribution of d’ values implied by the 
number of correct trials in the 180 deg. foil case and used this to make a prediction about the 
distributions of correct answers expected for each of the other offset conditions. This allows us 
to understand the likelihood of each subjects’ performance in the other conditions given their 
180 deg. foil performance in TCC. 
 
To assess the likelihood of performance at different offsets in the mixture model framework of 
Zhang and Luck7, we use performance at the 180 deg. foil conditions to assess the “guess rate” 
of participants (guess rate = 1 - (2*percentCorrect180-1)) in the standard way (e.g., Brady et al. 
2008). However, in this framework, 180 deg. foils leave an unknown free parameter: memory 
precision cannot be assessed using such foils, and thus is free to vary. Thus, to predict a 
likelihood of each performance level at each other foil offset, we needed to marginalize over the 
unknown precision parameter. To minimize assumptions about this, we used the same prior on 
precisions that van den Berg et al.8 used when fitting both the standard mixture model and their 
own variable precision model, a uniform prior over the concentration parameter of the von Mises 
from 0-200. For any given ‘guess rate’ and ‘precision’, we then calculated the percentage of the 
PDF that was closest to each 2-AFC response option at each offset to generate a likelihood for 
the data (as in MemToolbox57). To calculate Bayes factors, we used a grid of values for both the 
d’ in TCC and for the precision in the mixture model, using steps of 1 in the precision and steps 
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of 0.01 in d’, and we assessed the summed log likelihood of each of the 3 other offsets (e.g., not 
including the 180 deg. condition) as our final data likelihood. 
 
11.  2-AFC generalization to n-AFC and continuous report. N=60 participants on Mechanical 
Turk completed 200 trials of a 4-item working memory task. On each trial, they saw 4 colors 
randomly chosen from the color wheel (subject to the constraint that no two colors were within 
15 deg. of each other). The colors were presented for 1000ms and then after an 800ms delay, 
had to answer a probe about one of the colors. This probe could be a 2-AFC (with 180 deg. 
different foil), an 8-AFC (with the choices equally spaced around the color wheel, and always 
including the target), a 60-AFC (similarly equally spaced), or continuous report (360-AFC).  
These conditions were interleaved so that participants needed to maintain detailed memories of 
the color on every trial, since conceivably if only 180 degree foils were present for a block or in 
an entire experiment, participants would be likely to encode only categorical, not perceptual 
information. The response options were presented at appropriate locations along a full color 
wheel -- e.g., the 2-AFC 180 degree foils were presented 180 deg. apart on the screen, and the 
60-AFC foils deg. foils were presented 6 deg. apart on the screen, to visually indicate the 
distance between the target and foils in color space. 
 
Performance was scored as the number correct out of 50 at each offset of the memory foil. One 
participant’s data was lost, and 7 participants were excluded for below chance performance in 
the maximally easy 2-AFC, 180 deg. offset condition, leaving N=52 participants. 
 
The simplest metric is simply to compare the d’ computed from 2-AFC performance (e.g., 
(norminv(hit)-norminv(fa))/sqrt(2)) to the d’ from fitting TCC to the continuous report data. These 
are identical up to the level of the noise in the fits (Fig. 5B).  
 
In order to assess the predictions of TCC for this data in a way amenable to the use of Bayes 
factors, we again took the number correct out of 50 in the 2-AFC 180 deg. foil condition and 
used this to calculate a distribution over d’ values (e.g., any given d’ predicts, according to the 
binomial function, a likelihood over all numbers of correct responses). In TCC, a given d’ value 
for 180-foils predicts d’ for all other n-AFCs (including 350-AFC) straightforwardly, simply first 
choosing the maximum out of the relevant foil options that are present, e.g., at 8-AFC: 
 

r = argmax(…, X-45, X0, X45, …) 
 
To preserve all uncertainty, we marginalized over the distribution of d’ values implied by the 
number correct in the 180 deg. foil case and used this to make a prediction about the 
distributions of responses to each foil expected for each of the other n-AFC conditions. This 
allows us to understand the likelihood of each subjects’ performance in the other conditions 
given their 180 deg. foil performance in TCC. 
 
To assess the likelihood of performance in continuous report given performance in the 2-AFC 
task,   in the mixture model framework of Zhang and Luck7, we use performance at the 180 deg. 
foil conditions to assess the “guess rate” of participants (guess rate = 1 - (2*percentCorrect180-
1)) in the standard way (e.g., Brady et al.59). However, in this framework, 180 deg. foils leave an 
unknown free parameter: memory precision cannot be assessed using such foils, and thus is 
free to vary. Thus, to predict a likelihood of each performance level at each other foil offset, we 
needed to marginalize over the unknown precision parameter. To minimize assumptions about 
this, we used the same prior on precisions that van den Berg et al.8 used when fitting both the 
standard mixture model and their own variable precision model, a uniform prior over the 
concentration parameter of the von Mises from 0-200. For any given ‘guess rate’ and ‘precision’, 
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we then calculated the likelihood of subject’s continuous report performance under these 
parameters. To calculate Bayes factors, we used a grid of values for both the d’ in TCC and for 
the precision in the mixture model, using steps of 1 in the precision and steps of 0.01 in d’. We 
assessed the log likelihood of TCC and the mixture model only in the continuous report case, 
having fit the parameter(s) using only the data from the 2-AFC  180 deg. condition. 
 
12. Old/new and confidence experiment to compute ROCs. N = 70 in-lab participants 
performed 300 trials of a change detection task, 100 at set size 1, 100 at set size 3, and 100 at 
set size 6. The display consisted of 6 placeholder circles. Colors were then presented for 
500ms, followed by an 1000ms ISI. For set sizes below 6, the colors appeared at random 
locations with placeholders in place for any remaining locations (e.g. at set size 3, the colors 
appeared at 3 random locations with placeholders remaining in the other 3 locations). Colors 
were constrained to be at least 15° apart along the response wheel. After the ISI, a single color 
reappeared at one of the positions where an item had been presented. On 50% of trials each 
set size, this was the same color that had previously appeared at that position. On 50% of trials, 
it was a color from the exact opposite side of the color wheel, 180° along the color wheel from 
the shown color at that position. Participants’ task was to indicate whether the color that 
reappeared was the same or different than the color that had initially been presented at that 
location. After indicating whether the color was the same or different from the target in the 
previous array, participants then reported their confidence. Participants were presented an 
interval from 1-6 and had been instructed that 1 meant “very unsure” and 6 meant “very sure” 
and to report their confidence using the entire scale. 3 participants were excluded for an overall 
percent correct >2 standard deviations below the mean, leaving a final sample of N=67. 
     
13. Face identity continuous report data (set size 1 and 3). We utilized the same continuous 
report task, but adapted the stimulus space to face identity using the continuous face identity 
space and continuous response wheel created in Haberman, Brady and Alvarez27. We used set 
sizes 1 and 3, and the encoding display was shown for 1.5 seconds due to the increased 
complexity of the face stimuli and task difficulty. Participants on Mechanical Turk (N=50) 
completed 180 trials. The first 20 trials were practice and not included in the analysis. 14 
participants were excluded for having near-chance performance levels (d′<0.50) at set size 3, 
although including all subjects with d′>=0 does not affect our conclusions or the fit of TCC.   
 
14. Face identity similarity ‘quad’ task. N=102 participants on Mechanical Turk judged which 
of two pairs of faces presented were more distinct (e.g., which pair had constituent items that 
were more different from each other). On each trial, we chose 2 pairs of faces, with the first item 
in each pair being randomly chosen and the second item in each pair always having an offset of 
0, 5, 10, 20, 40, 60, 80, 100, 140, or 180 away.   
 
Participants were asked to make their judgments solely based on intuitive visual similarity, 
rather than the use of knowledge of faces or using verbal labels. We excluded participants 
whose overall performance level was more than 2 standard deviations below the mean, 
resulting in a final sample of N=85.  
 
To compute psychophysical distance from these data, we used the model proposed by Maloney 
and Yang13, the Maximum Likelihood Difference Scaling method. In particular, any given trial 
has two pairs of faces, where their face-wheel values are, Si, Sj and Sk, Sl. Let lij = Sj – Si, the 
length of the physical interval between Si and Sj, which is always in the set [0,5,10...180], and 
ψij, the psychophysical similarity to which this distance corresponds. If people made decisions 
without noise then they should pick pair i,j if and only if ψij > ψkl. We add noise by assuming 
participants decisions are affected by Gaussian error, such that they pick pair i,j if ψij + ε > ψkl. 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 16, 2019. ; https://doi.org/10.1101/325472doi: bioRxiv preprint 

https://doi.org/10.1101/325472
http://creativecommons.org/licenses/by-nd/4.0/


 

29 

We set the standard deviation of the Gaussian ε noise to 1, so that the model has 9 free 
parameters, corresponding to the psychophysical scaling values for each possible interval 
length (e.g., how similar a distance of 5 or 10 ‘really’ is to participants), and then we fit the 
model using maximum likelihood search (fmincon in MATLAB). Thus, these scaled values for 
each interval length most accurately predict observers’ judgments, in that equal intervals in the 
scaled space are discriminated with equal performance. Once the scaling is estimated, we 
normalize the psychophysical scaling parameters so that psychophysical similarity ranges from 
0 to 1. Using Likert ratings for faces gave qualitatively very similar results (not included here). 
 
15. Face identity perceptual matching. N=40 participants on Mechanical Turk were shown a 
face and had to match this face using a continuous report wheel (100 trials). Because the 
contribution of motor noise appeared to be minimal in the color matching task (relative to 
perceptual error), we used only a continuous report wheel (no 60-AFC). Faces were generated 
from the same continuous face space used in other experiments, and participants had unlimited 
time had to choose the matching face. The face and face wheel/response options remained 
continuously visible until participants clicked to lock in their answer. The face was presented at 
one of 4 locations centered around fixation (randomly), approximately matching the distance to 
the face wheel and variation in position used in the continuous report memory experiments.7 
participants were excluded for below chance error rates. 
 
To convert this data into a perceptual correlation matrix -- asking how likely participants are to 
confuse a face x degrees away in a perception experiment -- we created a normalized 
histogram across all participants of how often they made errors of each size (in bins of 5 deg.: -
180, -175, … 180) and then linearly interpolated between these to get a value of the 
confusability for each degree of distance. We then normalized this to range from 0 to 1.  
 
16. Visual long-term memory color report task. Long-term memory data was taken from 
Miner, Schurgin, Brady28. N=30 participants in the lab at UC San Diego performed 5 blocks of a 
long-term memory experiment. In each block they memorized real-world objects’ colors, and 
then after a brief delay, were shown a sequence of memory tests. Each block’s study session 
consisted of 20 items of distinct categories seen only once and 10 items also of distinct 
categories seen twice, for a total of 40 presentations of colored objects. Each presentation 
lasted 3 seconds followed by a 1 second inter-stimulus interval. At test, 20 old objects were 
presented (10 seen once, 10 seen twice) and 20 new objects of distinct categories were 
presented. Participants saw each object in grayscale and made an old/new judgment, and then, 
if they reported the item was old, they reported its color using a continuous color wheel. As 
described in Miner et al.28, 7 participants were excluded per preregistered criterion.   
 
Note that long-term memory performance in this task likely depends on a two part decision -- 
item memory and source memory (e.g., the object itself, and then its color). This two-part 
decision is related to the processes of recollection and familiarity that can be modeled in various 
ways60, but we do not address this here because we focus on understanding color reports only 
to items judged as ‘old’ (i.e., conceivably where item memory strength was strong). Participants 
were highly accurate at judging old/new (d′: 3.13, SEM: 0.19), so this analysis includes most of 
the items participants saw and all of the old items that were reported old (e.g., the only items 
they saw and made a color report for). Future research should clarify how TCC connects to 
distinctions between recollection and familiarity.  
 
17. Literature Analysis. To assess our model’s prediction that previously observed trade-offs 
between different psychological states are measuring the same underlying parameter (d′), we 
conducted a literature analysis of data from color working memory research. In particular, we 
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examined the two parameters most commonly reported by those fitting mixture models to their 
data, precision (in terms of SD) and guessing.  
 
We searched for papers that used these mixture model techniques by finding papers that cited 
the most prominent mixture modeling toolboxes, Suchow, Brady, Fougnie & Alvarez57 and Bays 
et al.61. We used a liberal inclusion criteria in order to obtain as many data points as possible. 
Our inclusion criteria were papers that cite either of these toolboxes and report data where: 1) 
There was some delay between the working memory study array and test; 2) Instructions were 
to remember all the items; 3) SD/guess values were reported or graph axes were clearly 
labeled; 4) Participants were normal, healthy, and between ages 18-35. 5). Colors used were 
widely spaced, discriminable colors from the CIE L*a*b* color space. Note that even slight 
changes in the color wheel used between papers (or the addition of noise to stimuli7) changes 
the perceptual confusability of the stimuli and therefore ideally calls for a different similarity 
function to be measured and therefore a different prediction from TCC about the relationship 
between ‘guess rate’ and ‘SD’. However, in the current literature analysis we simply assumed 
these were the same for all papers. For papers that did not report SD/guess values in the text or 
tables, these values were obtained by digitizing figures with clear axis labels62,63.  
 
These inclusion criteria resulted in a diverse set of data points, including studies using 
sequential or simultaneous presentation, feedback vs no feedback, cues vs no-cues, varying 
encoding time (100-2000 ms), and variable delay (1-10 sec). A total of 14 papers and 56 data 
points were included.  
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Supplemental Figures 

 
Figure S1. (A) Data from all distances in the fixed distance triad task (Figure 1C). On each trial, there 
was a target color, here always at 0°, and participants task was to choose which of two other colors was 
closer to the target color in color space. The two choice colors always differed by 30°. The x-axis shows 
the closer color of the two choice colors. That is, the 150° label on the x-axis reflects performance on a 
condition where the two choices were 150° and 180° away from the target color. As shown with a subset 
of this data in Figure 1C, increasing distance from the target results in a decreased ability to tell which of 
two colors is closer to the target in color space. This shows the non-linearity of color space with respect to 
judgments of color similarity. Note that this function does not depict the actual psychophysical similarity 
function: Roughly speaking, the d′ estimate in this graph is the estimate of instantaneous slope (over a 30 
deg. range) in the similarity function in Figure 1F. (B) Despite being conceived of as a color wheel in 
many memory experiments, in reality, participants internal representation of color -- and thus the 
confusability between colors -- ought to be a function of their linear distance in an approximately 3D color 
space, not their angular distance along the circumference of an artificially imposed wheel. Since the 
colors are equal luminance, we can conceive of this on a 2D plane. Thus, on this plane the confusability 
of a color “180 degrees away” on the wheel is only slightly higher than one “150 degrees away” on the 
wheel, since in 2D color space it is only slightly further away. This simple non-linearity from ignoring the 
global structure of the color ‘wheel’ partially explains the long tails observed in typical color report 
experiments, although it does not explain the full degree of this non-linearity, which is additionally 
attributable to psychophysical similarity being a non-linear function even of distance across 2D color 
space. (C) The similarity function  remains non-linear even in 2D color space. Distances here are scaled 
relative to the color wheel rather than in absolute CIELa*b* values., e.g., an item 180 degrees opposite on 
the color wheel is “120” in real distance since if the distance along the circumference is 180, 120 is the 
distance across the color wheel. (D) Plotted on a log axis, the similarity falls off approximately linearly, 
indicating that similarity falls of roughly exponentially with the exception of colors nearby the target. The 
non-exponential fall-off near the 0 point reflects perceptual noise/lack of perceptual discriminability 
between nearby colors. As shown in Figure 1, when you convolve measured perceptual noise with an 
exponential function, this provides a very good fit to the similarity function, consistent with a wide-variety 
of evidence about the structure of similarity and generalization16. 
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Figure S2. Uncorrelated vs. correlated noise versions of TCC. Only the correlated-noise TCC produces 
true d′ values -- those that are interchangeable with d′ you’d estimate from a same/diff task with the same 
stimuli. However, the simpler uncorrelated noise TCC predicts the exact same distributions of errors, and 
the d’ values between the correlated and uncorrelated noise models are linearly related by a factor of 
~0.65. Thus, in many cases it may be useful to fit the uncorrelated TCC to data and then adjust the d′ 
rather than fitting correlated noise TCC. 
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Figure S3. While memory strength varies according to a variety of different factors, many researchers 
have been particularly interested in the influence of set size. TCC shows that memory strength (d’) 
decreases according to a power law as set size changes, broadly consistent with fixed resource theories 
of memory22,23.  
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Figure S4. In the current data for color, both the model-based triad psychophysical scaling data and the 
Likert similarity rating produce extremely similar data (see Figure 1). Thus, they all produce similar fits to 
the memory data (shown here). It is important to note that depending on the number of trials, a large 
number of data points (i.e. subjects) may be necessary in order to obtain reliable estimates of a given 
stimulus space in the triad and quad scaling tasks (we use the quad task for face similarity). The Likert 
task requires considerably less data to estimate, and it was in agreement with the results of the triad task 
for colors, so we rely on it as our primary measure of similarity in the current fits. However, it is important 
to note that depending on the stimulus space, observers may utilize different strategies in such subjective 
similarity tasks (particularly for spaces, like orientation, where it is obviously a linear physical 
manipulation), and that ultimately an objective task like the quad task may be best to understand the 
psychophysical similarity function. This is why for the face space task we used the quad similarity task. 
The task used to estimate similarity is important in that it is important that participants provide judgments 
of the absolute interval between stimuli and not rely on categories or verbal labels, or, in the triad task, 
that participants not rely on a relational or relative encoding of the two choice items rather than their 
absolute distance to the target item. How best to ensure that participants rely on absolute intervals is 
represented in a large literature dating to Thurstone64 and Torgerson12. 
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Figure S5. Many stimulus spaces contain non-uniformities, which may affect subsequent working 
memory performance. Indeed, Bae et al.9 discovered non-uniformities in working memory for color, where 
responses for targets tend to be more precise for some colors than others and can be biased towards 
nearby categorical anchors (i.e. red, blue, yellow, etc). While many assume randomizing target colors in 
working memory should account for potential biases arising from a non-uniform feature space, others 
have suggested these differences may have broader consequences than previously considered10,11. A 
key advantage of TCC is that by taking into account the psychophysical similarity function, non-
uniformities within whatever feature space being probed can be automatically captured if psychophysical 
similarity data is measured separately from each relevant starting point in the feature space (e.g., Figure 
1D). In the current work, we mostly use only a single psychophysical similarity estimate averaged across 
possible starting points and fit memory data averaged across starting points. However, this is not 
necessary to the TCC framework, and is only a simplification -- if we wish to fit memory data averaged 
across all targets, we should use similarity averaged across all targets (or use the particular similarity 
function relevant to each item on each trial). Here we show that rather than using a psychophysical 
similarity function that averages over all targets, one can also use similarity specific to each possible 
target, which differ and having predictable consequences for memory. For example, the propensity of 
errors (at set size 1, 3, 6 and 8) in the clockwise vs. counterclockwise direction for a given target color is 
directly predicted by the similarity function -- even when very similar colors have more similar colors in 
opposite directions (top row), and this is true across all color bins (bottom right). Thus, using target-
specific similarity functions naturally captures potential non-uniformities or biases within a feature space 
with no change in the TCC framework.  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 16, 2019. ; https://doi.org/10.1101/325472doi: bioRxiv preprint 

https://doi.org/10.1101/325472
http://creativecommons.org/licenses/by-nd/4.0/


 

43 

 
Figure S6. (A) We generated data from both TCC (d′) and the standard mixture model (precision [SD] 
and guessing), performing 50 simulations of 2000 trials worth of data each for each of the models 
(consistent with the amount of group data in the main experiments), and then fit both models to the 
generated data to see which yielded a higher log-likelihood. Even with no penalty for complexity -- simply 
using log likelihood -- for data generated by TCC, the standard mixture model fit all data with a d′ < 1 
better than TCC itself. Thus, for data generated by TCC, the standard mixture model, being considerably 
more flexible than TCC in the range of distributions it can fit,  fits the data about as well -- and in some 
cases, better -- than TCC. When fitting data generated by the mixture model, TCC was dispreferred at all 
values in terms of fit, and strongly dispreferred for huge swaths of potential mixture model parameters. 
This is because the mixture model can generate a huge variety of distributions that TCC cannot mimic. 
The same is true, but even more so, for the 3-parameter variable precision model, which can fit an even 
much larger range of distributions than even the standard 2-parameter mixture model. Only a miniscule 
part of the distributions predicted by the 3-parameter variable precision model can even be approximated 
by TCC, and this model can perfectly mimic TCC. (B) Same data, with BIC instead of log-likelihood. 
Taking into account model complexity increases the preference for TCC in TCC-generated data and 
creates a very slight TCC preference in mixture model data with simulated “guess rates” very near 1.0, 
where the two models make identical predictions in terms of error (of equal responding to all options); 
though note the two models make differing predictions about confidence at these values, predicting 
different ROCs. In general, with this amount of data, BIC appears well-calibrated, accurately recovering 
the appropriate model in nearly all cases and with a stronger preference for the relevant models where 
they diverge from each other more.  
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Figure S7. Analysis of previous literature measuring the most widely used model parameters currently 
used to analyze working memory performance. Gray dots are values reported in papers found in the 
literature; the dashed black curve is a LOESS (local regression) smoothed version of these points. The 
solid blue curve reflects the average “guess” and “SD” parameters when fitting the mixture model to data 
generated by TCC, as a function of the d' of TCC. The blue shading shows 2 standard deviations when 
each participant has 100 trials/condition. Despite claiming to independently model multiple parameters, 
this entire diverse set of data points falls near the trade-off between these parameters predicted when 
fitting data sampled from the TCC with the 2-parameter model -- in other words, one parameter is 
sufficient to capture much of the data observed in working memory tasks (data that has previously been 
thought to require at least two -- and often 3 parameters -- to explain). Note that the region in Fig. S7 that 
TCC predicts is also the only region of Fig. S6 where the TCC can fit data generated from the mixture 
model. In addition, note that some of these papers use different color wheels than the one we use to 
generate the similarity function, and thus some of the deviation from the TCC prediction line -- minor as it 
is -- is caused by using an “incorrect” TCC prediction (e.g., using a prediction from an incorrect stimulus 
space). In addition to fitting a two parameter model, some previous research has claimed to dissociate 
these parameters. If a one-parameter model can account for the data, how has previous research so 
often found dissociations between these parameters? The majority of these dissociations find that 
precision (SD) does not change when the ‘guess rate’ (or capacity) does change7,29. However, this 
dissociation is naturally explained by TCC because at low d' values, ‘guess rate’ can change by a huge 
amount with SD changing by only a few degrees. For example, over a wide range of guess rates, 
precision may only vary between SD=21 and SD=24, a difference that is visually indistinguishable and 
would require extremely high power to detect. As an example, sampling 20 subjects of 100 trials each of 
data from the TCC at d'=0.65 vs. d'=0.45 and fitting these data with the 2-parameter mixture model 
reveals that such an experiment would find p<0.05 for ‘capacity’ greater than 60% of the time but p<0.05 
for ‘precision’ approximately 11% of the time, despite both parameters being necessarily linked in the 
data from TCC. In line with this interpretation, many researchers have now found that with high enough 
power, previous studies claiming only a change in ‘guess rate’ but not ‘SD’ actually find changes in both, 
with very small changes in SD present along with large changes in ‘guess rate’65. Other dissociations 
have sometimes been found -- for example, Zhang and Luck7 report a manipulation that causes a change 
in SD but not ‘guess rate’ -- but these dissociations inevitably rely on comparisons across different sets of 
stimuli with different psychophysical similarity functions (e.g., the Zhang and Luck manipulation adds 
color noise to the items, making them less distinct), which is perfectly consistent with TCC. 
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Figure S8. Existing working memory data from high set sizes (4+) is often claimed to provide evidence for 
‘slots’ or for the existence of very low precision items, with these items that are unrepresented or poorly 
represented giving rise to the long tails of the distribution. By contrast, TCC predicts such long tails with 
no sense of unrepresented or poorly represented items. Here we show how TCC predicts that mixture 
model parameters from the standard two parameter mixture model should change as a function of d' in 
the TCC model. The blue line and all of the data points are the same as Figure S7, but with the data 
points now labeled by set size and only “high” set sizes (>=4) plotted, as these are the points where 
traditional models claim many items must be unrepresented or extremely poorly represented. Note that 
the vast majority of the points are better fit by the straightforward TCC model -- which simply assumes all 
items are equally well represented -- than by models that add some proportion of ‘unrepresented’ items to 
TCC (plotted in green; note that as expected, these models selectively change the predicted ‘guess rate’ 
parameter). For a slot model prediction with 3 items represented, nearly 50% of items should be 
unrepresented at set size 6, and this is clearly incompatible with the previous data as well as the data we 
report in the main manuscript. In general, the parameters found in the previous literature are perfectly 
consistent with the basic TCC prediction with no added assumptions about unrepresented items or poorly 
represented items. Note that the two set size 6 points outlined in yellow come from the original Zhang and 
Luck7 paper that introduced mixture models to this literature and used them to argue for slots. The fact 
that they are an outlier on this plot may be the reason those authors proposed a model that argues that 
only ‘guess rate’ but not ‘standard deviation’ changes as a function of set size.  
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Figure S9.  Given 2-AFC performance with maximally distinct 180 degree foils (black dot), TCC makes a 
unique prediction about exactly how well people should perform on other foils -- with no free parameters. 
By contrast, using the 180 degree foils to constrain the mixture model allows this model to set the ‘guess 
rate’, but it leaves the precision of memory unknown. Thus, mixture models, while capable of fitting the 
data the same as TCC for a certain precision parameter (since ultimately they can predict any distribution 
TCC can, as they are much more flexible), do not make a unique prediction. Making strong predictions is 
the most critical test of a model24 and can be formalized using a Bayes factor, which provides strong 
evidence in favor of TCC in this case. Similar logic applies in the experiment taking 180 degree 2-AFC 
and generalizing to continuous report and other n-AFC conditions. 
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Figure S10. Some studies used to support variability of information across individual items or trials have 
done so by using a confidence metric26. While variability and confidence are distinct from one another, in 
a large amount of research they are inextricably linked. An interesting advantage and implication of signal 
detection-based models is that they naturally predict confidence data66. In particular, the strength of the 
winning memory match signal is used as the measure of memory strength -- and confidence -- in signal 
detection models of memory. Thus, even with a fixed d′  value for all items, the TCC naturally predicts 
varying distributions relative to confidence. This likely explains some of the evidence previously observed 
in the literature that when distinguishing responses according to confidence, researchers found support 
for variability in precision among items / trials. Note that this occurs in TCC even though d′ is fixed in this 
simulation -- that is, all trials are generated from a process with the same signal-to-noise ratio. Thus, 
variability in responses as a function of confidence (or related effects, like improved performance when 
participants choose their own favorite item to report20 are not evidence for variability in d′ in TCC, but 
simply a natural prediction of the underlying signal detection process. Of course, it is possible d′ may also 
vary somewhat, although the nearly-equal variance ROC curves even at high set sizes suggest d′ likely 
variance between items may be small.  
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Figure S11. Participant in a set size 8 working memory experiment often feel like they do not remember 
an item and are “guessing”, leading to a wide variety of models that predict people know nothing about 
many items at high set sizes and truly are objectively guessing. However, as noted in Figure S10, signal 
detection naturally accounts for varying confidence, and so can easily account for this subjective feeling 
of guessing even though in fact, models like TCC predict that people are almost never responding based 
on no information at all about the item they just saw. In particular, confidence in signal detection is based 
on the strength of the winning memory signal. Imagine that the subjective feeling of guessing occurs 
whenever your memory match signal is below some threshold (here, arbitrarily set to 2.75). This would 
lead to people never feeling like they are guessing at set size 1, and nearly always feeling like they are 
guessing if they objectively closed their eyes and saw nothing. However, this would also make people feel 
like they are guessing a large part of the time at set size 6 and 8, even though this data is simulated from 
TCC -- and the generative process always contains information about all items. This is the key distinction 
in signal detection models between the subjective feeling of guessing and the claim that people are 
objectively guessing. 
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Figure S12. The fact that the data is “too peaky” for the standard mixture model to fit is often used as 
evidence of variability in precision. However, TCC, even with no variability in d′, does not show such 
residuals because the similarity function -- perceptual error convolved with an exponential -- is not a von 
Mises distribution. (A) Residuals of models in our main experimental data (calculated from model’s fit 
separately for each participant and set size; error bars show SEM across participant). Notice that the 2-
parameter mixture model has a significant residual near 0 error, as the data is peakier than this model, 
whereas the variable precision model and TCC model do not have this residual (All models do have some 
other residuals, though they are very similar between all the models). (B) Difference in residuals between 
the 2-parameter mixture model and the other two models. Both the variable precision model and TCC 
show significantly less residual than the two-parameter mixture model near 0 errors, suggesting they both 
properly account for the peakiness in the data. Note that this is true of TCC even though it has no 
variability in d′.  
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Figure S13. Plot of the best fit TCC d’ vs. the angular deviation of the error data (a circular analog of the 
standard deviation; as computed with MATLAB’s circ_std function) for all 22 datasets from Fig. 3. For 
data like the current data where there is nearly no location-based confusions (‘swaps’), the simpler 
analysis of this descriptive statistic (angular deviation) is linearly related to d’ for d’ less than 
approximately 3.0, and thus, for data not near ceiling, may be an adequate substitute for fitting the full 
TCC. This is useful because the angular deviation is just a descriptive statistic of the data and thus does 
not require the collection of similarity data or perceptual confusability data. Note that just as with percent 
correct -- which is approximately linear with d’ when far from ceiling, but becomes deeply non-linear near 
ceiling -- the d’ curve begins to bend near ceiling. This is because improving from 95% correct to 99% 
correct requires a very large change in d’, and similarly, improving your performance in continuous report 
when it is already very good requires a large change in memory strength. In theory the same should be 
true near floor, although these 22 datasets do not clearly demonstrate that because there is little data with 
d’<1.0. However, for data away from ceiling and floor and with little or no ‘swaps’, computing angular 
deviation may be sufficient to summarize data in a framework compatible with TCC. 
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Figure S14. Fits of TCC to the all encoding and delay conditions, including those not plotted in Fig. 3. 
TCC provides a strong fit at all encoding and delays (see correlations and model comparisons in Fig. 3). 
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Table S1. Data points used in the literature review collected from a total of 14 papers.  
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BIC avg. (S.E.M.); 
negative favors TCC 

Set size 1 Set size 3 Set size 6 Set size 8 

TCC - Mixture model -3.64 (1.67) -6.48 (0.95) -6.08 (0.88) -4.77 (0.67) 

TCC - variable precision 
mixture model 

-7.85 (1.14) -10.65 (0.60) -11.21 (0.67) -10.82 (0.63) 

 
Leave one out cross 
validation log likelihood 
difference (S.E.M.); 
positive favors TCC 

Set size 1 Set size 3 Set size 6 Set size 8 

TCC - Mixture model 1.54 (1.71) 1.22 (0.80) 0.14 (0.83) 0.07 (0.47) 

TCC - variable precision 
mixture model 

0.43 (1.32) 0.10 (0.43) -0.31 (0.70) 0.21 (0.59) 

 
Table S2. TCC’s fit to color memory data is reliably preferred by model comparison metrics that 
emphasize simplicity (e.g., BIC) across all set sizes compared to mixture models and variable precision 
mixture models. It provides a similar fit to these models when using leave-one-out cross validation on log 
likelihood, as both TCC as well as the two mixture models predict effectively the same distribution of 
errors when fit with N-1 error points (as N=2000 error datapoints  >> the number of parameters for all 
models). Fitting to the group data rather than individual subjects gives BIC values at set size 1,3,6 and 8 
of -24, -56, -26, -25 for TCC vs. standard mixture model (all very strong evidence favoring TCC), and BIC 
values of -2, -23, -15, -19 for TCC vs. variable precision model (e.g., both models fit set size 1 data well -- 
the least distinct set size, since there are no long tails --  but all others are very strong evidence in favor of 
TCC). Note that, as shown in Fig. S6, model recovery using BIC is well calibrated using this number of 
trials.  
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BIC avg. (S.E.M.); 
negative favors TCC 

Set size 1 Set size 3 

TCC - Mixture model -8.1 (0.7) -5.3 (0.4) 

TCC - variable precision 
mixture model 

-11.4 (0.5) -10.8 (0.3) 
 

 
Leave one out cross 
validation log likelihood 
difference (S.E.M.); 
positive favors TCC 

Set size 1 Set size 3 

TCC - Mixture model 2.5 (0.46) 0.51 (0.45) 

TCC - variable precision 
mixture model 

0.87 (0.41) -0.05 (0.36) 

 
Table S3. TCC applied to face memory. As with colors, TCC is reliably preferred by model comparison 
metrics that emphasize simplicity (e.g., BIC) across all set sizes compared to mixture models and variable 
precision mixture models. Also, as with color, it provides a similar fit to these models when using leave-
one-out cross validation on log likelihood, as both TCC as well as the two mixture models predict 
effectively the same distribution of errors when fit with N-1 points (as N >> the number of parameters for 
all models). Fitting to the group data rather than individual subjects gives BIC values at set size 1 and 3 of 
-177 and -24 for TCC vs. standard mixture model (all very strong evidence favoring TCC), and BIC values 
of -53, -10 for TCC vs. variable precision model (all very strong evidence in favor of TCC). Note that, as 
shown in Fig. S6, model recovery using BIC is well calibrated using this number of trials.  
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