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Abstract 

A major question in human neuroscience is how cortical function is mapped onto surface anatomy. 

Retinotopic maps, which tile about a quarter of the cortical surface, have served as a testbed to address 

this question. Prior work has shown that the location and retinotopic organization of posterior visual 

field maps, V1-V3, tend to broadly align to the cortical folding pattern. Here, we develop a new 

Bayesian method to accurately model retinotopic organization in individual subjects, and demonstrate 

that there are substantial individual differences in the mapping between function (retinotopic 

organization) and structure, even after co-registration of the surface anatomies. The Bayesian method 

combines observation–a subject’s retinotopic measurements from small amounts of fMRI time–with a 

prior–a retinotopic atlas produced from group-average measurements. This process, which we apply to 

human V1, V2, and V3, automatically draws areal boundaries, corrects discontinuities in the measured 

maps, and predicts validation retinotopy data more accurately than an atlas alone or, in most cases, an 

independent retinotopic dataset alone. The model accurately predicts map organization in the periphery, 

well beyond the region of visual space used for training the model. We use the Bayesian fits to 

characterize map properties, such as cortical magnification and the size of population receptive fields, 

and to assess the degree to which structure-function relationships differ between individuals. Further, we 

show how the method can be extended to 9 additional visual field maps. We propose that the Bayesian 

maps are more accurate than previous maps because they account for both regularities across subjects 

and individual differences in the relationship between anatomy and function.  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Significance Statement 

Retinotopic maps are the principal schemas by which visual information is organized in the brain. The 

organization of these maps in an individual subject is dependent in part on the subject’s anatomy and in 

part on idiosyncratic variations between subjects. We quantify the extent of this spectrum by employing 

a Bayesian method of characterizing maps in which a group-average map, or retinotopic prior, is 

weighed against individual subjects’ measurements of retinotopy. We find that maps predicted using this 

Bayesian method are more accurate than other methods of characterizing maps, including the collection 

of independent datasets. Using these maps, we demonstrate that extra-anatomical individual subject 

differences in retinotopic organization are significant.  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Introduction 

Since its discovery in the early 20th century (Inouye, 1909; Holmes & Lister, 1916), retinotopic 

organization has remained the principal concept mapping visually-active cortex to the visual field—i.e., 

structure to function. During the past 100 years, experimental techniques for studying this organization 

have improved considerably with commensurate improvements in the resolution of the studied 

retinotopic maps. Recent work has additionally taken advantage of the increasing availability of 

computational resources and neuro-informatics tools to characterize the mean anatomical locations 

(Wang et al., 2015) and the mean structure-function relationships (Benson et al., 2012; Benson et al., 

2014) of retinotopic areas and organization across subjects. Indeed, characterizing how the visual system 

distorts the 2D visual field into an isomorphic 2D cortical field and how a subject’s sulcal topography is 

related to map organization is an important goal for visual neuroscientists and clinicians. Achieving this 

goal is important for understanding homology between species (Van Essen et al., 2001), individual 

differences among humans (Dougherty et al., 2003; Harvey and Dumoulin, 2011), and basic principles 

of cortical organization (Wandell and Winawer, 2011) and cortical development (Van Essen, 1997). 

 Individual differences in cortical maps can be quite large. For example, the surface area of V1 

can vary by 2- to 3-fold across healthy adults (Andrews et al., 1997; Dougherty et al., 2003, Stensaas et 

al., 1974). Despite these very large differences, if the surface anatomies are co-registered between 

individuals, the map topographies sometimes show reasonable agreement. For example, atlases of V1-3 

(Benson et al., 2012; 2014) have been derived using topological models of the cortical field (Schira et 

al., 2010; Benson et al., 2012) with anatomical registration between observers (Dale et al., 1999; Fischl 

et al., 1999a). The assumption underlying these atlases is that once a correspondence is found between 

the sulcal pattern in two subjects’ visual cortices, the function will match. This assumption holds 

approximately but not perfectly: the atlases predict retinotopic coordinates in V1-V3 with reasonable 
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accuracy (± ~11º of polar angle and 0.5º of eccentricity per surface vertex). The errors, however, can be 

systematic, indicating that even when the anatomical structures are aligned, substantial individual 

differences remain.  

 In this paper, we develop a new method of modeling retinotopic maps, enabling us to examine 

and quantify individual differences in cortical organization, even after co-registration of the surface 

anatomies. 

 Currently, most studies of retinotopic maps do not incorporate atlases, but rather measure 

responses to mapping stimuli, derive retinotopic coordinates for each voxel or surface vertex by solving 

a population receptive field (pRF) model for each (Dumoulin and Wandell, 2008), and identify visual 

area boundaries by hand. Aside from requiring significant time and effort, the maps that result from this 

process retain many common sources of error including distortion of the BOLD signal due to partial 

voluming (Dukart and Bertolino, 2014), vessel artifacts (Winawer et al., 2010), other sources of 

physiological noise, and model fitting biases (Binda et al., 2013). Due to the various sources of noise, 

the measured maps have discontinuities and often systematically miss portions of the visual field, such 

as the vertical meridian (Silver et al., 2005; Larrson and Heeger, 2006; Swisher et al., 2007; Arcaro et 

al., 2009; Mackey et al., 2017). Further, the measured maps are limited by the available stimulus field of 

view in the scanner, often as little as 6-12° of eccentricity, and have difficulty measuring the foveal 

representation (Schira et al., 2009), the portion of the maps most important for many visual tasks 

including reading and object recognition (Malach et al., 2002). These many shortcomings of the 

traditional retinotopic mapping process derive from the fact that it is organized around optimizing the 

explanatory power of the retinotopy solutions from individual voxels, rather than that of the entire visual 

field or cortical area. As a consequence, it yields maps that are neither smooth nor complete—nor 

grounded in any context of how the visual field is warped onto the cortical surface. Lacking these data, 
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the comparison of maps between subjects is difficult, and precise quantitative examination of individual 

differences is impossible. 

 Here, we hypothesize that a Bayesian model of retinotopic maps, combining data (retinotopic 

measurements from voxels or vertices) with a prior (a full-field atlas derived from the anatomy), will 

eliminate many of the issues with retinotopic mapping (described above) by optimizing the description 

of cortical retinotopic maps in the context of the full visual field and cortical map. We propose that such 

methods can describe cortical retinotopic maps in individual subjects more accurately than an atlas alone 

or measurements alone. These hypotheses are motivated by two factors. First, we predict that even when 

subjects are aligned anatomically, appreciable and systematic differences in the structure-function 

relationship will remain. Allowing the measurement from an individual subject to inform the alignment 

will, in part, capture these individual differences. Secondly, we believe that the basic form of the atlas 

(the prior) is sufficiently accurate that incorporating it will result in a more accurate estimate of the 

retinotopic map than the measurements alone. 

 In this paper, we employ a Bayesian maximum-likelihood optimization to describe the 

retinotopic maps in striate and extra striate cortex with previously infeasible precision. This optimization 

builds on previous work using iterative approaches to fit and interpolate smooth retinotopic maps in 

individual subjects (Dougherty et al., 2003) by incorporating an explicit prior in the place of human 

intervention and adopting an explicitly Bayesian formulation. We characterize retinotopic maps from 

several subjects in terms of the precise warping from visual field to visual cortex. Using these 

characterizations, we are able to quantify the extent to which variations in retinotopic organization are 

due to anatomical differences versus differences in the structure-function relationship. We show that, in 

fact, these two sources of variability—differences in structure and differences in the structure-to-

function mapping—are roughly equal and orthogonal across subjects This means that after warping 
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individual cortical surfaces to bring the anatomies into registration, an additional warping, equal in size, 

is needed to bring the functional maps into alignment, thereby demonstrating substantial variability in an 

early, sensory region of the human brain.  

Results and Discussion 

Retinotopic mapping experiments were performed on eight subjects using fMRI. Twelve individual 

retinotopy scans were performed on each subject then combined into 22 datasets for cross-validation as 

well as one full dataset of all scans for detailed analysis (Fig. S1; see also Materials and Methods). 

Predicted maps were then generated using the datasets and compared to the validation dataset. We 

compared three methods for predicting retinotopic maps (Fig. 1): (1) using the training data alone as a 

prediction (the “observed” maps); (2) using the subject’s anatomy alone to apply an anatomically-

defined template of retinotopy (the “prior” maps); and (3) combining data with anatomy (observation 

with prior) using Bayesian inference (the “inferred” maps). We then leverage the differences between 

these methods to characterize the pattern of individual differences in retinotopic maps across subjects. 

The prior map, used for methods 2 and 3, was derived from fitting a template to a high-quality dataset 

derived from 181 subjects in the Human Connectome Project (Van Essen et al., 2013; Ugurbil et al., 

2013; Benson et al., 2018). 
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Bayesian inference has the advantages of an anatomical atlas while also respecting individual 

differences 

The inferred retinotopic maps, predicted by Bayesian inference, provide high-quality descriptions of the 

full retinotopic topology for each subject’s V1-V3 regions. These maps can be produced even in the 

absence of observed retinotopic measurements (i.e., using the prior alone), or by combination with 

retinotopic data. In this latter case, the predicted maps have all the advantages of the retinotopic prior 

(topologically smooth maps, predictions beyond the stimulus aperture, etc.), while also accounting for 

idiosyncrasies in individual maps (Fig. 2). 

Model Inputs

T1 MRI

T1 MRI

Anatomy Alone

Data Alone

Data + Anatomy+

Model Output

Observation

Prior

Bayesian Inference

+

BOLD fMRI

+

BOLD fMRI

Figure 1. We compare three different ways to 
predict a subject’s retinotopic maps. The first 
method is to perform a retinotopic mapping 
experiment. The fMRI measurements are 
converted to retinotopic coordinates by a voxel-
wise model and projected to the cortical surface. 
Although a model is used to identify the 
coordinates for each vertex or voxel, we call this 
‘Data Alone’ because no spatial template of 
retinotopy is used. The second method is to apply 
a retinotopic atlas to an anatomical scan (typically 
a T1-weighted MRI) based on the brain’s pattern of 
sulcal curvature. This is called ‘Data Alone’ 
because no functional MRI is measured for the 
individual. The third method combines the former 
two methods via Bayesian inference, using the 
brain’s anatomical structure as a prior constraint 
on the retinotopic maps while using the functional 
MRI data as an observation.
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 In constructing the Bayesian-inferred retinotopic map for a single hemisphere, we perform two 

deformations, detailed in Figure 3C (see also Materials and Methods): (1) we first deform that 

hemisphere’s inflated surface to register it to an average anatomical atlas using FreeSurfer (leftmost 

arrow in Fig. 3C); and (2) we then further deform the surface to register it to the retinotopic prior, based 

on the hemisphere’s retinotopic measurements (second arrow in Fig. 3C). These steps together account 

for the individual differences in the organization of the subjects’ retinotopic maps. In step 1, we account 

for structural differences across subjects—the deformation that occurs for this registration is unique for 

each subject. This is where prior work ended (Benson et al., 2012; Benson et al., 2014). In step 2, we 

account for the differences in the relationship between structure and function across subjects. Although 

it is possible that deformations in step 2 partly compensate for imperfections in the first two 

Figure 2. Inferred retinotopic maps accurately 
predict features of validation retinotopy. Twelve 
close-up plots of the retinotopic maps of three 
hemispheres are shown with predictions made 
from Data alone, Prior alone, or Data + Prior. The 
bottom two rows show the validation dataset with 
the bottom row indicating the context of the close-
up patches. The first three rows show different 
methods of predicting the retinotopic maps, as in 
Figure 1.  Approximate iso-eccentricity or iso-
angular contour lines for the validation dataset 
have been draw in white on all close-up plots while 
black contour lines show approximate contour 
lines for the three prediction methods. Flattened 
projections of cortex were created using an 
orthographic projection (Fig. S2A).
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registrations, we propose that, to a first approximation, the deformations applied in the last step indicate 

meaningful individual differences in the structure-function relationship. 

!  

Individual differences in the V1-V3 structure-function relationship across subjects are substantial 

Figure 3. Deriving retinotopic predictions. Three methods of predicting retinotopic maps (as in Fig. 1) for an 
example subject. A, Predicted retinotopic maps based on training data alone are found by solving the pRF 
models for each voxel and projecting them to the cortical surface. The training data (left) and prediction (right) 
are identical. B, To predict a retinotopic map using the prior alone, the subject’s cortical surface is aligned to 
FreeSurfer’s fsaverage anatomical atlas (represented by rectilinear checkerboards), bringing the subject’s 
anatomy into alignment with the anatomically-based prior, which is represented by iso-eccentricity contour lines 
in the figure (see also Supplemental Fig. 2C). The model of retinotopy is then used to predict the retinotopic 
parameters of the vertices based on their anatomically-aligned positions. After the predictions have been made, 
the cortical surface is relaxed. Maps are shown as checkerboards in order to demonstrate the warping (insets 
show original data and curvature). C, Bayesian inference of the retinotopic maps of the subject are made by 
combining retinotopic data with the retinotopic prior. This is achieved by first aligning the subject’s vertices with 
the fsaverage anatomical atlas (as in B) then further warping the vertices to bring them into alignment with the 
data-driven model of retinotopy (shown as iso-eccentricity contour lines). The warping was performed by 
minimizing a potential function that penalized both the deviation from from the prior (second column) as well as 
deviations between the retinotopic observations and the retinotopic model.

A. Individual subjects’ retinotopic maps as predicted via Data alone

Training Data can be used as a prediction of Validation Data

Subject S1204, Training Dataset 1

(1) Apply Prior Warping: 
ẋp = xw 
(Fig. 1)

ẋ0 ẋp

B. Individual subjects’ retinotopic maps as predicted via the Prior alone
(2) Apply Model  

to ẋp

(3) Unwarp Prediction

ẋp ẋ0

C. Individual subjects’ retinotopic maps as predicted via Bayesian inference (Data + Prior)
(1) Apply Prior Warping: 

                 ẋp = xw

(2) Further Warp using Data: 
ẋw = argminx F(x; ẋp, E, !, P, ")

(3) Apply Model 
to ẋw

(4) Unwarp Prediction

ẋ0 ẋp ẋw ẋw ẋ0

. . . .
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The Bayesian model fitting allows us to parcellate two sources of variation between individuals: 

differences in surface anatomy (sulcal patterns) and differences in structure-to-function mapping, i.e.  

how retinotopic features map onto the surface anatomy. These two sources of variation map 

approximately to the two deformations in our atlas fitting: differences in surface anatomy are reflected in 

the deformation used for the surface alignment, and differences in structure-to-function mapping are 

reflected in the deformation to align the retinotopic data to the prior (the Bayesian fit). There are some 

subjects for whom there are large differences between the retinotopic atlas defined by the prior and the 

atlas defined by the Bayesian fit (Figs. 4A, 4B). In this example subject, the iso-eccentricity lines in the 

Bayesian atlas are substantially more compressed along the posterior-anterior axis compared to the 

anatomical atlas, and the iso-angle lines in V2/V3 are more dorsal compared to the anatomical atlas. 

Where there are discrepancies, the Bayesian inferred map is more accurate. For example, the polar 

angles and the eccentricities in the validation data are approximately constant where the Bayesian map 

predicts iso-angle and iso-eccentricity lines, but not where the prior map predicts them (Fig. 4B).  This 

indicates that even after anatomical alignment, the retinotopy in this subject differs systematically from 

the prior. For some other subjects the two atlases are in closer agreement such that the prior alone is a 

good fit to the retinotopic data (Fig. 4C).  
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 To quantify the two types of deformations, we calculated the mean 3×3 distance matrix between 

(1) a vertex’s native position, (2) its position in the anatomical alignment (fsaverage position), and (3) its 

“retinotopic position” after alignment to the retinotopic prior. All vertices in the V1-V3 region within 

12° of eccentricity, as predicted by the Bayesian inference on the full dataset (all retinotopy scans 

combined), were used. We then performed 2D metric embedding to determine the mean deformation 

steps and the mean angle between them (Fig. 5A). Overall, the mean deformation distance across 

vertices is 2.5° ± 0.5° (µ ± σ across subjects) of the cortical sphere for the anatomical alignment and 3.3° 

± 0.4° for the retinotopic alignment. The mean angle between these deformations is 89.1° ± 14.2° (note 

that this last measurement is in terms of degrees of rotational angle rather than degrees of the cortical 

sphere). Of these two deformations, the latter, in which vertices are driven away from their 

Figure 4. Comparison of inferred and prior maps. 
A, a subject whose maps were poorly predicted by 
the retinotopic prior and thus required major 
deformation (S1205, RH, dataset 9). B, To illustrate 
the differences between the Prior Alone (black lines 
in A) and the combination of Data + Prior (white 
lines in A), traces of the polar angle (right) and 
eccentricity (left) values beneath the lines indicated 
by arrows are shown. The eccentricities traced by 
the iso-angle lines and the polar angles traced by 
the iso-eccentricity lines of the Bayesian-inferred 
maps more closely match the angles/eccentricities 
of their associated trace lines than do the polar 
angles/eccentricities beneath the lines of the Prior 
alone C, A subject whose retinotopic maps were 
well-predicted by the prior and thus required 
relatively minor deformation during the Bayesian 
inference step (subject S1202, LH, dataset 17). In 
both A and C, black lines show the retinotopic 
prior and white lines show the maps inferred by 
Bayesian inference.
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S1205, RH, Dataset 9
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anatomically-aligned positions according to their associated retinotopic measurements, is about 30% 

larger than the the anatomical alignment, in which vertices are driven away from their positions in the 

subject’s native cortical sphere according to the surface curvature. The anatomical alignment 

corresponds to variation in the surface topology and is accounted for in anatomical atlases (Benson et 

al., 2012; Benson et al., 2014); the retinotopic alignment corresponds to variation in the structure-

function mapping and is accounted for in the Bayesian model. An additional summary measurement of 

these deformations, the root-mean-square deviation (RMSD) distances across vertices near the occipital 

pole in a particular retinotopy dataset, provides a metric of the total warping applied during each step of 

the alignment process for each subject. A summary of this measurement, as well as various other 

summary statistics is provided in Table 1. 

!  

 For both left (t8 = -8.86; p < 0.0001) and right (t8 = -2.96; p = 0.0105) hemispheres, the 

retinotopic deformation distances were significantly larger than the the anatomical deformation 

distances, which were still substantial; this is true whether one calculates the mean deformation distance 

Figure 5. Individual differences between subjects in the 
structure-function relationship are significant. A, The 
mean deformation vectors, used to warp a surface 
vertex from its Native to its Anatomical (fsaverage-
aligned) position and from its Anatomical to its 
Retinotopic position, are shown relative to each other. 
The wedges plotted beneath the mean arrows indicate 
±1 standard deviation of the angle across subjects while 
the shaded regions at the end of the wedges indicate ±1 
standard deviation of the lengths of the vectors. Note 
that because registration steps are always performed on 
a subject's inflated spherical hemispheres, these 
distances were calculated in terms of degrees of the 
cortical sphere and are not directly equivalent to mm of 
cortex. B, The alignment of the V1-V3 region to the 
retinotopic prior increases the standard deviation of the 
surface curvature across subjects, suggesting that 
retinotopic alignment is not simply an improvement on 
FreeSurfer’s curvature-based alignment. Histograms 
show the probability density of the across-subject 
standard deviation of curvature values for all vertices in 
the V1-V3 region with a Bayesian-inferred eccentricity 
between 0 and 12°.
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over the entire patch of cortex immediately around the occipital pole (shown in the maps in Fig. 2) or 

over only the vertices that are predicted to be in V1-V3; Figure 5 is calculated over the latter of these 

two ROIs. Note that if the retinotopic deformation distances had been much larger, the prior anatomical 

atlases would have been less accurate. Had they been close to 0, then the anatomical atlas alone would 

have been as accurate as the Bayesian model. 

Table 1. Summary statistics for each subject.

Subject Hemi V1 Area (mm2)1 V1 Volume (mm3)1 Anatomical RMSD2 Retinotopic RMSD2

S1201 RH 1,319 3,755 3.08 3.27

S1201 LH 1,314 4,130 2.05 2.88

S1202 RH 2,007 3,667 1.72 2.94

S1202 LH 2,085 4,192 1.50 3.14

S1203 RH 1,572 3,152 2.60 3.69

S1203 LH 1,474 2,905 2.13 3.78

S1204 RH 1,907 3,326 2.73 3.39

S1204 LH 1,641 3,012 2.66 3.55

S1205 RH 1,995 3,928 2.77 3.86

S1205 LH 1,889 3,377 2.42 3.79

S1206 RH 1,640 3,105 2.73 3.13

S1206 LH 1,629 2,689 2.08 3.47

S1207 RH 1,646 3,399 2.96 2.72

S1207 LH 1,417 2,759 2.98 3.68

S1208 RH 2,071 4,296 2.74 2.85

S1208 LH 1,841 4,551 2.46 3.44

1 The V1 boundary was determined from the Bayesian-inferred map constructed by combining the 
retinotopic prior with the full retinotopy dataset. 

2 RMSD values were calculated using the registration of the validation dataset of each hemisphere to 
the retinotopic prior, over the inner 12° of eccentricity of the V1-V3 region. Use of a larger patch of 
cortex (e.g., the flattened map projections in Figure 3A) does not qualitatively change the relationship 
between anatomical and retinotopic RMSD values. Units of the RMSD values are degrees of the 
cortical sphere; these are approximately equivalent to mm, but exact measurements in mm are 
distorted during inflation of the surface. “Anatomical” RMSD refers to the deviation between the 
subject’s native anatomical sphere and the fsaverage-aligned sphere while “Retinotopic” RMSD 
refers to the deviation between the fsaverage-aligned sphere and the retinotopically-aligned sphere.
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 We interpret the warping performed to align retinotopic data to the anatomical prior (the 

retinotopic alignment) as evidence of individual differences in the way in which retinotopy maps to 

sulcal topology. An alternative possibility is that the retinotopic alignment corrects for incomplete or 

incorrect warping performed by FreeSurfer during alignment of each subject’s sulcal topology to that of 

the fsaverage hemispheres (the anatomical alignment). If this were the case, then we would expect that 

anatomical metrics such as curvature would be more uniform across subjects after retinotopic alignment 

than after only anatomical alignment. Figure 5C demonstrates that this explanation is unlikely by 

showing the distribution across surface vertices of the standard deviation of curvature across subjects. 

When curvature is compared across subjects without retinotopic or anatomical alignment (Native 

alignment in Fig. 5C) the standard deviation is quite high. When subjects are compared after anatomical 

alignment, the standard deviations are much lower. After further alignment to the anatomical prior of 

retinotopy (Retinotopic alignment), the standard deviation of curvature across subjects is between these 

two extrema. This suggests that the retinotopic alignment is sacrificing some amount of structural 

uniformity across subjects in order to accommodate the individual differences in subjects’ structure-to-

function mapping, and is consistent with our interpretation that there are substantial individual 

differences in the mapping between retinotopy and surface topology. 

The inferred maps make highly accurate predictions using very little data 

To quantify the accuracy of our Bayesian-inferred retinotopic maps, and to compare the accuracy against 

other predictions, we used a cross-validation scheme such that predictions from data alone, the prior 

alone, or via Bayesian inference were compared against independent validation datasets (Fig. S1). The 

validation datasets were derived from 6 of the 12 scans; the predictions from data alone and from 

Bayesian inference were derived from training datasets, which were comprised of various combinations 
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of 1-6 independent scans (between 3.2 and 19.2 minutes of data). The predictions from the prior alone 

did not use training data. 

 Within the validation dataset, all vertices from the inner 12° of eccentricity of the V1-V3 maps, 

as identified via Bayesian inference using the validation dataset, were compared to their counterparts in 

the predicted maps. Note that the inferred maps from the validation dataset were used only to identify 

the vertices included in the comparison; the retinotopic coordinates from the validation datasets 

themselves were taken as the “gold-standard” measurements. In computing prediction accuracy, we 

weighted the vertices by the fraction of variance explained for each vertex’s pRF solution in the 

validation dataset. For the three types of training datasets (prior alone, data alone, Bayesian inference), 

we assume that each vertex makes a prediction regardless of the variance explained. To prevent errors at 

high eccentricity from dominating the error metric, we calculated the scaled error for a vertex to be the 

angular distance in the visual field between its retinotopic coordinates in the predicted map and the 

validation dataset, divided by the eccentricity in the validation dataset. Figure 6A shows the scaled mean 

squared error (MSE) for the various predicted maps in terms of the amount of time spent collecting 

retinotopic data for the map. 

 The maps predicted via Bayesian inference were highly accurate irrespective of the amount of 

data used to inform the fits (Fig. 6A). Between those predicted maps informed by 3.2 minutes of scan 

time (1 scan) and 19.2 minutes (6 scans), the scaled MSE of the prediction remains in the range of 

~0.4-0.5. These scaled errors are larger near the fovea because the denominator used for scaling the error 

metric (i.e., the eccentricity) could be very small; when the range is limited to 3 to 12 deg, the MSE is 

much lower, ~0.20-0.23. Expressed separately in units of polar angle and eccentricity, the mean absolute 

polar angle error from a Bayesian map derived from a single 3.2 minute scan is 22° ± 4.6° and the mean 

absolute eccentricity error is 0.69° ± 0.11° (µ ± σ across 96 datasets). For the prior alone, these errors are 
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substantially higher: 31° ± 11° for polar angle and 2.0° ± 1.3° for eccentricity. Note that these errors are 

approximately 3× higher than those reported for previous versions of the anatomical prior (Benson et al., 

2014); however these discrepancies are due to differences in the metric used, the amount of data 

collected, the thresholding applied, and the use of smoothing. Some of these factors we cannot 

reproduce exactly (amount of data) or have deliberately abandoned (smoothing), but by using the same 

metric (median absolute error across all vertices) and similar thresholding (1.25° < predicted eccentricity 

< 8.75°), we obtain errors very close to those previously reported: 12° of polar angle and 0.90° of 

eccentricity. In contrast to the inferred maps for which the accuracy is largely independent of scan time, 

the accuracy of the predictions from data alone was highly influenced by scan time. The scaled MSE of 

the maps predicted from the training datasets alone for the same range of scan times ranged from ~2.2 

(3.2 minutes of training data) to ~0.3 (19.2 minutes of training data). With more than ~11 minutes of 

scan time, the predictions made from the training datasets alone have a slightly lower scaled MSE than 

those made from Bayesian inference, though, notably, the improvements in scaled MSE for more than 11 

minutes of scan time are small. 

!  

 The prediction accuracy from the prior alone (0 min. scan time) was generally intermediate in 

accuracy between the predictions from the Bayesian model and the data alone. Predictions derived from 

the anatomically-defined atlas alone are more accurate than predictions from 3.2 minutes of scanning 

Figure 6. Comparison of prediction errors for three 
methods of predicting retinotopic maps. Errors are 
shown in terms of the number of minutes spent 
collecting retinotopic mapping scans. The axes give the 
mean squared eccentricity-scaled errors for the training-
data alone (x-axis) and for the training data combined 
with the anatomical prior (y-axis). Error for the prior alone 
is shown in cyan on both axes. Each plotted point 
represents a different number of minutes in the scanner, 
with shaded ellipsis giving the standard error across 
subjects. For short scan times, errors are significantly 
higher for predictions made with the data alone than for 
those made using Bayesian inference.
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and only slightly less accurate than predictions from training datasets derived from 6.4 minutes of 

scanning; this is in agreement with previous analyses of prediction error versus measurement error in 

retinotopic mapping experiments (Benson et al., 2012). The predictions using the prior alone were 

universally less accurate than the Bayesian predictions (Fig. 6, cyan)—for all subjects and all training 

datasets, the combination of prior with data improved prediction accuracy compared to the anatomical 

prior alone. These data demonstrate that the application of our new method to a small amount of 

retinotopic mapping data yields a higher quality retinotopic map than can be derived from other sources 

alone, with the possible exception of data derived from a very long retinotopic mapping session.  

 The fact that the increased prediction accuracy from the Bayesian maps is almost independent of 

the amount of scan time used for the observations suggests that much of the individual variability is 

captured by a low dimensional warping from the template, which can be inferred from a modest amount 

of data. 

What is ground truth? 

The motivation for a Bayesian approach to retinotopic mapping can be found most clearly in the 

measured retinotopic maps themselves. In all of our measured retinotopic maps, there are numerous 

systematic imperfections (Fig. 7A), and the literature contains many reports of similar errors (Press et 

al., 2001; Winawer et al., 2010; Gardner, 2010; Boubela et al., 2015). Imperfections due to blood vessel 

artifacts in particular, such as the transverse sinus in ventral visual cortex (Winawer et al., 2010), can 

significantly affect the resulting retinotopic maps. These effects can appear far from the interfering 

blood vessel, and most perniciously, they may lead to large and reliable responses(Boubela et al., 2015). 

Such artifacts are difficult to track down and are often not eliminated by typical methods of cleaning up 

maps such as smoothing, thresholding, or simply collecting larger datasets. 
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 Although with large datasets (> 19 min of scan time), the prediction accuracy for the validation 

dataset is highest using the data alone rather than the data and prior, we believe that even in these cases 

the combination of data + prior is probably closest to ground truth.We defined accuracy operationally as 

the difference from the validation set, as this provides a single set of independent measures that can be 

used to assess the accuracy of all 3 types of models. The validation dataset is defined by at least as many 

scans as any of the training datasets, and hence is our best measurement. However, the validation dataset 

is not ground truth, as it is subject to errors from systematic and random measurement noise. The 

inferred maps, unlike the maps from the validation and training datasets alone, represent the complete 

visual field with no holes, redundancies, or discontinuities. Hence an enclosed region in the visual field 

will project to an enclosed region in the inferred map on the cortical surface, but not a map defined by 

the data alone without the use of an atlas (Fig. 7A). Additionally, defects in retinotopic maps, due to 

effects such as partial voluming and negative BOLD, are both common and likely to appear very similar 

across independent scans—several examples of such features are shown in Figure 7B. Despite the fact 

Figure 7. Systematic errors in training and validation 
datasets. A, Discontinuity errors. If the validation data is 
used to project the disks shown in the visual field in the 
middle panel to the cortical surface, the resulting map is 
messy and contains a number of inconsistencies due to 
measurement error. While the Bayesian inferred map 
may contain errors of its own, it will always predict a 
topologically smooth retinotopic map with respect to the 
topology of the v isual fie ld. C , Many smal l 
inconsistencies in the retinotopic maps are duplicated in 
both the validation dataset and the training datasets but 
not in the maps predicted by Bayesian inference. Maps 
for three example hemispheres are shown with validation 
datasets as well as training dataset 1, training dataset 
10, and the Bayesian-inferred maps from dataset 20. 
Ellipses highlight blips of noise in the validation maps 
that are unlikely to represent the true underlying map, 
but that are correlated with the training maps. Such blips 
are significantly different in the inferred and validation 
maps, likely inflating the error of the inferred maps. Black 
lines show the V1-V3 boundaries in the Bayesian-
inferred maps.

A. Projection from Visual Field to Cortex

Validation Data      Bayesian-Inferred Data
B. Common Validation Dataset Errors

S1203, LH

S1205, LH

S1206, RH

Validation Data Training-1 Training-10 Bayesian-20
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that such features are almost certainly incorrect measurements of retinotopy, they appear in virtually all 

validation and training datasets and thus inflate the errors of the inferred and prior maps, in which such 

features do not appear. Both of these phenomena are presumably advantages of the inferred maps, 

though they do not count toward greater accuracy in our metric. 

The Bayesian model accurately predicts visual field positions not included in the training data 

One important advantage of using the method of Bayesian inference outlined in this paper is that it 

provides predictions beyond the extent of the stimulus aperture in the retinotopy experiment. These 

peripheral predictions extend to 90° of eccentricity, even though the data used to derive the prior was 

based on stimuli that only extended to ~8º of eccentricity. Hence it is important to ask whether the model 

makes accurate predictions in the periphery. We demonstrate this in two ways. First, when our 

registration algorithm is run using only a subset of the eccentricity range (e.g., only data within the first 

3° or the first 6° of eccentricity), the predicted maps remain accurate to 12° of eccentricity (Fig. 8A). 

Second, we compared wide-field retinotopy data, collected out to 48° of eccentricity from subject S1201 

to the Bayesian-inferred map predictions made using our data with a 12°-aperture (Fig. 8B). We find that 

in both cases, our method is highly accurate despite lacking training data for peripheral measurements. 

Thus, even if prediction accuracy within the measured regions were similar for the Bayesian model and 

the data-to-data predictions, the Bayesian model is advantageous because it includes predictions for 

regions of the visual field beyond training data. 
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The Bayesian inferred maps accurately reproduce systematic properties of the visual field maps 

Another aspect in which our work here extends previous methods is the addition of the pRF size to the 

retinotopic quantities predicted by the model in the inferred maps—previous work predicted only the 

pRF centers (Benson et al., 2012; 2014). Here, we predict the pRF sizes for the vertices based on the 

eccentricity inferred from the Bayesian map, and the relationship between eccentricity and pRS size in 

previous literature (Kay et al., 2013). The inferred pRF size of a vertex is the pRF size predicted by the 

Kay et al. (2013) model for the vertex’s inferred visual area at the vertex’s inferred eccentricity. 

Although pRF size can depend on variables such as the voxel size and the stimulus that may differ 

between scans, we find that this method approximately reproduces the pRF sizes found in the observed 

retinotopic maps (Figs. 9A and 9B). 

Figure 8. The Bayesian-inferred maps accurately 
predict eccentricity beyond the range of the 
stimulus. A, In order to examine how accurately 
the retinotopic maps predicted using Bayesian 
inference describe the retinotopic arrangement 
outside of the range of the stimulus used to 
construct them we constructed maps from all 
datasets using only the inner 3°  or 6° of 
eccentricity then compared the predictions to the 
full validation dataset. Eccentricity is well predicted 
out to 12° regardless of the eccentricity range used 
to construct the predicted map, indicating that our 
inferred maps are likely accurate beyond the range 
of the stimulus. B, In addition, we compared the 
wide-field retinotopic mapping data from subject 
S1201 to the inferred retinotopic maps using only 
the 12°  stimulus; the ratio of the eccentricity 
residual to the eccentricity of the wide-field 
retinotopic map is shown. The decreasing trend of 
this metric indicates that eccentricity may be well-
predicted far beyond the range of the stimulus (out 
to 48° of eccentricity in this case).
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 Another metric inversely related to pRF size is the cortical magnification, usually measured in 

terms of mm2 of cortex representing one degree2 of the visual field. We summarize these measurements 

in Figures 9C and 9D. Our measurements of cortical magnification are broadly in agreement with 

previous work by Horton and Hoyt (1991), shown by the dotted black line in the lower panels of Figure 

9. The cortical magnification of the inferred maps is quite similar to those of the observed retinotopic 

maps. In both cases, V1 has slightly lower cortical magnification than V2 and V3 near the fovea, but 

higher magnification in the periphery. This difference is slightly exaggerated in the inferred maps 

relative to the observed maps; though this difference is slight and is in agreement with previous 

examinations of cortical magnification (Schira et al., 2009). 

The retinotopic prior and Bayesian-inferred maps include 12 visual areas 

Previous research on the retinotopic organization of visual cortex used a model of V1, V2, and V3 

retinotopy described by Schira et al. (2010) to produce a template of retinotopy that included only those 

visual areas. This “banded double-sech” model accurately describes the anisotropic magnification of the 

Figure 9. Aggregate pRF size and cortical 
magnification measurements are in agreement with 
previous literature. A, PRF sizes by eccentricity are 
shown for V1, V2, and V3, as calculated from the 
full datasets; shaded regions show standard errors 
across subjects. B, PRF sizes predicted by the 
Bayesian inference; note that these values are 
predicted based on the inferred eccentricity of 
each vertex based on the slopes described by Kay 
et al. (2013). C, Cortical magnification is shown in 
terms of eccentricity for V1-V3, as calculated from 
the full datasets. Again, the shaded regions show 
standard errors across subjects. The dashed black 
line shows the equation for cortical magnification 
provided by Horton & Hoyt (1991). D, Cortical 
magnification as calculated using the pRF 
coordinates inferred by the Bayesian inference. 
Note that in both A and C, eccentricity refers to 
measured eccentricity while in B and D, 
eccentricity refers to Bayesian-inferred eccentricity.

A. Measured pRF Size
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visual field on the cortical surface, particularly near the fovea. However, we have observed, particularly 

in individual data, that retinotopic data from outside the V1-V3 region described by the Schira model 

has a large impact on the quality of the inferred map. Accordingly, in creating our retinotopic prior, we 

constructed a new model that includes 9 additional visually active regions: hV4, VO1, VO2, V3a, V3b, 

LO1, LO2, TO1, and TO2. This model employed a new method of constructing 2D models of retinotopy 

that was specifically designed to accommodate the distortions caused by anatomical alignment, inflation, 

and flattening of the cortical surface. The new method is much simpler to extend to many more visual 

field maps, as it does not rely on an analytic description of the flattened (2D) retinotopic maps, which 

are only available for V1-V3. Rather, it requires as input a cortical map image on which estimates of the 

visual area boundaries have been drawn manually and labeled as either a foveal boundary, a peripheral 

boundary, an upper vertical meridian, a lower vertical meridian, or a horizontal meridian. A 

minimization technique is then used to fill in the retinotopic coordinates between the drawn boundaries 

(see Models of Retinotopy in Materials and Methods). The new retinotopic prior, including all new areas 

can be seen in Figure S3. Although we consider the addition of 9 retinotopic areas to be an important 

development, we consider these areas preliminary and do not analyze them in detail here. One reason for 

this is that the organizations of many of these areas remain under dispute. Additionally, the responses to 

our stimuli in these areas is of a considerably lower quality than in V1-V3; thus even were we to analyze 

the accuracy of the predictions in these ares, our validation dataset would be a particularly poor 

standard. We do, however, include these areas in the predictions made by the Bayesian inference method 

so that interested researchers may analyze or use them. These areas are included in the data provided 

with this paper, and predictions of these areas are included when using the tools provided in the 

supplemental materials. 
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Relationship to Bayesian Inference 

Our method has the advantage of allowing the retinotopic atlas to act as a prior constraint on new 

observed data. This is a Bayesian model in the general sense of combining a prior belief with a 

measurement in order to make an inference. The computation can also be reformulated in an explicit 

Bayesian framework. We define a hypothesis H to be a particular warping of the cortical surface, and we 

define the evidence E to be a particular set of retinotopic measurements. We then convert the cost 

functions from Table 2 into probabilities by assuming an exponential relationship. Hence, the prior 

probability of H is defined in terms of the deviation from the retinotopic prior: P(H) = exp(-(Fe(x) + 

F!(x) + Fp(x))), and the likelihood of the evidence under a given hypothesis, P(E | H), is defined in 

terms of the fit between the retinotopic model and the retinotopic measurements: P(E | H) = exp(-F"(x)). 

During registration, we seek the hypothesis H that maximizes the posterior probability P(H | E) = P(E | 

H) P(H)/P(E). Because P(E) is a constant, we can ignore it and instead maximize the function given in 

Equation 4, which is equivalent to minimizing F(x). This operation is performed during registration. 

Thus, to derive our cost function from Bayes’ rule, we write: 

P(H | E) = P(E | H) P(H)/P(E) 

P(H | E) ∝ P(E | H) P(H)

P(H | E) ∝ exp(-(Fe(x) + F!(x) + Fp(x))) exp(-F"(x))

P(H | E) ∝ exp(-(Fe(x) + F!(x) + Fp(x) + F"(x)))

P(H | E) ∝ exp(-F(x)) (4)
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Advantages over using data alone to describe retinotopic maps 

These Bayesian retinotopic maps have many advantages for basic neuroscience research when compared 

to the measured retinotopic maps. Most obviously, unless one collects more than 3 scans (~10 minutes 

of experiment time) the Bayesian maps have a higher cross-validated accuracy than the measured maps; 

in fact, a retinotopic map constructed by combining the retinotopic atlas and a 3.2-minute retinotopic 

mapping scan predicts cross-validated data approximately as well as over three times as much data by 

itself. A model prediction is expected to be more accurate than a prediction from training data if the 

model captures meaningful signal but not noise, thereby avoiding the overfitting implicit in the data-to-

data prediction (see also Rokem et al., 2015; Le et al., 2017). This increased efficiency allows even 

Table 2. Components of the registration potential function

Term Description Form

Penalizes changes in the distances 
between neighboring vertices in 
the mesh.

Penalizes the changes in the 
angles of the triangles in the 
mesh.

Penalizes any change in the 
positions of the vertices on the 
perimeter of the map.

Decreases as a retinotopic vertex 
u approaches its anchor-point y in 
the retinotopy model.
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studies that require high-quality idiosyncratic descriptions of each subject’s retinotopic maps to obtain 

them with a single scan, freeing up valuable scan time for other experiments. 

 Another advantage of our method is that it fills the entire cortical surface with a smooth and 

complete representation of the visual field; measured retinotopic maps, on the other hand, virtually 

always contain significant holes and ambiguities. For example, Figure 7A show the projection of a set of 

small disks on the cortical surface of subject S1201’s V1 into the visual field using that subject’s 

measured and Bayesian-inferred maps. Clearly the measured map does not produce a topologically 

smooth transformation into the visual field, while the inferred map does, even though it is generally 

accepted that the cortical surface of V1 is a topological map of the visual field. Similarly, defects in 

retinotopic maps due, for example, to partial voluming or negative bold create artifacts that appear both 

in the training and validation maps but not inferred maps. These defects thus disadvantage the error 

metric for the inferred maps. In fact, these examples highlight not only an advantage of our method, 

which eliminates these discontinuities in the maps, but also a clear problem with the task of evaluating 

the accuracy of any retinotopic map prediction: we have no way to know the ground-truth. Other 

common measurement errors such as partial voluming errors and errors due to blood vessel artifacts will 

also obscure the training and test measurements similarly while a prediction that cleans these effects will 

be judged against the validation data as less accurate. We do not correct for all of these potential sources 

of error; thus we consider our estimates of error from the Bayesian-inferred maps to be conservative, 

and the estimate from the data-to-data predictions to be liberal. 

 Another significant advantage of the method is that it eliminates the need for human intervention 

in the process of delineating retinotopic maps and visual areas. In most studies that requite retinotopic 

mapping data, one or more experimenters hand-label the visual area boundaries. While human raters are 

better able to understand atypical retinotopic boundaries than our method, they are nonetheless subject 
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to inter-rater disagreement and human error. Furthermore, although expert human raters have a much 

more nuanced prior about retinotopic map organization than our method, and thus may sometimes draw 

boundaries better than our method, our method at least makes its prior explicit and quantifiable, and, 

thus, comparable and replicable across studies. 

Individual differences in structure-function relationship 

 An important question in human neuroscience is the degree to which different brains, when 

brought into anatomical registration, share the same functional mapping. There is no single, agreed-upon 

method to register the brains of different individuals, but a general finding is that cortical function shows 

better inter-observer agreement when the brains are aligned based on sulcal topology (surface 

registration) rather than volume registration (Van Essen et al., 1998; Wang et al., 2015). Here, using 

surface registration, we find that substantial individual differences in functional mapping remains, e.g. as 

evidenced by the amount of additional warping needed to align individual brains to retinotopic 

measurements (Fig. 5). These results are consistent with studies showing differences in structural and 

functional alignment of primate and human area MT (Large et al., 2016).  

 The anatomical atlas, described previously (Benson et al., 2014), was adapted into the first step 

of our method (Fig. 3C) and is equivalent to the prediction using the retinotopic prior alone that we 

present here (Fig. S2B). Consistent with previous results, we find that the prior alone produces 

reasonably good predictions for the retinotopic maps of most subjects (Fig. 6). Additionally, maps 

predicted using the prior alone contain many of the advantages described here such as topological 

smoothness, complete coverage of the visual field, and prediction of peripheral retinotopy. However the 

idiosyncrasies of individual subjects’ retinotopic maps are often not well predicted by the retinotopic 

prior alone (Figs. 2, 4A and 4B). By combining both the retinotopic prior and a small amount of 
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measured data we are able to produce higher-quality predictions that not only share these advantages but 

also improve the prediction accuracy of the maps beyond that of the measurement error (Fig. 6). 

Materials and Methods 

Scientific Transparency 

All source code and notebooks as well as all anonymized data employed in this Methods section and the 

preparation of this manuscript have been made publicly available at the Open Science Foundation: 

https://osf.io/knb5g/ 

Subjects 

This study was approved by the New York University Institutional Review Board, and all subjects 

provided written consent. A total of eight subjects (4 female, mean age 31, range 26-46) participated in 

the experiment. All scan protocols are described below. 

Magnetic Resonance Imaging 

All MRI data were collected at the New York University Center for Brain Imaging using a 3T Siemens 

Prisma scanner. Data were acquired with a 64-channel phased array receive coil. High resolution whole-

brain anatomical T1-weighted images (1 mm3 isotropic voxels) were acquired from each subject for 

registration and segmentation using a 3D rapid gradient echo sequence (MPRAGE). BOLD fMRI data 

were collected using a T2*-sensitive echo planar imaging pulse sequence (1s TR; 30ms echo time; 75° 

flip angle; 2.0 × 2.0 × 2.0 mm3 isotropic voxels, multiband acceleration 6 ). Two additional scans were 

collected with reversed phase-encoded blips, resulting in spatial distortions in opposite directions. These 

scans were used to estimate and correct for spatial distortions in the EPI runs using a method similar to 

 [Andersson 2003] as implemented in FSL [Smith 2004].  
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 Anatomical images were processed using the FreeSurfer image analysis suite, which is freely 

available online (http://surfer.nmr.mgh.harvard.edu/) (Dale et al., 1999; Fischl et al., 1999a; Fischl et al., 

1999b; Fischl et al., 2000). Subject brains were inflated and aligned to FreeSurfer’s anatomical 

fsaverage atlas. 

Stimulus Protocols 

Each subject participated in 12 retinotopic mapping scans using the same stimulus emptied in the 

Human Connectome Proect (Benson et al., 2018). Briefly, bar apertures on a uniform gray background 

swept gradually across the visual field at four evenly-spaced orientations while the subject maintained 

fixation. Bar apertures contained a grayscale pink noise background with randomly placed objects, 

faces, words, and scenes. All stimuli were presented within a circular aperture extending to 12.4° of 

eccentricity. The bars were a constant width (1.5°) at all eccentricities. Subjects performed a task in 

which they were required to attend to the fixation dot and indicate when its color changed.  

 The 12 scans were split into several subsets and analyzed as independent datasets. Six of the 

scans (two of each bar width) were allocated to the subject’s validation dataset, while the remaining 

three scans were used for 21 training datasets: 6 datasets with 1 scan each, 5 datasets with 2 scans each, 

4 datasets with 3 scans each, 3 datasets with 4 scans each, 2 datasets with 5 scans each, and 1 dataset 

with all 6 training scans. Additionally, all 12 scans were included in a full dataset which was used for all 

analyses not related to the accuracy of the Bayesian inference method. 

 Additionally, one previously published retinotopy dataset for with a wide field of view (48º of 

eccentricity) was re-analyzed (Wandell and Winawer, 2011; their Fig. 3). The subject for this dataset was 

also included in the newly acquired data, S1201. The wide-field-of-view dataset was used as a further 

validation set for models derived from the newly acquired data for S1201, as it enabled us to test the 
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accuracy of model predictions in the far periphery from models derived from data with limited 

eccentricity. 

FMRI processing 

Spatial distortions due to inhomogeneities in the magnetic field were corrected using in-house software 

from NYU’s Center for Brain Imaging (http://cbi.nyu.edu/software). The data were then motion-

corrected by co-registering all volumes of all scans to the first volume of the first scan in the session. 

The fMRI slices were co-registered to the whole brain T1-weighted anatomy, and the time series 

resampled via trilinear interpolation to the 1 mm3 voxels within the cortical ribbon (gray matter). 

Finally, the time series were averaged for each voxel across all scans with the same stimulus within a 

given dataset. 

PRF solutions 

Retinotopic maps were produced by solving population receptive field (pRF) models for each voxel 

using Vistasoft, as described previously (Dumoulin and Wandell, 2008). pRF models were solved using 

a 2-stage coarse-to-fine approach on the time series in the 1 mm3 gray matter voxels. The first stage of 

the model fit was a grid fit, solved on time series that were temporally decimated (2×), spatially blurred 

on the cortical surface using a discrete heat kernel (approximately equal to a Gaussian kernel of 5 mm 

width at half height), and subsampled by a factor of 2. The decimation and blurring helps to find an 

approximate solution that is robust to local minima. The parameters obtained from the grid fit were 

interpolated to all gray matter voxels and used as seeds for the subsequent nonlinear optimization. 

Finally, the pRF parameters were projected from the volume to the cortical surface vertices for white, 

mid-gray, and pial surfaces using nearest-neighbor interpolation; values were then averaged across the 

three layers using a weighted-mean in which the fraction of BOLD signal variance explained by the pRF 
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model was used as a weight. All vertices with a pRF variance explained fraction less than 0.1 were 

ignored. 

Models of Retinotopy 

In previous work (Benson et al., 2014), group-average retinotopic maps were registered to a model of 

V1, V2, and V3 retinotopy described by Schira et al. (2010). This “banded double-sech” model 

accurately describes the anisotropic magnification of the visual field on the cortical surface, particularly 

near the fovea. However, we have observed, particularly in individual data, that retinotopic data from 

outside the V1-V3 region described by the Schira model has a large impact on the quality of the inferred 

map. Accordingly, we constructed a new model that includes 9 additional visually active regions: hV4, 

VO1, VO2, V3a, V3b, LO1, LO2, TO1, and TO2. This model employed a new method of constructing 

2D models of retinotopy that was specifically designed to accommodate the distortions caused by 

anatomical alignment, inflation, and flattening of the cortical surface. The new method is much simpler 

to extend to many more visual field maps, as it does not rely on an analytic description of the flattened 

(2D) retinotopic maps, which are only available for V1-V3. Rather, it requires as input a cortical map 

image on which estimates of the visual area boundaries have been drawn manually and labeled as either 

a foveal boundary, a peripheral boundary, or an upper-, horizontal- or lower-visual-field meridian (i.e., 

the visual-field extrema are labeled). These boundaries need only be drawn once for a single group-

average retinotopic map. The boundaries are projected onto the cortical surface, and the retinotopic 

coordinates for each vertex on the surface are deduced via a minimization procedure. This minimization 

is motivated by two principles: (1) the retinotopic fields (polar angle and eccentricity) should be as 

orthogonal to each other as possible and (2) the retinotopic fields should be as smooth as possible. To 

this end, the minimization routine simultaneously maximizes both the smoothness of the retinotopic 

fields between vertices connected by edges in the mesh as well as the overall orthogonality between the 
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polar angle field and the eccentricity field. The hand-drawn boundary values are held constant during the 

minimization. Equation 1 gives the function f that is minimized, where # and $ represent vectors of the 

polar angle and eccentricity values, respectively; E represents the set of edges between vertices in the 

mesh; and x represents the matrix of vertex coordinates (i.e., xu represents the coordinate vector of the 

vertex u). During minimization the values of the polar angle and eccentricity vectors are scaled such that 

both fields ranged from -1 to 1 (e.g., polar angle boundary values of 0° and 180° were assigned values of 

-1 and 1 respectively) so that the fields could be evaluated easily for orthogonality; after the 

minimization, the polar angle was linearly rescaled back to the range 0°-180° while eccentricity was 

rescaled so as to have an exponential distribution that best fit the group-average. We employed this 

model generation routine using boundaries drawn over the group-average data (see Anatomically-

defined Atlas of Retinotopy: Group Average, below) as well as the Wang et al. (2015) atlas and the 

Hinds et al. (2009) V1 boundary as rough guidelines. 

 A full description of the model, including how it can be projected onto an fsaverage spherical 

surface or an individual subject’s fsaverage-aligned spherical surface, is provided in the open source 

Neuropythy library (https://github.com/noahbenson/neuropythy). 

Anatomically-defined Atlas of Retinotopy 

Construction of the anatomically-defined atlas of retinotopy is summarized in Figure S2. Previous work 

employed a mass-spring-damper system combined with a nonlinear gradient-descent minimization in 

order to register group-average retinotopic data, averaged on FreeSurfer’s fsaverage_sym hemisphere 

(Greve et al., 2013), with a model of V1, V2, and V3 retinotopy (Schira et al., 2010). In this paper, we 

(1)
!
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modify this technique slightly to bring it more in line with previous established methods such as those 

used by FreeSurfer for surface-based anatomical registration (Dale et al., 1999; Fischl et al., 1999a). In 

brief, retinotopy is measured in a group of subjects via fMRI; the subjects’ cortical meshes are aligned 

via FreeSurfer’s surface registration; the retinotpoic coordinates are then averaged across subjects at 

each vertex on a single atlas of the cortical surface; a 2D atlas of retinotopy is then placed on this 

cortical surface; and finally, the cortical surface is warped to match the retinotopic atlas as best as 

possible given constraints on the warping. Each of these steps is described in more detail below. 

 Group-average Data. Group-average retinotopic maps (Fig. S2B) were obtained from 181 

subjects whose data were published and made freely available as part of the Human Connectome Project 

(Benson et al., 2018). The resulting group-average retinotopic maps are shown in Figure S2B. 

 Cortical Map Projection. The cortical surfaces of the fsaverage left and right hemispheres, on 

which the group-average data were constructed, were inflated both to a smooth hemisphere 

(FreeSurfer’s “inflated” surface) as well as to a sphere (FreeSurfer’s “sphere” surface); the vertices on 

the spherical surfaces were then flattened to 2D maps using an orthographic map projection. Precise 

parameters of this projection and the source code used to generate it are included in the supplemental 

materials. We refer to the 2D vertex coordinates in this resulting map as the “initial vertex coordinates” 

because they precede the warping of the vertex coordinates that occurs during registration. 

 Registration. The initial vertex coordinates of the map projections described above were warped 

in order to bring the polar angle and eccentricity measurements of the vertices into alignment with the 

2D model’s predictions of retinotopy while maintaining topological constraints: i.e., preventing triangles 

in the triangle mesh representing the 2D cortical map from inverting and penalizing excessive stretching 

or compression of the map. This process was achieved by minimizing a potential function defined in 

terms of the edges of the triangle mesh, the angles of the triangle mesh, and the positions of the vertices 
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with polar angle and eccentricity measurements above the weight threshold (see Group-Average Data, 

above). Equation 2 gives this potential function, F(x), which is further broken down into four 

components detailed in Table 2. Fundamentally, the potential function F is a sum of two kinds of 

penalties: penalties for deviations from the reference mesh and penalties for mismatches between the 

vertices with retinotopic coordinates and their positions in the retinotopic model. In the case of the 

former, the reference mesh is given by the parameters x0, E, %, P, and &, and the potential of the 

deviations are defined by Fe, F!, and Fp. The latter is described by F". In these functions, x represents 

the n ⨉ 2 matrix of the 2D-coordinates of each vertex while x0 represents the same coordinates in the 

reference mesh; E represents the set of undirected edges (represented as (u, v) pairs such that (u, v) and 

(v, u) are not both in E) in the reference mesh; % represents the set of angle triples (a, b, c) such that the 

angle is between edge (a, b) and edge (a, c); P is the set of vertices that lie on the perimeter of the 2D 

map projection; rx(u,v) is the Euclidean distance between vectors (x)u and (x)v; and 'x(a,b,c) is the 

counter-clockwise angle between vectors ((x)b - (x)a) and ((x)c - (x)a); & represents the set of anchors 

defined by the retinotopic model in which each anchor is represented by a tuple (u,y,(,w) where w is the 

weight of the anchor, u is the vertex drawn to the anchor, ( is the standard deviation of the anchor’s 

Gaussian potential well, and y is the 2D point to which the anchor is attached; the constants q0 and q1 are 

the minimum and maximum allowable edge lengths, respectively. 

 The term of the potential function devoted to the retinotopic model is given in F" (Eq. 2; Tab. 2). 

This potential term is a set of inverted-Gaussian potential wells called anchors. Each anchor represents 

the attraction of a single vertex u, with measured polar angle ), eccentricity *, and weight w, to a 2D 

(2)�F (x;x0,E,⇥,P,�) = Fe(x;x0,E) + F#(x;x0,⇥) + Fp(x;x0,P) + F'(x;�)
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point y, at which the retinotopic model predicts a polar angle value of ) and an eccentricity value of *. 

Note that each visual area represents every point (), *) in the visual field, there are multiple anchors per 

vertex with retinotopic data. In fact, the retinotopic model used in this paper defines 9 maps in addition 

to the V1-V3 maps (see Model of Retinotopy, above), bringing the total number of anchors per 

retinotopic vertex to 12. The additional areas are intended partly to prevent vertices immediately outside 

of V1-V3 from being drawn incorrectly into the V1-V3 section of the model and are not analyzed in 

detail in this paper. Each anchor additionally defines a parameter (; this value is the width (standard 

deviation) of the anchor’s Gaussian potential well; ( is defined as the minimum distance from the given 

anchor to any other anchor to which u is also attracted; this value was given a maximum value of 20+ 

where + is the mean edge-length in the projected map. 

 The potential function was minimized using a gradient descent algorithm sensitive to the 

singularities in the terms Ge, and G! (Tab. 2); whenever the singularity is accidentally crossed, the 

minimizer backtracks and chooses a smaller step-size. This approach prevents the inversion (from 

counter-clockwise ordering to clockwise ordering) of any triangle in the mesh, as such an inversion 

would require the minimization trajectory to pass through a singularity at the point where ' = 0 or ' = ,. 

The source code used to minimize the potential function as well as specifications of the gradients of 

each term is provided in the open-source library included with the Neuropythy and Neurotica libraries 

(https://github.com/noahbenson/nben). 

 Minimization was run for at least 2500 steps in which the step-size was constrained such that the 

displacement of each vertex in each step was at most 1/50th of the average edge-length in the map 

projection. A small amount of exponentially distributed random noise was added to the gradient at each 
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step with the constraint that the gradient direction at each vertex be conserved; this noise did not affect 

the minimum obtained by the search but did speed up convergence significantly (see associated libraries 

for further details). Convergence was generally observed within 1000-2000 steps. The set of vertex 

coordinates that resulted from this minimization brings the retinotopic measurements associated with the 

vertices in V1, V2, and V3 referred to as the registered vertex coordinates. 

 Prediction. The registered vertex coordinates, once obtained, give the alignment of the subject’s 

cortical surface to the model of retinotopy; accordingly, a prediction of any vertex’s associated pRF and 

visual area label can be derived by comparing the the vertex’s registered coordinates with the model. 

Every vertex whose registered coordinates fall within the model’s V1 boundary, for example, is labeled 

as part of V1. Because only the vertex coordinates, and not the vertex identities, are changed during the 

registration process, there is no need to invert the registration: visual area label, polar angle, and 

eccentricity values assigned to each vertex apply as readily to the vertices whether they are visualized in 

the registered vertex coordinates or in the coordinates that define the subject’s white-matter surface, for 

example. The retinotopic map predictions for the group-average data is shown in Figure S2D (left 

column). 

 Because the group-average retinotopic data were used in the registration, the predicted map that 

results provides a reasonable estimate of any subject’s expected retinotopic map, as shown previously 

(Benson et al., 2012; Benson et al., 2014), although the predicted map does not account for further 

individual differences in the structure to function relationship, as we show in this paper. Additionally, 

because the predicted map from the group-averaged data is defined on the fsaverage subject’s cortical 

surfaces, a retinotopic map prediction for any new subject, for whom retinotopic mapping measurements 

may not be available, can be easily obtained: one can use FreeSurfer to align the new subject’s cortical 

surface with the fsaverage subject’s surface (anatomical structure alignment) then to project the 
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retinotopic maps from the fsaverage subject to the new subject based on the anatomical similarity 

between them. Because of this, we refer to this group-average retinotopic prediction as the anatomically-

defined atlas of retinotopy. This atlas is used as the prior for the Bayesian model fit, described below. 

The atlas is similar but not identical to one presented previously (Benson et al., 2014). 

Bayesian Retinotopic Maps 

The anatomically-defined atlas of retinotopy, while providing a good prediction for most subjects’ 

individual retinotopic maps, nonetheless does not account for individual differences in the mapping 

between anatomical location and retinotopic coordinates. Accordingly, predicted retinotopic maps for 

individual subjects were refined starting from the anatomically-defined atlas of retinotopy using a 

similar method as was used to generate the atlas originally; this process is detailed in Figure 3C. For 

each subject, their cortical surface was aligned based on anatomical structure to the fsaverage subject’s 

cortical surface using FreeSurfer, then their retinotopic data were projected to a map using the identical 

map projection described above in the section on the anatomically-defined atlas of retinotopy. Note that, 

in this case, the anatomical alignment to the fsaverage subject serves to make the map projections as 

similar as possible between individual subjects and the anatomically-defined atlas of retinotopy. If we 

were not interested in incorporating information obtained from the anatomically-defined atlas of 

retinotopy (which represents a prior belief of retinotopic organization based on group-average data), this 

step would not be necessary. 

 The individual subject’s projected map is then arranged according to the registered vertex 

coordinates from the anatomically-defined atlas of retinotopy; this step reflects the prior belief that the 

group-average registration to the retinotopy model is generally accurate for an individual subject when 

that subject’s anatomical structure has been aligned to the fsaverage subject’s. Critically, none of the 

steps taken so far in processing the individual subject’s data relies on any measurements of retinotopy 
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that might be associated with that subject. Rather, these steps have relied only on anatomical structure. 

If, for a subject, no retinotopic measurements are made, then there is no data with which to modify this 

prior belief; accordingly, the prediction of retinotopy for that subject would be identical to the prediction 

of retinotopy contained in the anatomically-defined atlas. In other words, without observation, the prior 

remains the prediction. 

 The next step registers the individually measured retinotopy data to the anatomically-defined 

atlas. Before registration, the individual subject’s data is resampled onto a uniform triangular mesh, and 

each vertex whose retinotopic measurements are above threshold are given a weight, w, based on the 

variance explained, -, of its pRF model solution. The mesh is resampled to the same uniform triangle 

mesh used as the initial vertex coordinates in the registration of the anatomically-defined atlas of 

retinotopy in order to speed up registration. Triangles that are tightly pinched (i.e., triangles with internal 

angles near 0 or ,) can drastically slow the registration progress by forcing the minimizer to frequently 

backtrack steps; resampling makes such behavior much less likely during the initial minimization. Aside 

from the weight, other parameters tracked by the potential field, including anchors parameters used by 

the function F"(x), are obtained identically as with the anatomically-defined atlas of retinotopy. These 

anchors inherit the weight of the vertex to which they apply, but are reduced when the field sign of the 

triangles adjacent to the vertex does not match the field sign of the visual area to which it is tied by the 

anchor or when the pRF size predicted by the model does not match that of the vertex’s measured pRF. 

Details regarding the weights on anchors are provided in the neuropythy library. 

 For each training dataset of each subject, minimization was run for 2500 steps using the same 

protocol that was used with the anatomically-defined atlas of retinotopy. Retinotopic map prediction, 

based on the positions of the registered vertex coordinates in the retinotopy model, were also computed 
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identically to those in the anatomically-defined atlas. Identical minimization and prediction methods 

were run for each test dataset as well, but these results were not used to measure the accuracy or 

effectiveness of the prediction methods.  

Cortical Magnification 

Cortical magnification was calculated using both the observed retinotopic maps and the inferred maps 

that were produced by combining each subject’s full retinotopy dataset with the retinotopic prior. This 

combination of data should, in theory, produce the highest-quality retinotopic map predictions of which 

we are capable (see Results & Discussion). Cortical magnification was calculated by first projecting all 

vertices in a single visual area (such as V1) into the visual field based on their pRF centers. The cortical 

magnification of a particular polar angle and eccentricity is then the total white vertex surface-area (as 

calculated by FreeSurfer) of all pRF centers within a disk of some radius α, divided by the area of the 

disk (πα2). For an eccentricity ρ, we used a radius α = ρ / 3. on these maps in two ways. 
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Supplemental Material 

Raw MRI data as well as analyses and source code for reproducing figures and performing additional 

analyses can be found on the Open Science Foundation website https://osf.io/knb5g/ 

Performing Bayesian inference using your own retinotopic maps. 

To perform Bayesian inference on a FreeSurfer subject, one can use the neuropythy Python library 

(https://github.com/noahbenson/neuropythy). For convenience, this library has also been packaged into a 

Docker container that is freely available on Docker hub (https://hub.docker.com/r/nben/neuropythy). The 

following command will provide an explanation of how to use the Docker: 

 > docker run -it --rm nben/neuropythy:latest register_retinotopy --help 

The script used to register the subjects in this paper is included in the Open Science Foundation website 

mentioned above. 
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Figure S1. Cross-validation schema. To evaluate 
the accuracy of the predictions of retinotopic 
maps, we employ a cross-validation schema. Each 
subject’s 12 retinotopic mapping scans were 
divided into one large set of validation data as well 
as 21 smaller sets of training data. An additional 
dataset of all 12 scans was used for analysis of 
retinotopic properties not linked to evaluation of 
the quality of the predicted maps.

Figure S2. Deriving the anatomically-defined atlas of retinotopy (the prior). A, The group-average polar angle 
(top) and eccentricity (bottom) maps. The cortical surface is inflated to a sphere then flattened to a map. B, The 
model of retinotopy shown with polar angle plotted on the left and eccentricity plotted on the right hemispheres. 
C, The retinotopic prior is constructed from the group-average data using an updated version of the method 
described by Benson et al. (2014). Note that while only eccentricity is shown, polar angle and eccentricity are 
registered simultaneously. The checkerboard underlay illustrates the anatomical warping. D, There is 
approximate agreement between the boundaries of visual areas V1, V2, and V3 as defined by two atlases. The 
Wang et al. maximum probability atlas (2015) and the retinotopic template defined here have similar boundaries. 
The template extends from 0º to 90º eccentricity, whereas the Wang et al atlas is limited to the field of view of 
their experiments (14º), hence the template maps are larger. E, Because there is a topological isomorphism 
between the cortical surface, the left and right hemifields, and the model of retinotopy, the three representations 
have exact one-to-one correspondences.
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Figure S3. The retinotopic prior. A, The 181-subject group-average retinotopic maps from the Human 
Connectome Project 7T Retinotopy Dataset are shown. These maps were used to construct the prior. B, The 
retinotopic prior is shown from 0-12° of eccentricity with boundary lines between areas. All 12 retinotopic areas 
included in the prior are shown. 

!45

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2018. ; https://doi.org/10.1101/325597doi: bioRxiv preprint 

https://doi.org/10.1101/325597
http://creativecommons.org/licenses/by-nc-nd/4.0/

