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Abstract 20 

Background: Self-renewal and lineage regulation of neural stem cells in the adult 21 

mammalian brain (aNSCs) are still far from been understood. Although previous studies 22 

have reported that some aNSCs in neurogenic niches showed irregular nuclei, their 23 

functional significance remains elusive. We used neural crest-derived human periodontal 24 

ligament stem cells (hPDLSCs) as an in vitro cell model of neurogenesis to investigate 25 

the functional significance of nuclear polymorphisms. 26 

Results: Here, we show that hPDLSCs-derived neurons are not directly generated 27 

through cell division from stem cells. In fact, the cell shape of neural precursors is reset 28 

and start their neuronal development as round spheres. The hPDLSCs-derived neurons 29 

gradually adopted a complex morphology by forming several processes, that grew and 30 

arborized, adquiring dendritic-like and axonal-like identities, giving rise to a variety of 31 

neuron-like morphologies. To our knowledge, this article provides the first observation 32 

of these morphological events during in vitro neurogenesis and neuron polarization in 33 

human aNCSCs, and we have discovered a transient cell nuclei lobulation coincident to 34 

in vitro neurogenesis, without being related to cell proliferation. We observed that small 35 

DNA containing structures move within the cell to specific directions and temporarily 36 

form lobed nuclei. Morphological analysis also reveals that neurogenic niches in the adult 37 

mouse brain contains cells with nuclear shapes highly similar to those observed during in 38 

vitro neurogenesis from hPDLSCs.  39 

Conclusions: Our results provide strong evidence that neuronal differentiation from 40 

aNSCs may also occur during in vivo adult mammalian neurogenesis without being 41 

related to cell proliferation. In addition, we demonstrate that hPDLSCs-derived neurons 42 

display a sequence of morphologic development highly similar to those observed in 43 

primary neuronal cultures derived from rodent brains during neurogenesis, providing 44 
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strong evidence that it is possible to reproduce neurogenic processes and obtain neurons 45 

from hPDLSCs. Beyond the central nervous system, the presence of lobed nuclei has been 46 

reported in most blood and immune cells, but the functional significance of multilobed 47 

nuclear structures is not yet stablished. Our results suggest that multilobed nuclear 48 

structures is associated to nuclear movement within the cell. 49 

 50 

Keywords: Neurogenesis; neuronal polarity; neural stem cells; neural crest stem cells; 51 

adult stem cells; human periodontal ligament stem cells; nucleus; nuclear remodeling; 52 

micronuclei. 53 

 54 

Background 55 

Neural stem cells (NSCs) are multipotent populations of undifferentiated cells present 56 

both during development and in the adult central nervous system that give rise to new 57 

neurons and glia [1]. The presence of neural stem cells in the adult mammalian brain 58 

(aNSCs) have been described in two neurogenic niches, the ventricular-subventricular 59 

zone (V-SVZ) of the anterolateral ventricle wall and the subgranular zone (SGZ) of the 60 

hippocampal dentate gyrus [2-9]. 61 

The study of the cell composition of neurogenic niches and the use of methods for 62 

detecting proliferating cells, suggest that neurogenesis occurs progressively through 63 

sequential phases of proliferation and the neuronal differentiation of aNSCS.  64 

In the V-SVZ, putative aNSCs (type B cells) divide to give rise to intermediate progenitor 65 

cells (type C cells), which divide a few times before becoming neuroblasts (type A cells). 66 

The neuroblast then migrate into the olfactory bulb and differentiate into distinct types of 67 

neurons [2-4]. In the SGZ, putative aNSCs (type 1 cells) divide to give rise to intermediate 68 
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progenitor cells (type-2 cells) which exibit limited rounds of proliferation before 69 

generating polarized neuroblast (type-3 cells) [5-9]. Neuroblast, as polarized cells, then 70 

migrate, guided by the leading process, along SGZ and differentiate into dentate granule 71 

neurons [10, 11].  72 

However, only one of the studies suggesting that neurogenesis occurs progressively 73 

through sequential phases of proliferation [2-9] showed mitotic chromosomes [8].  In 74 

addition, the self-renewal and multipotent properties demonstrated by NSC in vitro [12] 75 

have not been clearly demonstrated in vivo [10,13,14]. 76 

Ultrastructure and immunocytochemistry studies show that the V-SVZ stem cell niche 77 

contains cells with irregular (polymorphic) nuclei [15-17]. Type-B cells have irregular 78 

nuclei that frecuently contain invaginations. Type-C cells nuclei contain deep 79 

invaginations and Type-A cell nuclei are also occasionally invaginated [2].  Futhermore, 80 

recent studies have shown that murine and human V-SVZ contains cells with segmented 81 

nuclei connected by an internuclear bridge [18-20]. Although it has been suggested that 82 

these are associated with quiescence in aNSCs [20], the functional significance of 83 

different nuclear morphologies remains elusive. 84 

Ultrastructure and immunocytochemistry studies also show that the SGZ stem cell niche 85 

contains cells with irregular (polymorphic) nuclei [21-28]. Type-2 cells had an irregularly 86 

shaped nucleus [7,9]. In adittion, one study found that many cultured hippocampal 87 

neurons have irregular nuclei or even consisted of two or more lobes connected by an 88 

internuclear bridge [29].    89 

Moreover, how neuroblasts acquire the appropriate cell polarity to initiate their migration 90 

remains unclear [30]. The process of neuronal polarization has been studied for decades 91 

using dissociated rodent embryonic hippocampal pyramidal neurons and postnatal 92 
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cerebellar granule neurons in culture [31,32]. During neuronal polarization in vitro, the 93 

morphological changes in cultured neurons are divided into different stages.  94 

Upon isolation, dissociated pyramidal neurons retract their processes, so that their 95 

development in vitro begins as rounded spheres that spread lamellipodia (stage 1). These 96 

spheres appear symmetrical, extending and retracting several immature neurites of a 97 

similar length (stage 2). Elongation of a single process, that which presumably becomes 98 

the axon, breaks this symmetry (stage 3). The next step involves the remaining short 99 

neurites morphologically developing into dendrites (stage 4) and the functional 100 

polarization of axon and dendrites (stage 5), including dendritic spine and synapse 101 

formation [33]. Dissociated granule neurons also present a lamellipodia after attaching to 102 

the substratum (stage 1). These spheres extend a unipolar process at a single site on the 103 

plasma membrane (stage 2) followed by extension of a second process from the opposite 104 

side of the cell body, resulting in a bipolar morphology (stage 3). One of the two axon 105 

elongates futher and start branching (stage 4), and shorter dendritic processes develop 106 

around the cell body (stage 5) [34]. 107 

Understanding the sequence of events from aNSCs to neuron is not only important for the 108 

basic knowledge of NSCs biology, but also for therapeutic applications [35]. The major 109 

barrier to studying human aNSCs is the inaccessibility of living tissue, therefore an 110 

enormous effort has been made in this study to derive neurons from human stem cells 111 

[36]. In vitro models of adult neurogenesis mainly utilize fetal, postnatal and adult NSCs 112 

[37]. Neural crest stem cells (NCSCs) are a migratory cell population that generate 113 

numerous cell lineages during development, including neurons and glia [38,39]. NCSCs 114 

are present not only in the embryonic neural crest, but also in various neural crest-derived 115 

tissues in the fetal and even adult organs [40]. The periodontal ligament (PDL) is a 116 

connective tissue surrounding the tooth root that contains a source of human NCSCs 117 
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which can be accessed with minimal technical requirements and little inconvenience to 118 

the donor [41]. Isolation and characterization of multipotent stem cells from the human 119 

PDL have been previously described [42, 43].  120 

In previous publication, we showed that several stem cell and neural crest cell markers 121 

are expressed in human adult periodontal ligament (hPDL) tissue and hPDL-derived cells. 122 

In vitro, hPDL-derived cells differentiate into neural-like cells based on cellular 123 

morphology and neural marker expression. In vivo, hPDL-derived cells survive, migrate 124 

and expressed neural markers after being grafted to the adult mouse brain. Moreover, 125 

some hPDL-derived cells graft into stem cell niches such as V-SVZ of the anterolateral 126 

ventricle wall and the SGZ of the dentate gyrus in the hippocampus. The hPDL-derived 127 

cells located in the stem cell niches show neural stem morphology [44]. Moreover, 128 

hPDLSCs cells displayed inward currents conducted through voltage-gated sodium (Na+) 129 

channels and spontaneous electrical activities after neurogenic differentiation [45, 46]. 130 

Therefore, the neural crest origin and neural potential make human periodontal ligament 131 

stem cells (hPDLSCs) interesting as an in vitro human cell model of neurogenesis for 132 

investigating aNSCs to neuron differentiation mechanisms.  133 

Here, we show that hPDLSCs-derived neurons are not directly generated through cell 134 

division from stem cells. In fact, the cell shape of neural precursors is reset and start their 135 

neuronal development as round spheres. To our knowledge, this article provides the first 136 

observation of these morphological events during in vitro neurogenesis and neuron 137 

polarization in human aNCSCs, and we have discovered a transient cell nuclei lobulation 138 

coincident to in vitro neurogenesis, without being related to cell proliferation. We 139 

observed that small DNA containing structures move within the cell to specific directions 140 

and temporarily form lobed nuclei. 141 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 19, 2019. ; https://doi.org/10.1101/325613doi: bioRxiv preprint 

https://doi.org/10.1101/325613
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

Morphological analysis also reveals that the V-SVZ of the anterolateral ventricle wall and 142 

the SGZ of the hippocampal dentate gyrus in the adult mouse brain contains cells with 143 

nuclear shapes highly similar to those observed during in vitro neurogenesis from 144 

hPDLSCs, suggesting that neuronal differentiation from aNSCs may also occur during in 145 

vivo adult mammalian neurogenesis without being related to cell proliferation. 146 

In addition, morphological analysis revealed that hPDLSCs-derived neurons display a 147 

sequence of morphologic development highly similar to those observed in primary 148 

neuronal cultures derived from rodent brains during neurogenesis, providing strong 149 

evidence that it is possible to reproduce neurogenic processes and obtain neurons from 150 

hPDLSCs.  151 

Although previous studies have reported the presence of lobed nuclei in most blood and 152 

immune cells, their functional significance remains elusive. Our results suggest that 153 

multilobed nuclear structures is associated to nuclear movement within the cell. 154 

 155 

Materials and methods 156 

Cell Culture  157 

Human premolars were extracted and collected from healthy donors undergoing 158 

orthodontic therapy in Murcia dental hospital (Spain). hPDL was scraped from the middle 159 

third region of the root surface. After washing the extracted PDL with Ca and Mg-free 160 

Hank’s balance salt solution (HBSS; Gibco), hPDL was digested with 3 mg/ml type I 161 

collagenase (Worthington Biochemical Corporation) and 4 mg/ml dispase II (Gibco) in 162 

alpha modification minimum essential medium eagle (-MEM) (-MEM; Sigma-163 

Aldrich) for 1 h at 37°C. The reaction was stopped by the addition of -MEM. The 164 
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dissociated tissue was passed through a 70-µm cell strainer (BD Falcon). Cells were 165 

centrifuged, and the pellet was resuspended in in serum-containing media (designated as 166 

the basal media), composed of -MEM supplemented with 15% calf serum (Sigma), 100 167 

units/ml penicillin-streptomycin (Sigma) and 2 mM l-glutamine (Sigma). The cell 168 

suspension was plated into six-well multiwell plates (BD Falcon) and incubated at 37°C 169 

in 5% CO2. To induce neural differentiation, cells were cultured in serum-free media 170 

(designated as the neural induction media), consisting in Dulbecco’s modified Eagle’s 171 

medium/F12 (DMEM/F12, Gibco) supplemented with bFGF (20 ng/ml, R&D Systems), 172 

EGF (20 ng/ml, R&D Systems), glucose (0.8 mg/ml, Sigma), N2-supplement (Gibco), 2 173 

mM l-glutamine (Sigma), and 100 units/ml penicillin-streptomycin (Sigma). Neural 174 

induction media were changed every 3-4 days until the end of the experiment (2 weeks). 175 

Immunocytochemistry  176 

Cells were plated onto coated plastic or glass coverslips, and maintained in basal media 177 

or neural induction media. Cells were rinsed with PBS and fixed in freshly prepared 4% 178 

paraformaldehyde (PFA; Sigma). Fixed cells were blocked for 1 h in PBS containing 10% 179 

normal horse serum (Gibco) and 0.25% Triton X-100 (Sigma) and incubated overnight at 180 

4°C with antibodies against: -III-tubulin (TUJ1; 1:500, Covance), Connexin-43 (3512; 181 

1/300, Cell Signalling), Synaptophysin (18-0130; 1/300, Zymed), Synapsin1 (NB300-182 

104; 1/300, Novus), Fibrillarin (ab5821; 1/300, Abcam) and Laminin A/C (GTX101127; 183 

1/300, GeneTex) in PBS containing 1% normal horse serum and 0.25% Triton X-100. On 184 

the next day, cells were rinsed and incubated with the corresponding secondary 185 

antibodies: Alexa Fluor® 488 (anti-mouse or anti-rabbit; 1:500, Molecular Probes), 186 

Alexa Fluor® 594 (anti-mouse or anti-rabbit; 1:500, Molecular Probes), biotinylated anti-187 

rabbit (BA1000, 1:250; Vector Laboratories), biotinylated anti-chicken (BA9010, 1:250, 188 

Vector Laboratories, CY3-streptavidin (1:500, GE Healthcare). Cell nuclei were 189 
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counterstained with DAPI (0.2 mg/ml in PBS, Molecular Probes). Alexa Fluor 488® 190 

phalloidin was used to selectively stains F-actin (Molecular Probes). 191 

Western Blotting 192 

hPDL-derived cells were harvested using trypsin/EDTA (Gibco), washed twice with PBS, 193 

resuspended in RIPA lysis buffer (Millipore) for 30 min at 4°C in the presence of protease 194 

inhibitors (PierceTM. protease inhibitor Mini Tables, Pierce Biotechnology Inc) and PMSF 195 

1M (Abcam). Protein concentration was determined using the bradford protein assay 196 

(Sigma-Aldrich). Proteins were separated in 8% SDS-polyacryamide gel (PAGE-SDS) 197 

and transferred to a nitrocellulose membrane (Whatman). PageRuler™ Prestained Protein 198 

Ladder (Thermo Scientific) has been used as size standards in protein electrophoresis 199 

(SDS-PAGE) and western-blotting. After transfer, nitrocellulose membranes were 200 

stained with Ponceau S solution (Sigma-Aldrich) to visualize protein bands. Blots were 201 

then incubated over-night at 4°C with rabbit antibody against -III-tubulin (TUJ1; 202 

1:1000, Covance). Secondary antibody was used at 1:7000 for peroxidase anti-mouse Ab 203 

(PI-2000, Vector Laboratories). Immunoreactivity was detected using the enhanced 204 

chemiluminescence (ECL) Western blot detection system (Amersham Biosciences 205 

Europe) and LuminataTM Forte (Millipore corporation) using ImageQuant LAS 500 Gel 206 

Documentation System (GE Healthcare). The molecular weight of -III-tubulin is 207 

approximately 55 kDa. 208 

Immunohistochemistry  209 

Experiments were carried out according to the guidelines of the European Community 210 

(Directive 86/609/ECC) and in accordance with the Society for Neuroscience 211 

recommendations. Animals used in this study were 12-week-old immune-suppressed 212 

mouse (Hsd:Athymic Nude-Foxn1 nu/nu; Harlan Laboratories Models, S.L), housed in a 213 
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temperature and humidity controlled room, under a 12h light/dark cycles, with ad libitum 214 

access to food and water. The animals were anesthetized and intracardially perfused with 215 

freshly prepared, buffered 4% PFA (in 0.1M PB, pH 7.4). Brains were removed, post-216 

fixed for 12 hr in the same fixative at 4ºC and dehydrated in 30% sucrose solution at 4°C 217 

until sunk. 30µm thick coronal sections were collected using a freezing microtome. Serial 218 

sections were used for DAPI staining. Free-floating sections were incubated and mounted 219 

onto Superfrost Plus glass slides (Thermo Scientific). The slides were dried O/N and 220 

coverslipped with mowiol-NPG (Calbiochem). 221 

Images and Data Analyses 222 

Analyses and photography of visible and fluorescent stained samples were carried out in 223 

an inverted Leica DM IRB microscope equipped with a digital camera Leica DFC350FX 224 

(Nussloch) or in confocal laser scanning microscope Leica TCS-SP8. Digitized images 225 

were analyzed using LASX Leica confocal software. Z-stacks of confocal fluorescent 226 

images were also analyzed to calculate the nuclear volume by using ImageJ software. 227 

Scanning Electron Microscopy  228 

Cells were plated onto coated glass coverslips and maintained in basal media or neural 229 

induction media. Cells were treated with fixative for 20 minutes. Coverslips were 230 

postfixed in 1% osmium tetroxide for 1 hour and dehydrated in graded ethanol washes. 231 

The coverslips were allowed to dry at a conventional critical point and were then coated 232 

with gold-palladium sputter coated. Coverslips were view on a Jeol 6100 scanning 233 

electron microscope. 234 

 235 

 236 
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Results 237 

As noted in the introduction, the aim of this work was to evaluate the sequence of 238 

biological events occurring during the neural differentiation of hPDLSCs. Morphological 239 

characteristics of the hPDLSCs, including cell shape, cell surface features, cytoskeleton, 240 

and nuclear morphology were examined in cells under proliferation and neural 241 

differentiation conditions. 242 

hPDLSCs cultured in basal media  243 

Under proliferation conditions, hPDLSCs displayed a fibroblast-like morphology with 244 

low-density microvilli on the cell surface (Fig. 1a) and actin microfilaments and -III 245 

tubulin microtubules oriented parallel to the longitudinal axis of the cell (Fig. 1b). The 246 

cytoskeletal protein class III beta-tubulin isotype is widely regarded as a neuronal marker 247 

in developmental neurobiology and stem cell research [47]. Dental and oral-derived stem 248 

cells displayed spontaneous expression of neural marker -III tubulin, even without 249 

having been subjected to neural induction [48]. Western blot analysis verified the 250 

expression of -III tubulin in hPDLSCs (Fig. 1c). During mitosis, -III tubulin is present 251 

in the mitotic spindle and it is detectable in all phases of mitosis (Fig. 1d). The cytoskeletal 252 

protein class III beta-tubulin isotype is a component of the mitotic spindle in multiple cell 253 

types [49]. During interphase, undifferentiated hPDLSCs displayed a flattened, 254 

ellipsoidal nucleus, often located in the center of the cell and with a nuclear volume 255 

around 925´356 ±52´6184 m3 (Fig. 1e).  256 

hPDLSCs cultured in neural induction media 257 

After 14 days of neural differentiation conditions, the hPDLSCs displayed different 258 

morphologies, including round cells with small phase-bright cell bodies and short 259 
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processes; highly irregulary-shaped cells; and, also, unipolar, bipolar and multipolar-260 

shaped cells with small phase-bright cell bodies and multiple branched processes (Fig. 261 

1f). In addition, cells of different size were also observed (Fig. 1g). Futhermore, 262 

microscopic analysis revealed that some hPDLSCs have different nuclear shapes, 263 

including lobed nuclei connected by an internuclear bridge (Fig. 1h). The results indicate 264 

that the cell culture simultaneously contains hPDLSCs at different stages of neurogenesis 265 

and neuronal polatization. We acknowledge that the definitive sequence of in vitro 266 

neurogenesis and neuronal polarization from hPDLSCs will be provided only by time-267 

lapse microscopy of a single cell, but in our experimental conditions, several pieces of 268 

data suggest how these steps may occur. 269 

In vitro neurogenesis from hPDLSCs 270 

After neural induction, hPDLSCs undergo a dramatic change in shape and size, first 271 

adopting highly irregular forms and then gradually contracting into round cells with small 272 

phase-bright cell bodies (Fig. 2a). Cytoskeletal remodeling is observed during the 273 

morphological changes that occurred when the hPDLSCs round up to a near-spherical 274 

shape. Actin microfilament not longer surround the nucleus and became cortical. Unlike 275 

actin, -III tubulin seems to accumulate around the nucleus (Fig. 2b). Actin microfilament 276 

and -III tubulin microtubule network are almost lost in the rounded cells (Fig. 2c). 277 

Scanning electron micrographs show that hPDLSCs also experience dramatic changes in 278 

cell surface features. Under proliferation conditions, hPDLSCs remain very flat, 279 

presenting low-density microvilli on their surface (Fig. 1a), but there is a marked increase 280 

in the number of microvilli as the cells round up to near-spherical shape (Fig. 2d). The 281 

surface of the round cells is almost devoid of microvilli (Fig. 2e). Cytokinesis and mitotic 282 

spindle were not observed during the described of in vitro neurogenesis processes (Fig. 283 

1f-h, 2). 284 
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Neuronal polarization of hPDLSCs-derived neurons 285 

Morphological analysis revealed that hPDLSCs-derived neurons display a sequence of 286 

morphologic development highly similar to those observed in dissociated-cell cultures 287 

prepared from rodent brain (Fig. 3-5). hPDLSCs-derived neurons also start their 288 

development as rounded spheres that initiated neurite outgrowth at a single site on the 289 

plasma membrane, first becoming unipolar, stages 1-2 (Fig. 3a). We did not observe the 290 

development of lamellipodia around the circumference of the cell body. These unipolar 291 

cells, later transformed into cells containing several short neurites, developed around the 292 

cell body, stage 3 (Fig. 3b). An analysis of the cytoskeletal organization during spherical 293 

stages of hPDLSCs-derived neurons showed that the -III tubulin microtubules and actin 294 

microfilament network is reorganized. Cytoskeletal protein -III tubulin was densely 295 

accumulated under the cell membrane of the hPDLSCs-derived neurons cell bodies and 296 

in cell neurites (Fig. 3a,b) while actin microfilaments were mainly found in cell neurites 297 

(Fig. 3c). We observed that hPDLSCs-derived neurons produce neurites that showed 298 

growth cone formations at their tips (Fig. 3c-e). The central domain of the growth cone 299 

contains -III tubulin microtubules and the peripheral domain is composed of radial F-300 

actin bundles (Fig. 3d), similar to the typical spatial organization described in neurons 301 

[50, 51]. Scanning electron micrographs also showed that the growth cone of hPDLSCs-302 

derived neurons contained filopodia and vesicles on the cell surface (Fig. 3e). These 303 

finding are consistent with a previous study reporting that membrane addition and 304 

extension in growth cones is mediated by diverse mechanism, including exocytosis of 305 

vesicular components [52]. 306 

At later stages of differentiation, the hPDLSCs-derived neurons gradually adopted a 307 

complex morphology by forming several processes, stage 4 (Fig. 3f) that grew and 308 

arborized, adquiring dendritic-like and axonal-like identities, giving rise to a variety of 309 
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neuron-like morphologies (Fig. 3g). The next step, stage 5, in neuronal polarization from 310 

rodent neurons in culture is the functional polarization of axon and dendrites, including 311 

dendritic spine formation and axon branch formation. Dendritic spines are micron-sized 312 

dendrite membrane protrusions [53]. Depending on the relative sizes of the spine head 313 

and neck, they can be subdivided into different categories, including filopodium, 314 

mushroom, thin, stubby, and branched spines [54]. Dendritic spines are actin-rich 315 

compartments that protrude from the microtubule-rich dendritic shafts of principal 316 

neurons [55]. Based on morphology, complexity, and function, axon branching is grouped 317 

into different categories, including arborization, bifurcation, and collateral formation 318 

[56]. 319 

Our morphological analysis revealed that hPDLSCs-derived neurons developed well-320 

differentiated axonal-like and dendritic-like domains. These types of processes differ 321 

from each other in morphology (Fig. 3h-4d). Cytoskeletal protein -III tubulin and F-322 

actin staining showed that the hPDLSCs-derived neurons comprised multiple branched 323 

dendrite-like processes with dendritic spines-like structures (Fig. 3h). Scanning electron 324 

micrographs showed that the hPDLSCs-derived neurons also contained multiple 325 

branched dendrite-like processes with variously shaped spine-like protusions, highly 326 

similar to filopodium, mushroom, thin, stubby, and branched dendritic spines shapes (Fig. 327 

4a). Futhermore, hPDLSCs-derived neurons also displayed different types of axonal 328 

branch-like structures, including bifurcation (Fig. 4b), arborization (Fig. 4c), and 329 

collateral formation (Fig. 4d).  330 

The last step in neuronal polarization from rodent neurons in culture is synapse formation. 331 

The most frequent types of synaptic communication include axodendritic, axosomatic, 332 

axoaxonic and dendrodendritic synapses. Morphological analysis revealed that the 333 

hPDLSCs-derived neurons connected to one another (Fig. 5a) through different types of 334 
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synapse-like interactions, including dendrodendritic-like, axoaxonic-like and 335 

axodendritic-like synapses (Fig. 5b). Synapse-associated proteins Cx43, Synaptophysin 336 

and Synapsin1 were found accumulated in the cell surface of neurites (Fig. 5c). 337 

Nuclear remodeling 338 

Nuclear morphology was examined in  hPDLSCs under proliferation and neural 339 

differentiation conditions. The dynamic localization of the nucleoli was analyzed by 340 

immunostaining for fibrillarin, the main component of the active transcription centers 341 

[57] and the dynamic localization of the nuclear lamina was analyzed by immunostaining 342 

for laminin A/C, a nuclear lamina component [58]. 343 

As noted above, during interphase, hPDLSCs displayed a flattened, ellipsoidal nucleus, 344 

often located in the center of the cell, and with a nuclear volume around 925´356 345 

±52´6184m3 (Fig. 1e). The nuclei of hPDLSCs contained two or more nucleoli and the 346 

inside surface of the nuclear envelope is lined with the nuclear lamina (Fig. 6a). 347 

Previous studies have shown that  the nuclear lamina and nucleolus are reversibly 348 

disassembled during mitosis [59, 60]. Microscopic analysis of hPDLSCs revealed that the 349 

dynamic localization of fibrillarin and laminin A/C proteins during mitosis are similar to 350 

those observed in previous studies (Fig. 6b). 351 

Morphological analysis also revealed that nuclear remodeling occurred during in vitro 352 

neurogenesis from hPDLSCs (Fig. 7-10). We acknowledge that the definitive sequence 353 

of nuclear remodeling when hPDLSCs round up to near-spherical shape will only be 354 

provided by time-lapse microscopy, but our accumulated data suggests how these steps 355 

may occur. 356 

Small DNA containing structures start to move towards specific positions within the cell 357 

(Fig. 7a-n) and temporarily form lobed nuclei (Fig. 7o-r). Later, these lobed nuclei 358 
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connected to one another through small DNA containing structures (Fig. 7s-x) forming 359 

internuclear bridges (Fig.7y-8j). Finally, there is restoration of irregular, but non-lobed, 360 

nucleus with an eccentric position within hPDLSCs-derived neurons (Fig. 8k-o). These 361 

small DNA containing structures displayed a spherical or ovoid shape (Fig. 9a), and it 362 

seems that some of them are connected to the main body of the nucleus by thin strands of 363 

nuclear material (Fig. 9b). Fibrillarin and laminin A/C proteins were detected in these 364 

small DNA containing structures (Fig. 10a). The nuclear lamina and nucleolus are not 365 

disassembled during in vitro neurogenesis from hPDLSCs (Fig. 10b). 366 

No lobed nuclei were observed as PDL-derived neurons gradually acquired a more mature 367 

neuronal-like morphology (Fig. 11a). We also found that as the cells round up to a near-368 

spherical shape the nuclear volume of the hPDLSCs decreases to an approximate volume 369 

of 279´589±38´8905 m3 (Fig. 11b). Cytokinesis, mitotic chromosomes and mitotic 370 

spindle were not observed during the described of in vitro neurogenesis processes or 371 

neuronal polarization from hPDLSCs (Fig. 7-11). 372 

Interestingly, the morphological analysis revealed that the adult rodent V-SVZ of the 373 

anterolateral ventricle wall (Fig. 12a) and the SGZ of the hippocampal dentate gyrus (Fig. 374 

12b), where adult neurogenesis has been clearly demonstrated, contained abundant cells 375 

with nuclear shapes highly similar to those observed during in vitro neurogenesis from 376 

hPDLSCs. Although it has been suggested that lobed nuclei connected by an internuclear 377 

bridge are associated with quiescence in aNSCs [20], we observed that this kind of nuclei 378 

is associated to nuclear movement within the cell during initial phases of neurogenesis, 379 

without being related to cell proliferation. 380 

 381 

 382 
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Discussion 383 

It has commonly been assumed that adult neurogenesis occurs progressively through 384 

sequential phases of proliferation [10,11]. However, there are almost no studies that show 385 

mitotic chromosomes or mitotic spindle to really confirm that this really happens [2-9]. 386 

In addition, the self-renewal and multipotent properties demonstrated by NSC in vitro 387 

[12] have not been clearly demonstrated in vivo [10,13,14]. 388 

Despite the advantages for the detection of adult neurogenesis using exogenosus 389 

thymidine analog administration or endogenous cell cycle markers, in addition to cell 390 

stage and lineage commitment markers, recent findings indicate that some observations 391 

interpreted as cell division could be normal DNA turnover or DNA repair [61,62,63]. 392 

Thymidine analogs such as tritiated thymidine and BrdU may also be incorporated during 393 

DNA synthesis that is not related to cell proliferation [64, 65]. Proliferating cell nuclear 394 

antigen is also invoved in DNA repair [66]. Positivity of the proliferation marker KI-67 395 

in noncycling cells has also been observed [67].  396 

Previous ultrastructure and immunocytochemistry studies also show that the V-SVZ stem 397 

cell niche contains cells with different morphologies and irregular nuclei [2-4,15-20]. 398 

Type-B cells have irregular nuclei that frecuently contain invaginations and irregular 399 

contours of the plasma membrane. Type-C cells nuclei contained deep invaginations and 400 

these cells are more spherical. Type-A cells have elongated cell body with one or two 401 

processes and the nuclei are occasionally invaginated [2]. Futhermore, some studies have 402 

shown that murine and human V-SVZ have segmented nuclei connected by an 403 

internuclear bridge [18-20].  404 

In addition, previous reports also shown irregular shaped nuclei in the adult SGZ [21-28]. 405 

Adult SGZ NSCs (type 1 cells) have irregular contours of the plasma membrane, and 406 
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differences in heterochromatin aggregation has been also observed [9]. Adult SGZ NSCs 407 

(type 2 cells) had an irregularly shaped nucleus [11, 13]. Futhermore, one study found 408 

that many cultured hippocampal neurons have irregular nuclei or even consisted of two 409 

or more lobes connected by an internuclear bridge [29].    410 

In this study, we show that hPDLSCs-derived neurons are not directly generated through 411 

cell division from stem cells. The undifferentiated polygonal and fusiform cell shapes are 412 

reset and start their neuronal development as rounded spheres. The hPDLSCs-derived 413 

neurons gradually adopted a complex morphology by forming several processes, that 414 

grew and arborized, adquiring dendritic-like and axonal-like identities, giving rise to a 415 

variety of neuron-like morphologies. Futhermore, we have discovered a transient cell 416 

nuclei lobulation coincident to in vitro neurogenesis, without being related to cell 417 

proliferation. Cytokinesis, mitotic chromosomes and mitotic spindle were not observed 418 

during the described of in vitro neurogenesis processes or neuronal polarization from 419 

hPDLSCs. Moreover, the nuclear lamina and nucleolus are not disassembled during in 420 

vitro neurogenesis from hPDLSCs.  421 

Morphological analysis also revealed that the adult rodent V-SVZ of the anterolateral 422 

ventricle wall, as well as the SGZ of the hippocampal dentate gyrus, where adult 423 

neurogenesis has been clearly demonstrated, contains cells with nuclear shapes highly 424 

similar to those observed during in vitro neurogenesis from hPDLSCs. Although it has 425 

been suggested that lobed nuclei connected by an internuclear bridge are associated with 426 

quiescence in aNSCs [20], we observed that this kind of nuclei is associated to nuclear 427 

movement within the cell during initial phases of neurogenesis, without being related to 428 

cell proliferation. 429 

Taken together, these results suggest that the sequence of events from aNSCs to neuron 430 

may also occur without being related to cell proliferation. It would therefore be interesting 431 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 19, 2019. ; https://doi.org/10.1101/325613doi: bioRxiv preprint 

https://doi.org/10.1101/325613
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

to examine whether SVZ and SGZ intermediate progenitor cells represent different stages 432 

of neurogenesis without being related to cell proliferation. 433 

Futhermore, we demonstrate that hPDLSCs-derived neurons display a sequence of 434 

morphologic development highly similar to those observed in primary neuronal cultures 435 

derived from rodent brains during neurogenesis, providing strong evidence that it is 436 

possible to reproduce neurogenic processes and obtain neurons from hPDLSCs, as 437 

suggested by their neural-crest origin and stem cell characteristics [44]. The process of 438 

neuronal polarization has been studied for decades using dissociated rodent embryonic 439 

hippocampal pyramidal neurons and postnatal cerebellar granule neurons in culture [31, 440 

32], but less is known about the process of neuronal polarization in human cells [37, 68].  441 

Although future research is required to optimize the diversity of in vitro neural induction 442 

protocols that have been designed for oral and dental stem cells [69], our results suggest 443 

that hPDLSCs could also be used as an in vitro human cell-based model for neurogenesis 444 

and neuronal polarization [37].  445 

In addition, the easy procedure for obtaining these from adults in normal or pathological 446 

condictions, may represent, as we have demonstrated with periodontal ligament cells 447 

from children [70, 71], a suitable way of developing in vitro cell models of human 448 

diseases. 449 

Beyond the central nervous system, the presence of lobed nuclei has been reported in 450 

most blood and immune cells, but the functional significance of multilobed nuclear 451 

structures is not yet known [72-75].  We observed that multilobed nuclear structures is 452 

associated to nuclear movement within the cell. It would also be interesting to examine 453 

whether these putative madure cells also represent different stages of haematopoietic stem 454 

cell differentiation without being related to cell proliferation. Thus, hPDLSCs could be 455 
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also used to understand the functional significance of multilobed nuclear structures  in 456 

blood and immune cells. 457 

One of the most important discoveries in this work is the observation that small DNA 458 

containing structures move within the cell to specific directions and temporarily form 459 

lobed nuclei. These small DNA containing structures displayed a spherical or ovoid 460 

shape, and it seems that some of them are connected to the main body of the nucleus by 461 

thin strands of nuclear material. Fibrillarin and laminin A/C proteins were detected in 462 

these small DNA containing structures.  463 

It is known for many decades that chromatin particles can appear in the cellular cytoplasm 464 

and they are referred to as micronuclei, nucleoplasmic bridge and nuclear bud [76]. 465 

Although these nuclear anomalies have been associated with chromosomal instability 466 

events [76-79], recent reports showed generation of micronuclei during interphase [80-467 

82]. Therefore, the mechanisms that lead to extra-nuclear bodies formation and their 468 

biological relevance are still far from been understood [83,84]. Ours results suggest that 469 

the interphase cell nucleus can reversibly disassembled into functional subunits that 470 

moved independently within the cell, if necessary. 471 

In addition, alterations in nuclear morphologies are closely associated with a wide range 472 

of human diseases, including muscular dystrophy and cancer [85,86]. Thus, hPDLSCs 473 

could facilitate an understanding of the mechanisms regulating nuclear morphology in 474 

response to cell shape changes and their functional relevance [87, 88]. 475 

 476 

 477 

 478 
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5. Conclusions 479 

Here, we show that hPDLSCs-derived neurons are not directly generated through cell 480 

division from stem cells. In fact, the cell shape of neural precursors is reset and start their 481 

neuronal development as round spheres. Futhermore, we have discovered a transient cell 482 

nuclei lobulation coincident to in vitro neurogenesis, without being related to cell 483 

proliferation. In addition, neurogenic niches in adult mouse brain contains cells with 484 

nuclear shapes highly similar to those observed during in vitro neurogenesis from 485 

hPDLSCs. Previous studies also show that the neurogenic niches in the adult mouse brain 486 

and dissociated-cell cultures of hippocampal neurons contains cells with irregular nuclei 487 

or even consist of two or more lobes connected by an internuclear bridge.  488 

Taken together, these results suggest that the sequence of events from aNSCs to neuron 489 

may also occur without being related to cell proliferation.  490 

Futhermore, we demonstrate that hPDLSCs-derived neurons display a sequence of 491 

morphologic development highly similar to those observed in primary neuronal cultures 492 

derived from rodent brains during neurogenesis, providing strong evidence that it is 493 

possible to reproduce neurogenic processes and obtain neurons from hPDLSCs. 494 

The most important discovery in this work is the observation that small DNA containing 495 

structures move within the cell to specific directions and temporarily form lobed nuclei. 496 

Although the presence of lobed nuclei has been reported in most blood and immune cells, 497 

and also in cancer cells, their functional significance remains elusive. Ours results suggest 498 

that multilobed nuclear structures is associated to nuclear movement within the cell. Thus, 499 

hPDLSCs could facilitate an understanding of the mechanisms regulating nuclear 500 

morphology in response to cell shape changes and their functional relevance. 501 

 502 
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Abbreviations: aNSCs: Neural stem cells in the adult mammalian brain; hPDLSCs: 503 

Human periodontal ligament stem cells; NSCs: Neural stem cells; V-SVZ: The 504 

ventricular-subventricular zone; SGZ: subgranular zone; NCSCs; Neural crest stem cells; 505 

PDL; periodontal ligament; Hpdl: human periodontal ligament. 506 
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Figure legends 742 

Fig. 1. Morphological changes in hPDLSCs cultures during neural induction.  743 

Undifferentiated hPDLSCs presented a fibroblast-like morphology with low-density 744 

microvilli on their surface (a) and actin microfilaments and-III tubulin microtubules 745 

oriented parallel to the longitudinal axis of the cell (b). (c) Western blot analysis verified 746 

the expression of -III tubulin. Protein size markers (in kilodaltons) are indicated on the 747 

side of the panel. (d) During mitosis, -III tubulin is present in the mitotic spindle and it 748 

is detectable in all phases of mitosis. (e) Undifferentiated hPDLSCs displayed a flattened, 749 

ellipsoidal nucleus often located in the center of the cell. (f) After 14 days of neural 750 

differentiation conditions, hPDLSCs with different morphologies were observed. (g) In 751 

addition, hPDLSCs of various size were also observed. (h) Microscopic analysis also 752 

revealed that some hPDLSCs have different nuclear size and shapes, including lobed 753 

nuclei connected by an internuclear bridge. Scale bar: 25 m. SEM, scanning electron 754 

microscopy; LM, light microscopy. 755 

Fig. 2. In vitro neurogenesis from hPDLSCs.  756 

(a) After neural induction, hPDLSCs undergo a shape and size change, adopting highly 757 

irregular forms first and then gradually contracting into round cells. (b) Cytoskeletal 758 

remodeling is observed during these morphological changes. Actin microfilament not 759 

longer surround the nucleus and become cortical. Unlike actin, -III tubulin seems to 760 

accumulate around the nucleus. (c) the cytoskeletal network is almost lost in round cells. 761 

(d) Scanning electron micrographs show that there is a marked increase in the density of 762 

microvilli as the cells round up to near-spherical shape. (e) The surface of round cells is 763 

almost devoid of microvilli. The scale bars are 25 m in the light microscope images, and 764 
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10 m in the scanning electron micrographs. LM, light microscopy; SEM, scanning 765 

electron microscopy. 766 

Fig. 3. Neuronal polarization of hPDLSCs-derived neurons.  767 

(a) hPDLSCs-derived neurons start their development as rounded spheres that initiate 768 

neurite outgrowth at a single site on the plasma membrane. (b) These later transform into 769 

cells containing several short neurites developed around the cell body. (c) the cytoskeletal 770 

network is reorganizated. -III tubulin accumulates densely under the cellular membrane 771 

of the cell body and in cell neurites while actin microfilaments are mainly found in cell 772 

neurites. (d) The peripheral domain in the growth cone of hPDLSCs-derived neurons is 773 

composed of radial F-actin bundles and the central domain contains -III tubulin 774 

microtubules. (e) Micrographs showing that the growth cone also contains filopodia and 775 

vesicles on the cell surface. At later stages of development, hPDLSCs-derived neurons 776 

gradually adopt a complex morphology (f) giving rise to a variety of neuron-like forms 777 

(g). (h) Cytoskeletal protein -III tubulin and F-actin staining shown that hPDLSCs-778 

derived neurons develop distinct axon-like and dendrite-like processes (numbers locate 779 

the areas shown in higher power). The scale bars are 25 m in the light microscope 780 

images, and 10 m in the scanning electron micrographs. SEM, scanning electron 781 

microscopy; LM, light microscopy; b, actin bundles; v, vesicles, f, filopodia. 782 

Fig. 4. hPDLSCs-derived neurons have developed well-differentiated axonal-like 783 

and dendritic-like domains.  784 

(a) Scanning electron micrographs show that hPDLSCs-derived neurons are composed of 785 

multiple branched processes with different spine-like protusions highly similar to 786 

filopodium, mushroom, thin, stubby, and branched dendritic spines shapes. hPDLSCs-787 

derived neurons also display different types of axonal branch-like structures, including 788 
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bifurcation (b), terminal arborization (c), and collateral formation (d) (inserts and 789 

numbers locate the areas showed in higher power). The scale bars are 25 m in light 790 

microscope images and 5 m in the scanning electron micrographs. SEM, scanning 791 

electron microscopy; LM, light microscopy; s, spine-like protusions; f, filopodium; m, 792 

mushroom; t, thin; stubby; b, branched. B, bifurcation; a, arborization; c, collateral 793 

formation. 794 

Fig. 5. hPDLSCs-derived neurons are connected by synapse-like interactions. 795 

hPDLSCs-derived neurons connect to one another (a) through different types of 796 

synapses-like interactions, including dendrodendritic-like, axoaxonic-like and 797 

axodendritic-like synapses (b). (c) Synapse-associated proteins Cx43, Synaptophysin and 798 

Synapsin1 are found in the cell membrane of hPDLSCs-derived neurons at the neurite 799 

contact areas. Scale bar: 25 m. LM, light microscopy; DD, dendrodendritic-like synapse; 800 

AA, axoaxonic-like and synapse; AD, axodendritic-like synapse. 801 

Fig. 6. Dynamic localization of fibrillarin and laminin A/C proteins during the cell 802 

cycle of hPDLSCs. 803 

(a) During interphase, the nuclei of hPDLSCs contained two or more nucleoli and the 804 

inside surface of the nuclear envelope is lined with the nuclear lamina. (b) The nuclear 805 

lamina and nucleolus are reversibly disassembled during mitosis. Scale bar: 10 m.   806 

Fig. 7. Nuclear shape remodeling occurs during neurogenesis from hPDLSCs.  807 

(a,n) Small DNA containing structures start to move towards specific positions within the 808 

cell and temporarily form lobed nuclei (o,r). Later, these lobed nuclei connected to one 809 

another through small structures containing DNA (s,x) forming internuclear bridges (y,z). 810 

Scale bar: 10 m. 811 
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Fig. 8. Nuclear shape remodeling occurs during neurogenesis from hPDLSCs.  812 

(a,j) lobed nuclei connected by internuclear bridges move towards specific positions 813 

within the cell and finally, there is restoration of irregular, but non-lobed, nucleus with an 814 

eccentric position within hPDLSCs-derived neurons (k,o). The scale bars in -III tubulin 815 

and DAPI images are 50 m and 10 m for confocal 3D images of nuclei. 816 

Fig. 9. Cytoplasmic DNA containing structures.  817 

(a) Cytoplasmic DNA containing structures displayed a spherical or ovoid shape and it 818 

seems that some of them are connected to the main body of the nucleus by thin strands of 819 

nuclear material (b). Scale bar: 5 m. 820 

Fig. 10. Dynamic localization of fibrillarin and laminin A/C proteins during 821 

neurogenesis from hPDLSCs  822 

(a) Fibrillarin and laminin A/C proteins were detected in small DNA containing structures 823 

(numbers locate the areas showed in higher power). (b) The nuclear lamina and nucleolus 824 

are not disassembled during in vitro neurogenesis from hPDLSCs. Scale bar: 5 m. 825 

Fig. 11. Nuclear shape in PDL-derived neurons.  826 

(a) No lobed nuclei are observed when PDL-derived neurons gradually acquired cellular 827 

polarity and more mature, neuronal-like morphology. (b) The nuclear volume shrinks as 828 

the cells become rounded during neurogenesis. Data represent mean ± S.E. of ten 829 

independent experiments. The scale bar in -III tubulin and DAPI images are 50 m and 830 

10 m for confocal 3D images of nuclei. 831 

Fig. 12. Neurogenic niches in the adult mammalian brain also contains cells with 832 

irregular nuclei. Morphological analysis reveals that the adult rodent V-SVZ of the 833 

anterolateral ventricle wall (a), as well as the SGZ of the hippocampal dentate gyrus (b), 834 
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contain cells with nuclear shapes highly similar to those observed in during in vitro 835 

neurogenesis from hPDLSCs. Scale bar: 10 m. LV, lateral ventricle; GLC, granule cell 836 

layer. 837 
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