
The spatial correspondence and genetic influence of 

inter-hemispheric connectivity with white matter 

microstructure 
 

Jeroen Mollink1,2*, Stephen M. Smith1, Lloyd T. Elliott3, Michiel Kleinnijenhuis1, 

Marlies Hiemstra2, Fidel Alfaro-Almagro1, Jonathan Marchini3,4, Anne-Marie van 

Cappellen van Walsum2, Saad Jbabdi1†, Karla L. Miller1*†.  

 

1Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, 

Oxford, UK. 

2Department of Anatomy, Donders Institute for Brain, Cognition and Behaviour, 

Radboud University Medical Center, Nijmegen, NL. 

3Department of Statistics, University of Oxford, Oxford, UK. 

4The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK. 

 

*Correspondence to jeroen.mollink@radboudumc.nl, karla@fmrib.ox.ac.uk 
†Equal contribution 

 

 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 18, 2018. ; https://doi.org/10.1101/325787doi: bioRxiv preprint 

https://doi.org/10.1101/325787


Abstract 

 

Microscopic features (i.e., microstructure) of axons affect neural circuit activity 

through characteristics such as conduction speed. Deeper understanding of 

structure-function relationships and translating this into human neuroscience has 

been limited by the paucity of studies relating axonal microstructure in white matter 

pathways to functional connectivity (synchrony) between macroscopic brain regions. 

Using magnetic resonance imaging data in 11354 subjects, we constructed multi-

variate models that predict the functional connectivity of pairs of brain regions from 

the microstructural signature of white matter pathways that connect them. 

Microstructure-derived models provide predictions of functional connectivity that 

were significant in up to 86% of the brain region pairs considered. These 

relationships are specific to the relevant white matter pathway and have high 

reproducibility. The microstructure-function relationships are associated to genetic 

variants (single-nucleotide polymorphisms), co-located with genes DAAM1 and 

LPAR1, that have previously been reported to play a role in neural development. Our 

results demonstrate that variation in white matter microstructure across individuals 

consistently and specifically predicts functional connectivity, and that this relationship 

is underpinned by genetic variability. 
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Introduction 

 

Communication between brain regions is achieved by axons grouped in white matter 

pathways, and properties of these axonal (structural) connections are highly relevant 

to brain function (e.g., functional connectivity). However, it is not simply the presence 

or absence of a connection, but also the tissue architecture (i.e., microstructure) of 

white matter that influences brain function. For example, axonal diameter, 

myelination and length all affect the precise timing of neural signals, which is crucial 

to synchronizing network dynamics1.  

 

Much of our knowledge about structural connectivity in the brain comes from 

animals2, human lesions3, and post-mortem human dissections4. These approaches 

have relatively large biological specificity and interpretability but are limited in their 

ability to characterize inter-individual differences. More recently, diffusion MRI 

(dMRI) has emerged as a powerful in vivo tool for studying the brain’s structural 

connections5. Although limited in spatial resolution6, dMRI has the unique ability to 

estimate the trajectories of white matter bundles (i.e., tractography) as well as some 

microstructural properties of these bundles, through models linking the within-voxel 

dMRI signal to tissue architecture. An important benefit of dMRI is that it enables us 

to characterize inter-individual differences, even in large cohorts (e.g., UK Biobank7). 

dMRI thus has the potential to relate individual variations in white matter 

microstructure to differences in brain function, which can also be characterized with 

MRI.  
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Diffusion MRI has already been used to investigate structure – function relationships, 

mostly relating the presence and connectivity of a white matter tract to the functional 

coupling between the regions it is connecting8–12. Importantly, these studies relate 

the macroscopic organization of the network to brain function but did not aim to 

establish whether the microstructure of a white matter tract relates to the functional 

communication it establishes between brain areas.  

 

A few studies have demonstrated the potential for dMRI to establish relationships 

between microstructure and function. For instance, the commonly-used metric 

fractional anisotropy (FA) is a measure of diffusion directionality that is biologically 

non-specific, being sensitive to many properties including axon density, size and 

myelination13. Mean FA in the cingulum bundle has been shown to correlate with 

functional connectivity between the medial frontal cortex and the posterior cingulate 

cortex, but not with functional connectivity derived from elsewhere in the brain14. 

Similar associations were found in callosal motor fibres connecting the hand areas in 

both hemispheres15. However, these studies focus on the tract connecting a single 

pair of regions and summarise a tract’s microstructure with a single quantity (e.g. FA 

averaged over the entire tract).  

 

In this work, we address whether functional connectivity between brain regions is 

mediated by microstructure of white matter pathways that connect them. Unlike 

previous literature, we generate models that capture rich spatial representation of a 

tract’s microstructural profile (i.e., the microstructural signature). We show that these 

models can predict functional connectivity and demonstrate that the microstructure-

function link is a general and reproducible principle in the human brain. In addition to 
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diffusion tensor-based metrics, several microstructural measures were quantified 

using Neurite Orientation Dispersion and Density Imaging (NODDI16), a more 

sophisticated dMRI biophysical model. Measures derived from the NODDI model aim 

to provide greater biological specificity than diffusion tensor-model parameters such 

as FA. We consider interhemispheric connectivity between pairs of homotopic 

regions (i.e. the homologous region in the two cerebral hemispheres) that are 

connected by commissural white matter axons that run through the corpus callosum. 

We build a set of regression models to relate the tract’s microstructural profile to 

functional connectivity for a large number of paired homotopic regions. To test 

specificity of these models, we additionally built control models linking functional 

connectivity between a homotopic pair to tracts that do not connect them. 

 

The models linking white matter microstructural signature to functional connectivity 

were trained on data from a large cohort of subjects (n=7481 subjects) and then 

were applied to an out-of-sample validation cohort (n=3873 subjects) in the UK 

Biobank project7. This dataset has the further benefit of enabling us to investigate 

what genetic variants underpin the relationship between microstructure and function 

of the human brain using a genome-wide association study (GWAS)17. Using the 

regression models described above, we identified a set of single-nucleotide 

polymorphisms (SNPs) that are significantly associated with functionally relevant 

microstructure in the brain18. The identified SNPs are co-located with genes that 

have been reported to play an important role in axonal guidance and cortical 

development, suggesting that microstructure-function relationships may be shaped in 

early development.  
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Results 
 

In our primary analysis, we tested for microstructure-function relationships between 

homotopic brain regions and the callosal pathways connecting them using dMRI and 

resting-state functional MRI (fMRI) data from subjects in the UK Biobank project7. All 

subjects were selected based upon usable resting-state fMRI and dMRI data, in 

addition to genetic inclusion criteria (see Methods section). The activity of homotopic 

region pairs is often synchronized, with high functional connectivity19,20. We focus on 

the corpus callosum in this study, because it is well defined and relatively immune to 

partial volume effects compared to other pathways.  

 

Functional connectivity 

We previously conducted a group-average decomposition of resting-state fMRI data 

using Independent Components Analysis (ICA), which yielded 55 components 

corresponding to resting-state networks7. For the work here, more finely-grained 

functional “nodes” were then generated from these components by first splitting each 

component into its constituent parts for right and left hemispheres, and further 

splitting if a component still contained non-contiguous brain areas. Homologous 

regions for the two hemispheres were then identified as nodes with high symmetric 

similarity, producing 81 homotopic pairs (see Fig. 1.A). Functional connectivity was 

estimated at the single-subject level by partial correlation of the average BOLD 

signal time-series (equivalent to regressing out the time-series from all other regions 

prior to calculating pairwise correlations). The resulting connectivity matrix is given in 

Fig. 1.B as the mean partial correlation across all subjects. Entries in this matrix are 

ordered first by hemisphere and then by region number, such that inter-hemispheric 

connections are given in the upper-right and lower-left quadrants. Inter-hemispheric 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 18, 2018. ; https://doi.org/10.1101/325787doi: bioRxiv preprint 

https://doi.org/10.1101/325787


homotopic connections, shown on the diagonals of these quadrants, express on 

average the strongest connections in the brain, larger than intra-hemispheric or 

heterotopic inter-hemispheric connections (see Fig 1.C), in agreement with previous 

studies19,20.  

 

 
Figure 1. Functional parcellation of the brain and dMRI derived microstructural maps. A) Functional parcels were 
identified by applying independent component analysis (ICA) to the resting-state fMRI data, splitting between the 
hemispheres, and isolating contiguous regions. Parcels representing 81 homotopic regions were paired between 
the two hemispheres by eye. B) Connectivity between homotopic pairs was estimated by partial correlation of the 
average time-series of each parcel as shown in the connectome (matrix entries are sorted first by hemisphere 
and then by parcel number). C) Strength (partial correlation) of different functional connections in the brain, 
sorted by type. The centre line depicts the median correlation coefficient for a specific type of connection; box 
limits, the 25th and 75th percentiles of the correlation coefficients; the whiskers extend to the most extreme data 
points excluding outliers (marked with a + symbol). D) Group-averaged microstructure maps derived from the 
dMRI data.  
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White matter microstructural signature 

For the white matter pathway connecting each pair of homotopic gray matter regions, 

a range of microstructural features was derived from the dMRI data. The diffusion 

tensor model describes the 3D water displacement profile at each voxel using an 

ellipsoid21. We extracted maps of fractional anisotropy (FA), mean diffusivity (MD) 

and anisotropy mode (MO)22 from this tensor fit. NODDI16 is a more biologically 

motivated model that aims to decompose the diffusion signal into an intra-cellular 

volume fraction (ICVF) and an isotropic volume fraction (ISOVF), the latter 

representing interstitial and cerebrospinal fluids. In addition, NODDI estimates an 

Orientation Dispersion (OD) index that quantifies the spread of fibres within the intra-

cellular compartment. These dMRI-derived metrics represent an average across 

thousands of cellular components within each imaging voxel (2x2x2 mm3), producing 

whole-brain maps that provide mesoscopic information about how these features 

vary between different tracts and along a given pathway. Fig. 1.D depicts a brain 

map of each microstructural metric averaged across all subjects. The white matter 

pathway that connects a given homotopic region pair was identified using 

probabilistic tractography23 performed on the dMRI data between the regions.  

 

Predicting functional connectivity with microstructure 

We performed a multiple regression analysis to test whether dMRI microstructural 

features could predict cross-subject patterns of functional connectivity in the main 

cohort of 7,481 subjects. For a given homotopic pair of regions, the functional 

connectivity for all subjects was represented as a vector (Nsubjects x 1). To model the 

microstructural signature, a corresponding matrix was constructed for the white 

matter pathway connecting the homotopic pair. Rather than averaging the 
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microstructural profile along the tract, we created complete microstructural 

signatures that account for the spatial variability along the tract. These are matrices 

where each row contains, from a given subject, one or more microstructural 

parameters, each estimated in all voxels lying along the tract centre. These 

microstructure matrices are large (Nsubjects x Nvoxels), resulting in too few degrees of 

freedom to robustly perform a direct regression (Nvoxels = 5750 (SD 4000)). Thus, a 

principal component analysis (PCA) was performed on each microstructural matrix, 

from which the top 30 principal components (see Supplementary Fig. 1) were 

extracted to serve as a set of regressors (Nsubjects x 30) (see Fig. 2 for an overview). 

Seven different linear models were created for each homotopic pair: one for each of 

the dMRI-derived metrics (FA, MD, MO, OD, ISOVF, ICVF) and a multimodal 

approach combining all these microstructural metrics in a single matrix. For the multi-

modal matrix, the microstructural matrix for each metric was first normalized by its 

first singular value, and these normalized matrices were concatenated to form a 

single multimodal matrix that was fed into the PCA. 
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Figure 2. Prediction of functional homotopic connectivity from white matter microstructure. Between a pair of 
functionally defined homotopic areas (shown in orange in the brain), probabilistic tractography was performed to 
delineate the neuronal tract (shown in blue). The white matter skeleton voxels within a tract were stored as rows 
in a matrix for each subject. To extract the highest cross-subject variance among the TBSS voxels for a given 
microstructure metric, we performed a dimensionality reduction on this matrix using a principal components 
analysis. The top principal components (n = 30) were fed into a linear regression model as explanatory variables 
for the functional connectivity between a homotopic pair.  

 

We assessed the statistical significance of the 30 regressors’ beta values in each 

model with permutation testing. Permutation testing was performed independently 

across the homotopic pairs and models (see Methods section). The significance 

(p<0.05, corrected for multiple comparisons) is indicated per microstructural metric in 

Fig. 3. For all microstructure metrics, the overall regression model was able to 

predict a statistically significant amount of cross-subject variance in most (68-86%, 

depending on choice of metrics) of the tested homotopic pairs, indicating a 

relationship between microstructure and functional connectivity. We can further 
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consider individual regressors (i.e., specific principal components). The statistically 

significant beta values generally correspond to the top principal components (left-

most columns in Fig. 3). This indicates that the highest cross-subject modes of 

microstructural variation also explain the most cross-subject variation in functional 

connectivity. As the regressors reflect the primary modes of variation in the dMRI 

data but are used to model the fMRI data, this property is not trivially guaranteed. 

For some regions, no significant associations were found between homotopic 

functional connectivity and a given microstructure metric. The multi-modal 

microstructure model combining across specific metrics resulted in the largest 

number of significant regressors, as well as providing an overall significant prediction 

of functional connectivity for the largest number of regions – 70, representing 86% of 

the total brain areas considered.  
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Figure 3. Significant associations between functional connectivity and microstructure of the connecting white 
matter tract. Each row in the matrices represents a homotopic region pair with each entry a regressor (on the 
microstructural principal components) of the linear model. Significance of the regressors is color-coded. The 
graphs depict the number of significant regressors found for each of the principal components. The percentage of 
homotopic region pairs demonstrating at least one significant regressor is given in the label of each matrix. 

 

We additionally evaluated the regression models in terms of the total variance 

explained (TVE) in functional connectivity by the microstructural metrics. Substantial 

variation in TVE was found across the different brain regions investigated. For 

example, in the multimodal regression across all significant model fits, the minimum 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 18, 2018. ; https://doi.org/10.1101/325787doi: bioRxiv preprint 

https://doi.org/10.1101/325787


TVE was 0.73% (middle temporal gyrus) and the maximum TVE was 10.8% 

(posterior cingulate cortex). By mapping the TVE scores back to the 81 homotopic 

regions, we can visualize the spatial pattern of brain areas whose degree of 

functional connectivity was explained by the underlying microstructure (Fig. 5A). We 

also computed Z-scores to summarize the overall model fits. The multi-modal 

microstructure regression model yielded on average a higher score than the 

regressions with any single microstructural metric (Z = 11.5 Fig. 4), suggesting that 

the different microstructural metrics explain different variance in functional 

connectivity. The model incorporating FA shows the highest average Z-score of all 

individual metrics (Z = 9.6 ± 4.7), although the different metrics are overall fairly 

similar: ICVF (Z = 8.9), OD (Z = 8.8), MO (Z = 8.7), MD (Z = 8.3), ISOVF (Z = 8.1). A 

list of all brain areas investigated with their corresponding TVE values for the 

multimodal microstructure model is given in Supplementary Table 1. 

 

 
Figure 4. Total variance explained (TVE) in the functional connectivity of each homotopic region pair by the 
microstructural metrics derived from the connecting white matter tract. The box-and-whisker plots on the bottom 
right depicts the model performance of each metric in terms of an F-to-Z transformed score. The centre line 
depicts the median Z-scores across the homotopic region pairs; box limits, the 25th and 75th percentiles of the Z-
scores; the whiskers extend to the most extreme data points excluding outliers (marked with a + symbol). 
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Tensor-based features (FA and MD in particular) have been shown to provide 

sensitive indicators of changes to tissue microstructure in a broad range of contexts. 

However, these measures can be influenced by multiple aspects of tissue 

microstructure13, making interpretation difficult. We tested whether functional 

connectivity relates to a microstructure feature with greater biological specificity. 

Here, we build on our previous work demonstrating this - quantitative agreement 

between fibre orientation dispersion estimates derived from dMRI data and 

dispersion estimated from structure tensor filtering of myelin stains in the same post-

mortem human brain tissue24. The callosal fibre dispersion profile correlated well 

between the ex-vivo imaging data and the in-vivo dMRI NODDI analyses presented 

above, with both methods indicating high dispersion on the midline and lower 

dispersion in the lateral aspects of the callosum. Furthermore, fibre dispersion at the 

midline of the corpus callosum was able to explain significant variance in 

interhemispheric functional connectivity (Supplementary Fig. 2). While the explained 

variance was less than with the spatially-extended microstructure models presented 

above, the validation against histology demonstrates biological specificity of this 

particular association. 

 

Model validation 

We further tested the validity of the above models by applying them to the replication 

cohort of 3,873 subjects. Because the models are applied directly and not retrained 

to fit to the new subjects, this constitutes a direct prediction of functional connectivity 

from dMRI data in unseen subjects. Each replication subject’s data was projected 

onto the 30 top principal components and then multiplied by the regression 

coefficients estimated from the original cohort to predict that subject’s functional 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 18, 2018. ; https://doi.org/10.1101/325787doi: bioRxiv preprint 

https://doi.org/10.1101/325787


connectivity. As shown in Fig. 5, the TVE was quantitatively very similar from region 

to region in the previously unseen subjects as in the main cohort upon which the 

model was based.  

Several medial regions have a particularly high TVE score, with in particular the 

posterior cingulate cortex and the intra-calcarine cortex having TVE over 10%. 

Regions in the temporal lobe, ventral parts of frontal lobe and lateral aspect of the 

occipital lobe demonstrate the lowest TVE scores.  

 

 
Figure 5. Total variance explained (TVE) by the multimodal regression model. A) TVE values mapped onto the 
brain surface for each of the homotopic regions. The maps were smoothed with 2 mm Gaussian kernel to aid 
visualization. A similar pattern across the brain was found for the regression models incorporating the individual 
microstructural metrics. B) Graph depicting the TVE values for each homotopic region. The model was trained on 
the main cohort of 7481 subjects. By applying the regression models without further fitting, we could predict 
functional connectivity in the additional validation cohort of 3873 unseen subjects. The homotopic region 
numbers correspond to the brain areas listed in Supplementary Table 1.  
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Negative control analysis 

Although the above analyses suggest a general microstructure-function relationship, 

it is not clear whether these associations are specific to the pathway connecting a 

given pair of regions, or whether functional connectivity reflects global variance in the 

microstructural metrics across subjects. A new series of regression analyses were 

performed similar to those depicted in Fig. 2, but instead of taking microstructure 

from the specific callosal pathway connecting a homotopic pair, the microstructure 

was derived from a different “wrong” tract (Fig. 6.A). From the 81 callosal sub-

regions defined above, we selected a subset of 30 distinct tracts that shared minimal 

spatial overlap (Supplementary Fig. 3) for use as control (“wrong”) tracts. We then 

assessed whether any of the control tract regressions had similar performance to the 

correct tract (Fig. 6.C). For 64% of the homotopic areas, the highest Z-score was 

obtained when the model was performed with the anatomically correct tract; overall, 

for 81% of brain areas the correct tract ranked among the top three models (Fig. 

6.D).  
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Figure 6. Negative control analysis. A) In the wrong tract approach, the GLM-analysis was performed with a tract 
(shown in blue) that does not directly connect between a homotopic pair of interest (shown in orange). B) A total 
of 30 distinct tracts (12 shown here) were chosen based on minimal spatial overlap between them. C) For each 
GLM, an F-statistic (across the whole model, with the degrees of freedom for model and error, 30 and 7450, 
respectively) was calculated and transformed to a Z-score to compare between the correct tract and 30 wrong 
tracts. All GLMs in this analysis were derived from the multimodal microstructural information. D) Rows from the 
matrix in C were sorted in descending order of Z-score and labelled according to whether they represent the 
correct pathway or a different tract. The highest Z-scores (left-most column) correspond to the anatomically 
correct tract in 64% of cases, and overall the correct tract was in the top three models in 81% of cases. 
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Genome-wide associations 

We studied the influence of genetics on the microstructure-function relationships 

reported in this work via a genome-wide association study (GWAS). All subjects in 

this analysis were selected based on recent British ancestry and availability of 

genotype data that passed the quality control procedures of UK Biobank17. 

 

For the GWAS, we considered the model fits of the multimodal microstructure model 

that predicts functional connectivity between a pair of homotopic areas as the 

phenotype (see Methods section). The model fits were derived for all 81 homotopic 

brain region pairs (see Supplementary Fig. 4) and fed into the GWAS. The model fit 

of each homotopic region pair was evaluated against a total 11,734,353 single-

nucleotide polymorphisms (SNPs). Figure 7 depicts the association across SNPs for 

the homotopic pair with the largest TVE in the multi-modal microstructure model (i.e., 

the posterior cingulate cortex). A group of SNPs in chromosome 14 demonstrated a 

strong association with the microstructure-function phenotype. These SNPs were co-

located with the DAAM1 gene (Dishevelled Associated Activator of Morphogenesis 

1), and some were also within DAAM1’s promoter region (regulating expression of 

the gene)25. Expression of the JKAMP gene (Jun N-Terminal Kinase 1-Associated 

Membrane Protein) was also regulated by these SNPs, as demonstrated by 3D 

chromatin interaction data26, included in the Virtual 4C online resource27. DAAM1 

plays an important role in the Wnt signalling pathway inside the cell, indirectly 

regulating cell polarity and movement during development. In the central nervous 

system, this gene has been shown to facilitate the guidance of commissural axons at 

embryonic stage in mice and drosophila28,29. Furthermore, the GWAS revealed many 

SNPs within the LPAR1 gene (Lysophosphatidic Acid Receptor 1) located in 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 18, 2018. ; https://doi.org/10.1101/325787doi: bioRxiv preprint 

https://doi.org/10.1101/325787


chromosome 9. LPAR1 is one of the six receptors involved in the lysophosphatidic 

acid signaling pathway in the cell30. SNPs co-located with both DAAM1 and LPAR1 

were found for the microstructure-function association of multiple brain areas (Fig. 

7). Detailed Manhattan plots at the location of LPAR1 and DAAM1 are given in 

Supplementary Figures 5 and 6, respectively. A collection of SNPs was found for 

other regions of the brain, some of which relate to neural organization, metabolism or 

signalling (Table 1). Manhattan plots depicting the GWAS for the microstructure-

function model fits of each homotopic region pair in the discovery cohort can be 

found in Supplementary Figure 8. 

 

The GWAS was repeated for subjects in the replication cohort. Rather than using the 

model prediction approach described above, the multi-modal microstructure models 

were first re-trained to obtain a prediction of functional connectivity for these 

subjects. This approach was motivated by the lower TVE for the model predictions 

compared to the original fits (Fig. 5B), suggesting that in this smaller replication 

cohort, biases in the accuracy of the microstructure-function model could reduce 

sensitivity. Additionally, this approach makes the genetic replication analysis more 

fully independent of the discovery dataset. Replication GWAS was performed on 

microstructure-function phenotypes from the homotopic regions showing an 

association in chromosome 9 and 14 in the original subjects. SNPs associated with 

two out of three brain areas in chromosome 14 replicated. The SNPs in chromosome 

9 within the LPAR1 gene were not found in the replication GWAS (Fig. 7).  

 

Thus far, the reported SNPs were found using microstructure-function model fits as 

the target phenotype. However, this result could simply reflect that both functional 
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connectivity and microstructure correlate to these SNPs. To test for specificity, two 

additional GWAS were run using the functional connectivity and multimodal 

microstructure (1st principal component) as the target phenotypes. Results are 

depicted for the homotopic region pair with the largest TVE for the model fit, given in 

Supplementary Figure 7. No SNPs co-located with either DAAM1 or LPAR1 were 

found in these GWAS for any homotopic regions. This suggests that the relationship 

to DAAM1 and LPAR1 is more specific to the specific component of functional 

connectivity that can be predicted by white matter microstructure. The GWAS 

associating with microstructure yielded SNPs within the VCAN gene, which were 

previously found to associate with ICVF throughout white matter in the brain18. 
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Figure 7. Genome-wide associations with the microstructure-function phenotype (i.e. the pattern of functional 
connectivity that can be predicted from white matter microstructure). The Manhattan plot depicts the associations 
with each SNP across all chromosomes expressed as the -log10 p-value. A) The genome-wide Manhattan plot is 
given for the homotopic brain area showing the highest total-variance-explained by the microstructure – function 
model and yields the strongest association with a SNP (rs74826997) in chromosome 14. Furthermore, single 
chromosome Manhattan plots are shown for a range of brain areas. The microstructure – function model fits of 
these areas were repeatedly associated with SNPs in either chromosome 9 (B) or 14 (C) that co-located with the 
genes LPAR1 and DAAM1, respectively. The discovery GWAS was carried out with 7481 subjects revealing the 
group of SNPs (red dots in single chromosome Manhattan plots). In an additional cohort of 3873 subjects, we 
aimed to replicate these hits (blue dots in single chromosome Manhattan plots). The spatial maps of these brain 
areas are given for each of Manhattan plot. The brain area (posterior cingulate cortex) highlighted with max TVE 
corresponds to the genome-wide Manhattan plot at the top of the figure. A significance threshold is given for a -
log10(p-value) equal to 7.5 corresponding to a p-value of ~3 ´ 10-8. 
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Table 1. Genome-wide associations with the microstructure-function phenotype (i.e. the pattern of functional 
connectivity that can be predicted from white matter microstructure). Listed are rsids of the SNPs showing the 
most significant association. Some SNPs were associated with the microstructure-function model fits of multiple 
homotopic region pairs (highlighted in gray). The nearest gene of each SNP is reported with its possible function 
in the human central nervous system. Furthermore, the base-pair position, the SNP alleles, minor allele 
frequency (maf) and the p-value of the discovery GWAS are given.  

chr rsid 
number of areas - 
location in brain 

nearest 
gene 

function in central nervous 
system position 

ref 
allele 

minor 
allele maf p-value 

1 rs201286854 1 – Sensory-Motor MACF1 Links microtubuli with actin in 
cytoskeleton of the cell 

39938494 C A 0.011 2.23E-08 

2 rs7582436 1 – Medial occipital ATL2  Unknown 38532584 A G 0.371 2.88E-09 

6 rs12200595 1 – Occipital NHSL1 Associated with Nance-Horan 
syndrome 

138862574 G T 0.277 9.12E-09 

7 rs7788173 1 – Frontal pole SEM1  Unknown 96219460 A G 0.689 3.09E-09 

7 rs143137457 1 – Superior 
temporal 

CUX1 Regulates dendritic branching, 
spine morphology and synapses 

101425857 G A 0.012 1.07E-08 

9 rs4556147 4 – Prefrontal LPAR1 Lysophosphatidic Acid Signaling 
in central nervous system 

113651161 A T 0.221 2.82E-11 

14 rs74826997 3 – Medial occipital DAAM1 Wnt signaling pathway, axonal 
growth and guidance 

59628609 T C 0.125 1.41E-13 

15 rs4924345 1 – Lateral prefrontal C15orf54 Associated with spinal cord 
tumor 

39639898 A C 0.081 8.32E-09 

19 rs117042631 1 – Middle frontal PODNL1 Unknown 14053839 G A 0.033 1.10E-08 

20 rs4911180 1 – Frontal orbital UQCC1 Unknown 33972948 G A 0.626 1.82E-08 
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Discussion 

Although basic principles relating axonal properties to neural signalling are well 

established, the degree to which functional connectivity is mediated by 

microstructural organization at the level of macroscopic tracts is largely unknown. 

Several studies have related the “strength” and topology of structural connections to 

functional activity based on fMRI and dMRI10,31, but these studies are uninformative 

about microstructure. Here we focused on commissural fibres through the corpus 

callosum, a set of connections which can be readily measured using MRI both 

structurally and functionally. Our results are consistent with previous work19,20 in that 

connections between homotopic areas in both hemispheres were functionally the 

strongest connections in the brain. Evidence that functional interhemispheric 

connectivity is indeed primarily facilitated by axons running through the corpus 

callosum comes from callosotomy studies (i.e., surgical sectioning of the corpus 

callosum) in both animals32 and humans33.  

 

We have demonstrated that white matter microstructure is strongly associated with 

functional connectivity. Replication in nearly 4000 subjects demonstrates that the 

regression models fit in the main cohort have predictive power in unseen subjects, 

including good reproducibility in terms of the total amount of variance of functional 

connectivity explained in a given region. In both the main – and validation cohort, 

functional connectivity variance was best explained in brain region close to the 

medial aspect of the brain, for example the intra-calcarine – and posterior cingulate 

cortex (see Fig. 5). It should be acknowledged that some of these regions emerged 

as single contiguous node after spatial ICA as opposed to more distal homotopic 

pairs separated by other brain structures (see Fig. 1). However, it is unclear why 
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such functional principle would be better predicted by a completely independent 

measure of white matter microstructure estimated with diffusion MRI. The hypothesis 

that the explained variance was higher if there is little white matter separating a 

homotopic pair, was not supported by a simple correlation of the number of white 

matter voxels in each model with the TVE across homotopic region pairs (r=-0.17, p-

value=0.13). Moreover, the SNPs found reported by the GWAS do not necessarily 

correlate solely with microstructure-function model fits of homotopic pairs close to 

the midline of the brain, suggesting that these fits are biologically informative. 

 

For the majority of homotopic area-pairs connected via the corpus callosum, the 

strongest model prediction was derived from microstructure in the anatomically-

correct pathway, compared to microstructure obtained from any of a large number of 

other callosal pathways. This negative control analysis is informative because it 

establishes that microstructure-function relationships have a high degree of regional 

specificity and do not simply reflect global (brain-wide) inter-individual differences in 

microstructure and associated function. A similar result related FA in the cingulum to 

resting-state functional connectivity between posterior cingulate and medial-frontal 

cortices14. Interestingly, for a minority of the brain areas investigated, functional 

connectivity was better explained by microstructure from another white matter tract. 

This is primarily true for frontotemporal regions, where on average lower functional 

homotopic connectivity was found, in agreement with previous literature34. These 

regions may not receive much callosal input and are primarily connected to intra-

hemispheric brain areas via associations fibres35. Also, temporo-polar regions 

connect more likely via the anterior commissure, a tract that was not included in our 

analyses. 
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Imaging microstructure with dMRI is a rapidly evolving field, including many models 

that were only recently developed. Though the microstructure metrics are sensitive 

to tissue architecture at microscopic level, evaluation against reference measures 

such as histology is essential. As such, we demonstrated good correspondence 

between orientation dispersion (OD) profiles derived from the corpus callosum in ex-

vivo dMRI and myelin staining24, providing confidence in the biological meaning of 

this specific measure. In agreement with histology36,37, the dMRI data used in our 

study indicates that fibres are more dispersed at the centre of the corpus callosum 

as compared to its lateral aspects. Here, we demonstrate that this validated measure 

of fibre dispersion also relates to interhemispheric connectivity of some homotopic 

areas (Supplementary Fig. 2), albeit with less explanatory power than our regression 

models that incorporate the full spatial richness of microstructure metrics across the 

white matter tract. Furthermore, the biological interpretation of tensor-derived 

measures is less clear and would require further investigation. 

 

Richness of the data in the UK Biobank project allowed us to associate genetic 

variants with the imaging derived phenotypes in this study. While investigations of 

genetic influences on brain structure and function were previously mostly limited to 

specific candidate genes (for example, the involvement of the ApoE gene in 

Alzheimer’s disease38), GWA studies evaluate all common genetic variants against a 

certain phenotype 39. We conducted a GWAS associating SNPs with the fraction of 

functional connectivity that was predicted by microstructure, for each homotopic 

region pair. In chromosomes 9 and 14, a group of SNPs was found showing a strong 

association with the cross-subject pattern of functional connectivity predicted by 
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microstructure for multiple brain areas (Fig. 7). As these SNPs were not found in a 

GWAS relating solely functional connectivity or microstructure, these SNPs appear 

to be unique to the microstructure – function relationship (see Supplementary Fig. 7). 

However, previous work relating cortical thickness to genetic variants also reported 

SNPs co-located with DAAM1 in the cuneus area18 (http://big.stats.ox.ac.uk). For the 

replication cohort, the SNPs in chromosome 14 – co-located with genes DAAM1 and 

JKAMP – were only replicated for two of the three brain areas showing hits in the 

discovery GWAS. We could not reproduce the SNPs in chromosome 9 – within the 

LPAR1 gene – for the brain areas previously showing these associations. If these 

relationships do exist, it may simply replication may have failed. First, the number of 

subjects in the replication cohort is almost half of the number in the discovery cohort 

and thus suffers from lower statistical power. Indeed, the SNPs in chromosome 9 

express p-values that are just above the significance threshold in the discovery 

GWAS (Fig. 7). Second, the microstructure - function model fits that were fed into the 

GWAS demonstrate varying performance in terms of the TVE between the main and 

replication cohort. Through refitting the models aim to predict functional connectivity 

in a similar manner based upon white matter microstructure (Fig. 5), they may 

explain a different component of variance regardless of the sample size. 

 

The identified SNPs in chromosomes 9 and 14 have previously been shown to be 

important for brain development. The DAAM1 gene is expressed in many tissue of 

the human body and plays an important role in the Wnt signalling pathway40. In 

neuronal tissue, DAAM1 is primarily found in the shaft of neuronal dendrites41 and in 

the developing brain it aids axonal guidance in targeting distal brain regions42. 

Knock-out studies in mice and drosophila have shown deficits in the central nervous 
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system when DAAM1 is not expressed28. In particular, the formation of commissural 

fibres at an embryonic stage was disturbed29. 3D chromatin data revealed that the 

SNPs in chromosome 14 also regulate expression of the JKAMP gene26. While 

diseases associated with JKAMP include medulloblastomas43, its exact mechanism 

in brain development is not well described in literature. For chromosome 9, several 

SNPs were located in the LPAR1 gene, a receptor involved in the lysophosphatidic 

acid signalling pathway. These receptors are found on the membranes of most cell 

types in the central nervous system and have been linked to some neural processes 

including but not limited to neurogenesis, myelination, microglial activation, and 

astrocytes responses30,44.  

 

The degree to which functional connectivity between brain regions is mediated by 

microscopic properties (microstructure) of the white matter pathways is a 

fundamental question in neuroscience. We demonstrated that a large fraction of 

variation in inter-hemispheric functional connectivity can be predicted from white 

matter tract microstructure connecting two homotopic regions. Our results suggest 

that microstructure-function relationships are general (across many brain regions), 

specific (based on analysis of control tracts) and reproducible (in a replication 

cohort). Furthermore, the microstructure-function association was underpinned by 

genetic variants and in particular with SNPs co-located with the genes DAAM1 and 

LPAR1, identified in multiple brain regions. To conclude, genetically-determined 

properties of white matter microstructure sculpt brain activity. Attribution of these 

relationships to specific biological sources - and ideally causality - cannot be 

achieved with this kind of observational study but would likely require interventional 

studies in animals. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 18, 2018. ; https://doi.org/10.1101/325787doi: bioRxiv preprint 

https://doi.org/10.1101/325787


Materials & Methods 

 

Data acquisition and pre-processing 

We used resting-state functional MRI and diffusion MRI data provided by the UK 

Biobank project. An extensive overview of the data acquisition protocols and image 

processing carried out on behalf of UK Biobank can be found elsewhere7,45. 

Description of post-processing pipelines and acquisition protocols of MRI data in UK 

Biobank are available at http://biobank.ctsu.ox.ac.uk/crystal/docs/brain_mri.pdf. 

Unless stated otherwise, processing of the MR images was performed using FSL46. 

All imaging data was acquired on a 3T Siemens Skyra MRI scanner (software 

platform VD13) using a 32-channel receive head coil. 

 

Resting-state fMRI data with 2.4 mm isotropic resolution and whole-brain coverage 

(field of view, 88x88x64 matrix) was acquired in a six-minute session (multiband 

acceleration 8, TR=0.735 ms, 490 time-points). The functional data was motion 

corrected 47 and FIX-cleaned48 to remove physiological noise and image artefacts, 

before transforming the data to a 2 mm MNI-template.  

 

Diffusion MRI data were acquired at 2 mm isotropic resolution achieving whole brain 

coverage (field of view, 104x104x72 matrix) with two b-values (b=1000, 2000 

s/mm2), with 100 unique gradient directions over the two shells (50 directions/shell). 

with a voxel size of 2 mm isotropic. The total acquisition time was 6.5 minutes (multi-

band acceleration 3, TE/TR was 92/3600 ms). After eddy current correction of all 

images49, tensor metrics (FA, MD, MO) were calculated from the lower shell (b=1000 

s/mm2) using DTIFIT. Both shells were used to estimate the NODDI model metrics 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 18, 2018. ; https://doi.org/10.1101/325787doi: bioRxiv preprint 

https://doi.org/10.1101/325787


(ICVF, ISOVF, OD) using the AMICO toolbox50. All microstructural metrics were 

projected onto a white matter skeleton using TBSS (Tract-Based Spatial Statistics51) 

to minimize misalignment of tracts due to inter-subject morphology and registration 

errors.  

 

fMRI processing 

The resting-state fMRI data were fed into an Independent Component Analysis (ICA) 

using the MELODIC tool52 to identify resting-state networks present on average in 

the whole population. First, data was reduced to 100 dimensions using PCA and 

then fed into spatial ICA, from which 55 components corresponded to functional 

regions, and the other 45 judged to reflect physiological noise or image artifacts 

(“noise”). A functional component was split if it consisted of non-contiguous brain 

regions, yielding 81 bilateral (homotopic) regions that were further split between the 

hemispheres to estimate interhemispheric connectivity (see Supplementary Table 1). 

Average time-series were generated for all ICA components (i.e., homotopic areas 

and noise components) by a spatial regression of the subject’s voxelwise resting-

state fMRI time-series with the ICA spatial maps. Further analyses were performed 

using the FSLNets toolbox (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets). The 

average time-series within a homotopic area were demeaned and “cleaned” by 

regressing out the time-series from the 45 noise time courses. Functional 

connectivity was estimated between all pairs of components (2x81) by means of 

partial correlation of the cleaned time-series using Ridge regression with a 

regularization factor ρ=1. Partial correlation aims to measure direct connectivity 

between two areas by first regressing out all other regions’ time-series before 
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calculating the correlation (i.e., established through inversion of the covariance 

matrix).  

 
dMRI tractography 

White matter tracts between functional regions were delineated using tractography. 

Up to three fibre orientations were fitted at each dMRI voxel in a Bayesian approach 

using bedpostX53 modified for multi-shell data54. Probabilistic tractography was then 

performed with the probtrackx2 algorithm23 by generating streamlines from a seed 

region (5000/voxel) in one hemisphere and only saving streamlines that passed 

through the corpus callosum and terminated in the same region in the contralateral 

hemisphere. This process was repeated by switching the seed and the target area 

between the hemispheres. The overlap of the identified tracts in this two-step 

approach were used for further analysis. The tracts were generated for all 81 

homotopic pairs (each representing either the seed or the target area) for 10 

subjects drawn from the UK Biobank dataset. Tracts between a given homotopic pair 

were then averaged across these subjects and served as a tract for all subjects 

stored in 1 mm MNI-space, which was then further masked by the white matter 

skeleton voxels (derived from TBSS). Microstructural features derived from the 

tensor and NODDI fits were extracted from this final tract mask.   

 

Predicting functional connectivity from white matter microstructure 

We used a multiple linear regression model to predict homotopic functional 

connectivity from a set of regressors describing the spatial pattern of microstructure 

along a white matter tract. The regression model was constructed for each pair of 

homotopic regions separately: 
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𝑌" = 𝑋"𝛽 + 𝜀",												with	𝑖 = 1,… , 𝑛 

 

Here Yi (Nsubjects x 1) is a vector that contains the functional connectivity values of all 

subjects derived from homotopic region i (over n = 81 regions). To build a model 

using p microstructural regressors, we need to estimate a set of regression 

coefficients β (p x 1) that describe the relative contribution from the microstructural 

metrics Xi (Nsubjects x p) along the white matter tract.  

 

The regressors are derived in two stages. First, the microstructural metrics were 

extracted from the TBSS-voxels (white matter skeleton) corresponding to the tract of 

interest for every subject, yielding a matrix X†i (Nsubjects x Nvoxels). As the matrix X†i is 

very large, a direct regression with functional connectivity is ill conditioned. We 

therefore perform a dimensionality reduction on X†I to derive a set of regressors 

reflecting the primary modes of variation of a given microstructural metric across 

space for the cohort of subjects. A singular value decomposition (SVD) was 

computed from matrix X†i, from which the top p components were retained, yielding 

matrix Xi (Nsubjects x p). In practice, p was set to 30 principal components, which 

approximately corresponded to a transition in the spectrum of singular values in 

terms of variance explained, above which variance explained roughly tracked noise 

singular vectors (Supplementary Fig. 1).  

 

Matrices Xi were constructed for each of the microstructure metrics separately, 

yielding six single-metric linear regression models per homotopic region. In addition, 

a multimodal regression model was created that combined across all microstructure 

metrics. For the multimodal regression, all raw microstructure matrices (X†i) were 
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normalized through division by their first singular value to ensure comparable range 

of values. The six normalized matrices were then concatenated and an SVD was 

performed on the concatenated matrix to reduce back to the top 30 components.   

 

Finally, we defined a set of confound variables of no interest (age, age^2, sex, 

age*sex, age^2*sex, resting-state fMRI head motion, and head size) that could 

correlate with estimated microstructural measures (e.g. through artefacts such as 

partial volume) and thereby bias the estimated regressors. The confound variables 

were regressed out of the functional and microstructural data before fitting each 

regression model. 

 

Statistical analysis 

Statistical significance of the regression models was assessed by means of 

permutation testing. A null distribution was constructed for each regressor by 

randomly permuting the functional connectivity values (the number of permutations 

was set to 100,000). A p-value (two-sided) was then determined in the non-permuted 

model from the null distribution. Because multiple models were evaluated, we 

corrected for the family wise error as in55. Here, we generated a maximum t-statistic 

distribution across all homotopic region pairs and regressors (i.e., the microstructural 

principal components) of the permuted t-statistics. From this maximum t-statistics 

null-distribution a corrected p-value was estimated for each of the non-permuted t-

statistics.  Furthermore, an F-statistic was computed to judge the overall 

performance of each regression model (degrees of freedom model and error, 30 and 

7450, respectively). Finally, the effect size of the regression models was expressed 
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in terms of total variance explained (TVE, similar to R-squared), describing the 

strength of the relationship between microstructure and functional connectivity. 

 

Negative control analysis 

The statistical tests described above test whether there is a relationship between 

functional connectivity in a given brain region and the microstructure in the white 

matter pathway that connects them. However, this does not provide any insight into 

whether these relationships are specific: for example, microstructure and function 

could correlate at the whole-brain level. In this case, a regression model could 

indicate a statistically meaningful relationship even when using a white matter 

pathway that does not connect a given homotopic pair. Such a relationship could still 

be biologically meaningful, but the interpretation would change (e.g., individual 

brains could vary globally from hypo- to hyper-connected).  

 

Accordingly, a negative control analysis was performed to evaluate the uniqueness 

of the microstructure-function relationships. From the 81 tracts in our study, a subset 

of 30 minimally overlapping tracts were selected as control (“wrong”) tracts. First, the 

Dice similarity index was computed among all tracts to quantify spatial overlap. 

Using k-means clustering (k=3 clusters), a cluster of tracts with the lowest average 

similarity indices was selected (Supplementary Fig 3).   

 

The regression models were then re-evaluated for each homotopic area using the 

control tracts, rather than microstructure from the anatomically correct tract, i.e., the 

tract connecting the homotopic pair of interest. If, for a homotopic area, the 

anatomically correct tract was among the control tracts, an additional control tract 
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was selected. To summarize, the regression models of the homotopic regions were 

performed once for the correct tract and 30 times with microstructure from the control 

tracts. Comparison between the correct and control tract analyses was conducted 

using the F-statistic. 

 

UK Biobank genetics data 

The GWAS was performed using the BGENIE software17. Acquisition and 

processing steps of the genetics dataset for all subjects in the UK Biobank project 

can be found in17. For the discovery cohort, we began with the set of 12,623 brain 

imaged UK Biobank subjects for whom data were released in July 2017. As in (Elliott 

et al., 2017), to avoid confounding effects that may arise from population structure or 

environmental effects, we selected a subset of 8,522 unrelated subjects with recent 

British ancestry. Ancestry was determined using sample quality control information 

provided by UK Biobank17. We then filtered the genetic data to remove SNPs with 

minor allele frequency < 0.01% or a Hardy-Weinberg equilibrium p-value of less than 

10-7, yielding a total of 11,734,353 SNPs distributed across the 22 autosomes. Not 

all of the UK Biobank subjects who underwent brain imaging have usable data with a 

given MRI modality. Of the 8,522 unrelated samples, we used a subset of 7,481 

subjects which had usable dMRI and fMRI data according to previous quality 

control45. For the replication cohort, we examined a further set of 4,588 UK Biobank 

subjects for whom data were released by UK Biobank in January 2018. Application 

of the same inclusion criteria yielded 3,873 subjects.  
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Ex-vivo MRI and histology data 

MRI and microscopy data from three ex-vivo corpus callosum specimens were 

acquired and processed as described previously24. In brief, formalin fixed human 

brain tissue sections were scanned on a preclinical 9.4 T Varian MRI system. 

Diffusion MRI was performed with a spin-echo sequence with TE = 29 ms and TR = 

2.4 s. Two shells were acquired (b = 2500 s/mm2 and b = 5000 s/mm2), each with 

120 gradient directions and 0.4 mm isotropic resolution. Eight images with no 

diffusion weighting were acquired. A parametric model was fit to the dMRI signals 

from the b = 5000 s/mm2 dataset to obtain orientation dispersion (OD) estimates56. 

 

Following MR scanning, the specimens were histologically sectioned and 

immunohistochemically stained for myelin (proteo-lipid-protein). The sections were 

digitized and we obtained fibre orientation estimates at each pixel using structure 

tensor analysis57. From a 2D local neighbourhood (0.4 x 0.4 mm) corresponding to 

the size of an MRI voxel, a fibre orientation distribution was computed from which 

orientation dispersion (OD) was derived. After registration of dMRI and microscopy 

data to the same image space58, dispersion estimates were compared against each 

other in the corpus callosum.  

 

Ethics and informed consent 

All participants in the UK Biobank project signed an informed consent which is 

controlled by a dedicated Ethics and Guidance Council 

(http://www.ukbiobank.ac.uk/ethics). The Ethics and Governance Framework can be 

found at http://www.ukbiobank.ac.uk/wp-content/uploads/2011/05/EGF20082.pdf. 
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IRB approval, also from the North West Multi-center Research Ethics Committee, 

was obtained for the Ethics and Governance Framework.  
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