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Short title 

PILRA loss of function allele is protective for Alzheimer’s Disease 
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Abstract

Paired Immunoglobulin-like Type 2 Receptor Alpha (PILRA) is a cell surface 

inhibitory receptor that recognizes specific O-glycosylated proteins and is expressed 

on various innate immune cell types including microglia. We show here that a 

common missense variant (G78R, rs1859788) of PILRA is the likely causal allele for 

the confirmed Alzheimer’s disease risk locus at 7q21 (rs1476679). The G78R variant 

alters the interaction of residues essential for sialic acid engagement, resulting in 

>50% reduced binding for several PILRA ligands including a novel ligand, 

complement component 4A, and herpes simplex virus 1 (HSV-1) glycoprotein B. 

PILRA is an entry receptor for HSV-1 via glycoprotein B, and macrophages derived 

from R78 homozygous donors showed significantly decreased levels of HSV-1 

infection at several multiplicities of infection compared to homozygous G78 

macrophages. We propose that PILRA G78R protects individuals from Alzheimer’s 

disease risk via reduced inhibitory signaling in microglia and reduced microglial 

infection during HSV-1 recurrence.
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Author summary

Alzheimer’s disease (AD) is a devastating neurodegenerative disorder resulting from a 

complex interaction of environmental and genetic risk factors. Despite considerable 

progress in defining the genetic component of AD risk, understanding the biology of 

common variant associations is a challenge.  We find that PILRA G78R (rs1859788) is 

the likely AD risk variant from the 7q21 locus (rs1476679) and PILRA G78R reduces 

PILRA endogenous and exogenous ligand binding. Our study highlights a new immune 

signaling axis in AD and suggests a role for exogenous ligands (HSV-1). Further, we 

have identified that reduced function of a negative regulator of microglia and neutrophils 

is protective from AD risk, providing a new candidate therapeutic target.
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Introduction

Alzheimer’s disease (AD) results from a complex interaction of environmental and 

genetic risk factors [1]. Proposed environmental risk factors include a history of head 

trauma [2–4] and infection [5–7]. In recent years, large-scale genome-wide association 

studies (GWAS) and family-based studies have made considerable progress in defining 

the genetic component of AD risk, and >30 AD risk loci have been identified [8–20]. 

A key role for microglial/monocyte biology in modulating risk of AD has emerged from 

analysis of the loci associated with AD risk. Rare variants of TREM2, a microglial 

activating receptor that signals through DAP12, greatly increase AD risk [11,14]. Beyond 

TREM2, a number of the putative causal genes mapping to AD risk loci encode 

microglial/monocyte receptors (complement receptor 1, CD33), myeloid lineage 

transcription factors (SPI1), and other proteins highly expressed in microglia (including 

ABI3, PLGC2, INPP5D, and PICALM). 

Results

PILRA G78R is associated with protection from AD

The index variant for the Alzheimer’s disease risk locus at 7q21 is rs1476679 (meta P 

value = 5.6 x 10-10, odds ratio = 0.91)[15].  In addition to reduced disease risk, the C 

allele of rs1476679 has been associated with age of onset [21] and lower odds of 

pathologic AD (plaques and tangles) in the ROSMAP study [22]. In the 1000 Genomes 

project CEU population (phase 3 data), there were 6 variants with an r2>0.9 with 
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rs1476679 (table S1). None of the 6 variants were predicted to alter regulatory motifs that 

might influence gene expression (Regulome DBscore ≤ 4), but one variant (rs1859788) 

encoded a missense allele (G78R, ggg to agg transition) in Paired Immunoglobulin-like 

Type 2 Receptor Alpha (PILRA) protein. Using a cohort of 1,357 samples of European 

ancestry whole genome-sequenced to 30X average read-depth (Illumina), we confirmed 

the strong linkage between rs1476679 (in ZCWPW1 intron) and rs1859788 (G78R 

PILRA variant) (table S1).

We hypothesized that PILRA G78R was the functional variant that accounts for the 

observed protection from AD risk. As expected from the strong linkage disequilibrium 

(LD) between PILRA G78R and rs1476679 (Fig. 1A), conditional analysis demonstrated 

that the 2 variants were indistinguishable for AD risk in individuals of European ancestry.  

In a cohort of 8060 European ancestry samples (a subset of samples described in 19), 

individuals homozygous for R78 (OR=0.72) and heterozygous (OR=0.89) for R78 were 

protected from AD risk relative to G78 homozygotes. We note that the allele frequency 

of PILRA G78R varies considerably in world populations. Indeed PILRA R78 is the 

minor allele in populations of African (10%) and European descent (38%) but is the 

major allele (65%) in East Asian populations [23]. In several non-European populations, 

rs1476679 (Index risk variant) and rs1859788 (PILRA G78R) are not in tight LD and it 

may be possible to distinguish the impact on disease risk for these variants. In a dataset of 

894 AD cases and 951 controls of Japanese ancestry [24], PILRA G78R conferred an 

effect size of -0.07 (rs1859788, A allele, P=0.35), while rs1476679 had an effect size of - 

0.04 (T allele, P=0.65, table S2), suggesting that PILRA G78R associates with AD 
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protection more than rs1476679, although a larger sample is needed for statistical 

significance. In APOE4 carriers, there was a significant interaction with PILRA G78R 

(rs1859788, P=0.04), while the interaction of APOE4 and rs1476679 was not significant 

(P=0.59), further supporting the hypothesis that PILRA G78R may be a casual variant in 

the 7q21 risk locus (table S2).

The index variant in the 7q21 locus (rs1476679) has been associated with expression 

levels of multiple genes in the region, including PILRB [25,26]. However, a haplotype 

tagged by rs6955367 is more strongly associated with expression in whole blood of 

multiple genes in the region (PILRB, STAG3L5, PMS2P1, MEPCE), and is only modestly 

linked to rs1476679 (r2=0.085, D’=0.982) in Europeans [27]. Since the PILRB eQTL P 

value for rs1476679 is not significant (P=0.31) after conditioning rs6955367 (table S3) in 

whole blood, we conclude that rs1476679 and rs1859788 are not significant causal 

eQTLs in the 7q21 region that the observed relationship of these SNPs with PILRB 

expression is due to the weakly linked variant rs6955367 (fig. S1).  Of interest, the G 

allele of rs6955367 (increased expression of PILRB) is linked to rs7803454 (r2 = 0.83), a 

variant associated with increased risk of age-related macular degeneration and suggests 

the presence of independent effects in the PILRA/PILRB region [28].  

PILRA G78R reduces ligand binding

Paired activating/inhibitory receptors are common in the immune system, with the 

activating receptor typically having weaker affinity than the inhibitory receptor toward 

the ligands. PILRA and PILRB are type I transmembrane proteins with highly similar 
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extracellular domains that bind certain O-glycosylated proteins [29–32], but they differ in 

their intracellular signaling domains [33–35]. PILRA contains an immunoreceptor 

tyrosine-based inhibitory motif (ITIM), while PILRB signals through interaction with 

DAP12, which contains an immunoreceptor tyrosine-based activation motif (ITAM). 

Analysis of PILRA knockout mice suggests that PILRA is a negative regulator of 

inflammation in myeloid cells [36–38], with knockout macrophages showing increased 

production of cytokines (IL6, IL-1b, KC, MCP-1) in addition to increased infiltration of 

monocytes and neutrophil via altered integrin signaling. 

PILRA is known to bind both endogenous (including COLEC12, NPDC1, CLEC4G, and 

PIANP) and exogenous ligands (HSV-1 glycoprotein B (gB)) [31,32,37,39]. Because the 

G78R (R78 (AD protective)) variant resides close to the sialic acid-binding pocket of 

PILRA, we tested whether the glycine (uncharged, short amino acid) to arginine (basic, 

long side chain amino acid) substitution might interfere with PILRA ligand-binding 

activity. All non-human PILRA sequences, as well as all PILRB sequences, encode 

glycine at this position.  We also generated amino acid point variants in and around the 

sialic acid-binding pocket of PILRA. A residue conserved among PILR proteins and 

related SIGLEC receptors, R126 in PILRA, is well known to be essential for sialic acid 

interaction [30,32,39] and so was not further studied here. Based on their location in the 

crystal structure, evolutionary conservation [32], and involvement in binding HSV-1 gB 

[39], amino acids R72 and F76 were predicted to be important for ligand binding and 

were substituted to alanine as positive controls for loss-of-function [32]. In addition, S80, 

a residue outside of the sialic acid-binding pocket was substituted to glycine. The R72A, 
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F76A, and S80G mutations have not been detected in human populations (dbSNP v147).

To study receptor-ligand binding, 293T cells were transfected with G78 (AD risk) PILRA 

or variants, and then incubated with purified NPDC1-mIgG2a protein (Fig. 1B), followed 

by flow cytometry to detect PILRA and the NPDC1 fusion protein. Among known 

PILRA ligands, NPDC1 is expressed in the central nervous system and binds with high 

affinity to PILRA [32]. Expression of the PILRA variants on the transfected 293T cells 

was comparable to or greater than G78 (AD risk) PILRA (fig. S2). G78 (AD risk) PILRA 

binding to NPDC1 was considered 100%. Both R72A and F76A mutations severely 

impaired NPDC1 binding (~20% of G78, p-value < 0.0001). The R78 (AD protective) 

variant also showed significantly reduced ligand binding (~35% of G78, p < 0.0005), 

while the G80 mutant was the least affected (~60% of G78, p < 0.0001) (Fig. 1c and fig. 

S3a,b). 

To further test the hypothesis that the AD protective PILRA R78 variant impacts ligand 

binding, NPDC1 or alternative PILRA ligands HSV-1 gB and PIANP were expressed on 

the cell surface of 293T cells, and the binding of purified PILRA protein variants was 

measured by flow cytometry. PILRA R78 showed reduced binding to the various ligands 

in these assays as compared to G78 (Fig. 1, D to G and fig. S4, A to G). These data 

confirmed that the R78 variant impairs ligand-binding activity of PILRA. 

Identification of C4A as PILRA ligand 
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A peptide motif for PILRA interaction has been established (Fig. 2A) that includes an O-

glycosylated threonine, an invariant proline at the +1 position, and additional prolines at 

the -1 or -2 and +3 or +4 positions [32,39].  Of note, PILRA is capable of binding murine 

CD99 and human NPCD1 (both contain the consensus motif), but not human CD99 or 

murine NPCD1 (both lack the consensus motif), suggesting divergence between human 

and mouse in the range of endogenous ligands bound by PILRA [32]. 

We sought to identify novel endogenous PILRA ligands by searching for human proteins 

with either the PTPXP, PTPXXP, PXTPXP or PXTPXXP motif.  A total of 1540 human 

proteins carry at least 1 of these putative PILRA-binding motifs (table S4). Narrowing the 

search, we considered proteins with the motif that have previously been shown to be O-

glycosylated in human cerebral spinal fluid [40], and measured the binding of these 

proteins to PILRA variants. By flow cytometry, complement component 4A (C4A) 

bound to G78 (AD risk) PILRA in a manner comparable to NPDC1, while APLP1 and 

SORCS1 showed relatively little interaction with PILRA (Fig. 2B and fig. S5, A and B). 

We further demonstrated that the PILRA R78 (AD protective) variant has reduced 

binding for C4A (Fig. 2C and fig. S5C). We did not test C4B, but its putative PILRA-

binding motif is identical to that of C4A. 

G78R stabilizes the ligand-free state of PILRA

To understand the conformational changes that might occur in the PILRA sialic acid-

binding pocket during receptor-ligand interactions in the presence of G78 (AD risk) or 

R78 (AD-protective) variants, we evaluated available experimental crystal structures 
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(Fig. 3, A to C) [39,41]. Structures of G78 (AD risk) PILRA reveal a monomeric 

extracellular domain with a single V-set Ig-like β-sandwich fold that binds O-glycan 

ligands (Fig. 3, B and C) [39]. By analogy to a molecular clamp, the sialic acid-binding 

site in PILRA undergoes a large structural rearrangement from an “open” to a “closed” 

conformation upon binding its peptide and sugar ligands simultaneously (Fig. 3, A to C). 

The essential R126 side-chain engages the carboxyl group of sialic acid (SA) directly in a 

strong salt bridge (Fig. 3C). The CC’ loop which contains F76 and G78 undergoes a large 

conformational change where F76 translates ~15 Å to participate in key interactions with 

the peptide of the ligand and abut the Q140 side-chain of PILRA (Fig. 3, B and C). In this 

ligand-bound “closed” conformation of PILRA, Q140 helps to position R126 precisely 

for its interaction with SA (Fig. 3C). 

Notably, in the structure of R78 (AD protective) PILRA crystallized in the absence of 

any ligand [41], the long side-chain of R78 is observed to hydrogen bond with Q140 

directly (Fig. 3A). This unique R78-Q140 interaction has three important consequences: 

1) it sterically hinders F76 from obtaining a ligand-bound “closed” conformation, 2) it 

affects the ability of R126 to interact with the carboxyl group of SA by altering the R126-

Q140 interactions observed in G78 (AD risk) PILRA and, 3) it likely alters CC’ loop 

dynamics,  (Fig. 3, B to C). Overall, the structure of the R78 (AD protective) variant 

shows that this single side-chain alteration appears to stabilize the “open” apo form of 

PILRA and likely alters the conformational sampling of the molecular clamp required to 

obtain its “closed” form to engage its ligands.
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We therefore propose that in G78 PILRA (AD-risk associated), the engagement of SA by 

R126 and peptide by F76 is facilitated by G78 (Fig. 3C). However, in the AD-protective 

PILRA variant R78, the R78 side-chain competes with the central R126-Q140 interaction 

and alters the positioning of F76 (Fig. 3A), which leads to an overall decrease in PILRA 

ligand binding. This structure-based hypothesis is consistent with the reduced functional 

cellular binding observed for the R78 variant (Fig. 1).

To further test this model, we generated two additional alanine mutants of PILRA at 

amino acids predicted to be essential (Q140) or non-essential (S141) for conformational 

changes associated with ligand interaction. 293T cells were transfected with G78 (AD 

risk), R78 (AD protective), Q140A and S141A variants of PILRA, and receptor-ligand 

interaction was measured after incubating cells with soluble NPDC1-mIgG2a. PILRA 

expression was comparable among variants, matching or exceeding G78 (AD risk) 

expression (fig. S2). R78 (44% of G78, p=0.02) and Q140A (22% of G78, p=0.0004) 

variants showed significantly decreased binding to NPDC1, while S141A (117% of G78, 

p=0.5) had no significant effect (Fig. 3D and fig. S6, A and B). These data are consistent 

with the experimental structural models that show the interaction of Q140 with R126 is 

important for productive sialic acid binding (Fig. 3, A to C). Consistently, the Q140A 

mutation has a strong effect because the Q140-R126 interaction network is completely 

abolished. By contrast, the AD-protective R78 variant likely has an intermediate effect 

since it only modulates the Q140 interaction with R126, which is expected to only alter 

the frequency or strength of relevant PILRA-ligand interactions. 
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PILRA G78R reduces the on-rate of ligand binding

We next investigated the interaction of PILRA variant and ligands in vitro using surface 

plasmon resonance (SPR). Human PILRA–Fc variants (G78, R78, or Q140A) were 

immobilized on a ProteOn GLC sensor chip and binding of NPDC1-mFc or a control 

mFc-tagged protein was measured. Qualitatively, NPDC1-Fc bound to the R78 (AD-

protective) and Q140A (essential for R126 conformation) variants to a much lesser extent 

than to G78 (AD risk) PILRA, while control Fc-tagged protein showed no binding (Fig. 

3E). 

To further probe the mechanistic basis of R78 (AD protective) function and phenotype, a 

more complete SPR characterization of NPDC1-His binding to PILRA variants was 

performed (fig. S6C). The affinity of NPDC1 toward R78 (AD-protective) PILRA (76.5 

nM) was 4.5-fold weaker than the affinity toward G78 PILRA (16.8 nM). The on-rate 

constant kon for NPDC1-His binding to R78 (AD protective) (6.810+3 M-1s-1) was ~3-

fold lower than binding to G78 (AD risk) PILRA (2.210+4 M-1s-1), while the koff rate 

constants were comparable (fig. S6C). These results are consistent with the idea that, 

once engaged, the affinity and disassociation rate of R78-ligand complexes are similar to 

G78 PILRA, but the frequency with which PILRA can productively engage with ligands 

is reduced in the R78 (AD protective) variant by R78 side chain interactions favoring the 

apo-state (Fig. 3). Taken together, these data support a structural model in which R78 

impairs PILRA-ligand interactions by altering the accessibility of a productive sialic 

acid-binding conformation in PILRA.
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PILRA G78R reduces entry of HSV-1 into hMDMs

Given that PILRA is a known entry receptor for HSV-1 [42] and the R78 (AD protective)  

variant showed reduced binding to HSV-1 gB (Fig. 1F), we next determined whether 

there were differences in HSV-1 infectivity based on PILRA genotype.  We isolated and 

differentiated human monocyte-derived macrophages (hMDMs) from five pairs of 

healthy volunteers homozygous for either the G78 (AD risk) or R78 (AD protective) 

PILRA variants (matched for age, gender and ethnicity). hMDMs were infected with 

HSV-1 at different multiplicities of infection (MOI) (0.01, 0.1, 1 and 10), and infectivity 

was measured morphologically by light microscopy, by using an LDH cytotoxicity assay, 

by measuring intracellular viral DNA and in a viral plaque assay.  

No notable cytopathic effects were observed in the first 6 h of infection, however at 18 

hours post infection, extensive cytopathy was detected in G78/G78 PILRA-expressing 

hMDMs, including loss of cell shape, increased cell volume, birefringence, and formation 

of both cell aggregates and multinucleated giant cells (syncytia) (Fig. 4A and fig. S7). 

Cytopathic changes were less pronounced in R78/R78 (Alzheimer’s protective) 

homozygous hMDMs (Fig. 4A and fig. S7). 

hMDMs from R78/R78 PILRA donors showed significantly less HSV-1-induced 

cytotoxicity at 18 hrs post infection in the LDH assay at 0.01, 0.1, or 1 MOI (Fig. 4B and 

table S5).  The difference was no longer significant at 10 MOI or if the infection was 

allowed to proceed for 36 hrs, except at the lowest MOI of 0.01 (Fig. 4B, fig. S8A, and 

tables S5 and S6). 
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hMDMs from R78/R78 donors showed 5-10 fold decreased amounts of HSV-1 DNA at 6 

hrs at all MOIs (0.01, 0.1, 1 and 10), and at 18 hrs at lower MOIs (0.01 and 0.1), 

compared to those from G78/G78 donors (Fig. 4C and fig. S8, C and D). No significant 

differences in HSV-1 DNA were observed between the two genotypes at 18 hrs at higher 

doses (1 and 10 MOI) (Fig. 4C and fig. S8D), or at 36 hrs for any dose of virus (fig. S8, B 

and E). 

Finally, we measured the amount of infectious HSV-1 virus by harvesting supernatants 

from HSV-1-infected hMDMs and measuring viral titer by plaque assays on Vero cells. 

Viral plaque forming units (PFUs) were significantly lower after 6 and 18 hrs of infection 

for all MOIs tested, and at 36 hrs for lower MOIs (Fig. 4, D and E, and fig. S9). Taken 

together, these data indicate that R78/R78 macrophages were less susceptible to HSV-1 

infection than G78/G78 macrophages.

Discussion

We show here that PILRA G78R is a likely causal variant conferring protection from AD 

risk at the 7q21 locus. G78R alters the access to SA-binding pocket in PILRA, where 

R78 PILRA shows reduced binding to several of its endogenous cellular ligands and with 

HSV-1 gB. Reduced interaction with one or more of PILRA’s endogenous ligands 

(including PIANP and NPDC1) could impact microglial migration or activation [36–38]. 

In fact, microglia up-regulate the expression of the PIANP gene in the PS2APP, 5xFAD, 

and APP/PS1 mouse models of AD [43–45]. The identification of C4 as a novel PILRA-

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2018. ; https://doi.org/10.1101/325936doi: bioRxiv preprint 

https://doi.org/10.1101/325936
http://creativecommons.org/licenses/by/4.0/


interacting protein is also intriguing, given the increased expression of C4 in mouse AD 

models [43], the increase in amyloid deposition observed when complement activation is 

inhibited [46], and the genetic association of complement receptor 1 with AD [47]. 

Finally, we note that both TREM2 and PILRB function as activating receptors and signal 

through DAP12 [33,35,48]. A reduction of PILRA inhibitory signals in R78 carriers 

could allow more microglial activation via PILRB/DAP12 signaling and reinforce the 

cellular mechanisms by which TREM2 is believed to protect from AD incidence [49]. 

The relevant ligands for PILRA/PILRB in vivo and the mechanism by which reducing 

PILRA-ligand interaction confers protection from Alzheimer’s disease remain to be 

elucidated.

A role for infection in accelerating AD has been proposed, but remains controversial 

[50]. HSV-1 is a neurotropic virus that infects a large fraction of the adult population and 

has frequent reactivation events. HSV-1 has been implicated in AD pathogenesis by 

several lines of evidence, including the presence of HSV-1 viral DNA in human brain 

tissue [51,52], increased HSV-1 seropositivity in AD cases [53–56], the correlation of 

high avidity HSV-1 antibodies with protection from cognitive decline [56], the binding of 

HSV-1 gB to APOE-containing lipoproteins [57], HSV-1-induced amyloidogenic 

processing of amyloid precursor protein (APP) [58–60], and preferential targeting of AD-

affected regions in HSV-1 acute encephalitis [61]. In addition, HSV-1 gD receptors and 

gB receptor PILRA increase with age in multiple brain regions, including the 

hippocampus [62]. Additional AD risk loci have been proposed to play a role in the life 

cycle of HSV-1 [63], including CR1, which is capable of binding HSV-1 [64]. The 
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reduced infectivity of HSV-1 in R78/R78 macrophages suggests that brain microglia 

from R78/G78 and R78/R78 individuals are less susceptible to HSV-1 infection and more 

competent for immune defense during HSV-1 recurrence.

These data provide additional evidence for a key role of microglia in AD pathogenesis 

and provide a mechanism by which HSV-1 may contribute to AD risk. Inhibiting the 

interaction of PILRA with its ligands could therefore represent a novel therapeutic 

mechanism to prevent or slow AD progression.  

Materials and Methods

PILRA variants and PILRA ligands expression and purification

The coding sequences (CDS) of full length PILRA  (AJ400841), human herpesvirus 1 

strain KOSc glycoprotein B (HSV-1 gB) (EF157316), and neural proliferation, 

differentiation and control 1 (NPDC1) (NM_015392.3) were cloned in the pRK neo 

expression vector. Several PILRA point mutations were generated, including R72A, 

F76A, G78R, S80G, Q140A and S141A. The PILRA variants were incorporated into a 

full-length G78 (AD risk) PILRA construct by site-directed mutagenesis as per the 

manufacturer’s recommendation (Agilent Cat. No. 200523) and sequences were verified. 

A full length myc-DDK tagged PIANP construct was purchased from Origene (Cat. No. 

RC207868). Full length complement component 4A (Rodgers blood group) C4A 

(NM_007293.2), extra cellular domain (ECD) of amyloid beta precursor like protein 1 

(APLP1) (NM_005166) (1-580 aa) and ECD of sortilin-related VPS10 domain-

containing receptor 1 (SORCS1) (NM_052918) (1-1102 aa) were fused with C-terminal 
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gD tag (US6/gD, partial [Human alphaherpesvirus 1) (AAP32019.1) and GPI anchor in 

pRK vector. The ECD of all PILRA variants (1-196 aa) and NPDC1 (1-190 aa) were 

PCR amplified and cloned with C-terminal murine IgG2a Fc tag in a pRK expression 

vector. 

ECDs of PILRA variants (G78 (AD risk), R72A, F76A, G78R, S80G, Q140A and 

S141A) and NPDC1 fused to the Fc region of murine IgG2a were expressed in a CHO 

cell expression system, supernatants collected, protein A/G affinity-purified and verified 

by SDS-PAGE and mass spectroscopy.

Relative PILRA-ligand binding to PILRA variant transfected cells 

293T cells were transfected with lipofectamine LTX reagent (ThermoFisher) with various 

full-length constructs of PILRA variants (G78 (AD risk), R72A, F76A, G78R, S80G, 

Q140A and S141A). After 48 hours, the transfected cells were harvested and incubated 

with soluble mIgG2a-tagged ligand, NPDC1-mFc at 50 g/ml (as described above) for 

30 minutes on ice. Cells were then washed and stained with 1 g/ml chimeric anti-

PILRA antibody (mouse Fc region is substituted to human IgG1 backbone on anti-PILRA 

antibodies [32]) on ice for 30 min followed by APC-conjugated mouse anti-human IgG 

(BD Pharmingen Cat.No. 550931) and FITC anti-mouse IgG2a (BD Pharmingen Cat. No. 

553390) secondary antibodies according to manufacturer’s instruction. PILRA-

transfected 293T cells were examined by flow cytometery for binding of NPDC1 by 

measuring the frequency of APC and FITC double-positive cells.  Double positive cells 

were gated on the WT sample and than the gates were overlaid on subsequent samples to 
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maintain the same cell population through out the experiment. For each PILRA variant, 

the mean percentage of the number of cells binding to NPDC1-mFC relative to the wild 

type PILRA binding for each experiment was calculated. 

Relative PILRA variant binding to PILRA ligand transfected cells 

In the inverse experiment, 293T cells were transfected with lipofectamine LTX reagent 

[ThermoFisher ] with known full-length PILRA ligand (NPDC1, HSV-1gB and PIANP) 

and predicted ligand constructs (SORCS1, APLP1 and C4A)   (described above). After 

48 hours, the transfected cells were harvested and incubated with soluble mIgG2a-tagged 

variants of PILRA (G78 (AD risk), R72A, F76A, G78R, S80G) (described above) 50 

g/ml for 30 min on ice. Cells were then washed and stained with FITC anti-mouse 

IgG2a (BD Pharmingen Cat. No. 553390) secondary antibody according to 

manufacturer’s instruction.  PILRA ligand-transfected 293T cells were examined by flow 

cytometry for binding to PILRA variants by measuring the frequency of FITC-positive 

cells.  The percentage of mean flouresence intensity (MFI) of PILRA-mFC binding on 

ligand-transfected cells relative to the wild type PILRA binding for each experiment was 

calculated.

PILRA variant ligand binding Surface Plasmon Resonance (SPR)  

Binding of human NPDC1.Fc to PILRa-Fc variants was measured by SPR using a 

ProteOn XPR36 (Bio-Rad).  PILRA-Fc WT and variants (G78R and Q140A) were 

immobilized on a ProteOn GLC sensor chip (Bio-Rad) by EDC/NHS amine coupling 

(2000-2400 RU’s) and the chip surface was deactivated by ethanolamine after 
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immobilization.  NPDC1-Fc diluted in PBST or a control Fc-tagged protein was injected 

at a concentration of 100 nM over the immobilized PILRA proteins at room 

temperature[32]. 

Isolation and differentiation of monocytes

Healthy human volunteers from the Genentech Genotype and Phenotype program 

(gGAP) were genotyped for rs1859788 (PILRA G78R) using custom design ABI SNP 

genotyping assay with the following primers; Forward primer seq:  

GCGGCCTTGTGCTGTAGAA, Reverse primer seq: 

GCTCCCGACGTGAGAATATCC, Reporter 1 sequence: VIC- 

ACTTCCACGGGCAGTC-NFQ, Reporter 2 sequence: FAM- 

ACTTCCACAGGCAGTC-NFQ.  To control for a possible effect of the eQTL for 

PILRB, all volunteers selected were homozygous AA (lower PILRB expression) for 

rs6955367 (http://biorxiv.org/content/early/2016/09/09/074450).  Genotype for rs6955367 was 

determined using an InfiniumOmni2.5Exome-8v1-2_A.bpm. Peripheral Blood 

Mononuclear Cells (PBMC’s) were obtained by Ficol gradient from five pairs of 

homozygous donors for rs1859788 (one with each genotype AA/GG). The pairs of 

samples were matched for age [± 5 years], gender and self-reported ethnicity. Monocytes 

were purified from PBMC’s by negative selection using the EasySep™ Human 

Monocyte Enrichment Kit without CD16 Depletion (19058), as recommended by the 

manufacturer. Isolated monocytes were differentiated into macrophages in DMEM + 

10%FBS + 1X glutaMax and 100 ng/ml MCSF media for 7-10 days. The gGAP program 

was reviewed and approved by the Western Regional Institutional Board.
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HSV-1 Infection of Macrophages

Macrophages differentiated from healthy human monocytes were incubated with 10, 1, 

0.1 and 0.01 multiplicity of infection (MOI) of HSV-1 virus at 37oC for 1 hour with 

gentle swirling to allow virus adsorption. Cells were washed after 1 hr of adsorption and 

infection was continued for 6, 18 and 36 hrs. Supernatant was harvested at 6, 18 and 36 

hrs of infection and cell debris were removed by centrifugation at 3000 rpm for 5 min at 

4oC.  DNA was isolated from infected cells using the QIAamp DNA mini-kit (Qiagen 

Cat. No. 51304).  Additional cells were fixed with 4% paraformaldehyde after infection 

and stained with DAPI for microscopy.

Lactate Dehyrogenase (LDH) Cytotoxicity Assay 

The CytoTox 96® Non-Radioactive Cytotoxicity Assay (Promega Cat. No. E1780) was 

performed on supernatant harvested from HSV-1-infected human macrophages as per 

manufacturer’s recommendations to measure cell toxicity after HSV-1 infection. For each 

sample, the percent cytotoxicity was calculated as the ratio of LDH released in culture 

supernatant after infection to completely lysed cells (maximum LDH release).  

Quantitative Polymerase Chain Reaction 

HSV-1 DNA was quantitated using a custom design ABI TaqMan gene expression assay, 

with the following primers:  Forward primer seq:  5'-GGCCTGGCTATCCGGAGA-3', 

Reverse primer seq:  5'-GCGCAGAGACATCGCGA-3', HSV-1 probe:  5'-FAM-

CAGCACACGACTTGGCGTTCTGTGT-MGB-3'.  GAPDH DNA was quantitated 
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using ABI endogenous control (Applied Biosystem Cat. No. 4352934E). Amplification 

reactions were carried out with 5 L of extracted DNA from infected cells in a final 

volume of 25 l with TaqMan Universal PCR Master Mix (Applied Biosystems Cat. 

No. 4304437) as per manufacturer’s recommendations. HSV-1 DNA (Ct values) was 

normalized to cell GAPDH (Ct values) to account for cell number.

HSV-1 Plaque Assay

Virus titers from HSV-1-infected cells were determined following a standard plaque 

assay protocol [65]. In brief, the plaque assay was performed using Vero cells (African 

Green Monkey Cells) seeded at 1x105 cells per well in 48-well plates.  After overnight 

incubation at 37oC, the monolayer was ~90-100% confluent.  Supernatants harvested 

from HSV-1-infected human macrophages were clarified from cells and debris by 

centrifugation at 3000 rpm for 5 minutes at 4oC.  Virus-containing supernatants were then 

diluted from 10-1 to 10-8 in DMEM (1 ml total volume).  Growth media was removed 

from Vero cells and 250 l of supernatant dilution was transferred onto the cells, 

followed by incubation at 37oC for 2 hrs with gentle swirling every 30 min to allow virus 

adsorption, after which the virus-containing media was aspirated. The cells were then 

overlaid with 2% methylcellulose containing 2X DMEM and 5% FBS and incubated at 

37°C. 48 hrs post-infection, plaques were enumerated from each dilution. Virus titers 

were calculated in pfu/ml.
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Figure Legends

Figure 1. PILRA G78R reduces ligand binding

A) Association of variants in the 7q21 locus with AD risk in the IGAP phase 1 dataset 

[15].  

B,C) 293T cells were transfected with G78 (AD risk) PILRA and several point mutants 

of PILRA. Binding of NPDC1-mFC to PILRA variant-transfected cells was measured by 

flow cytometry. The percent of cells expressing PILRA and positive for NPDC1 is 

indicated in each panel considering  G78 (AD risk) PILRA binding as 100% for each 

experiment 

D,E,F,G) In the inverse experiment, 293T cells were transfected with different known 

ligands of PILRA (NPDC1, HSV-1 gB and myc-PIANP). Binding of different PILRA 

variants to ligand-transfected cells was analyzed by flow cytometry. Results are the 

percentage of MFI of PILRA-mFC binding on ligand-transfected cells considering G78 

(AD risk) PILRA binding as 100% for each experiment. 

Statistical analysis is two-tailed unpaired t-test (p values  <0.05= *, <0.005=**, 

<0.0005=***, <0.0001=****) performed on 3-5 independent experiments.

Figure 2.  C4A is a novel ligand for PILRA

A) Comparison of the peptide sequence around the O-glycosylated Thr  (position 0) of 

known and putative (§) PILRA ligands.

B) 293T cells were transfected with putative ligands of PILRA (SORCS1 ECD, APLP1 

ECD. or full length C4A) fused with C-terminal glycoprotein D (gD) tag and GPI anchor, 

or full length NPDC1 as positive control. Binding of G78 (AD risk) PILRA to ligand-
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transfected cells was analyzed by flow cytometry. Results are fold-increase in binding to 

each putative ligand compared to vector control for each experiment. 

C) 293T cells were transfected with full length C4A fused with C-terminal gD tag and 

GPI anchor. Binding of different PILRA variants to C4A-transfected cells was analyzed 

by flow cytometry. Results are the percentage of MFI of PILRA-mFc binding on ligand-

transfected cells considering G78 (AD risk) PILRA binding as 100% for each 

experiment. 

Statistical analysis is two-tailed unpaired t-test (p values  <0.05= *, <0.005=**, 

<0.0005=***, <0.0001=****) performed on 3-5 independent experiments.

Figure 3. Structural determinants of PILRA in apo and ligand-bound 

conformations

A) The unliganded crystal structure of R78 (AD protective) PILRA (PDB 4NFB) 

displays an “open” conformation with an unformed sialic acid (SA) binding site. 

B) The apo crystal structure of G78 (AD risk) PILRA (PDB 3WUZ) reveals that the 

Q140-R126 interaction network (productive for SA-coordination) is pre-formed and the 

“downward” movement of F76 is not impeded in the R78 side chain mediated 

interactions. 

C) The sialylated O-linked sugar T antigen (sTn)-bound PILRA structure (PDB 3WV0) 

reveals the ligand-induced conformational changes across the receptor that lead to 

engagement of the SA-motif by direct coordination to R126 and the critical involvement 

of F76 in peptide (sTn ligand) recognition. Aromatic residues including Y33 (fuchsia) 

and W59 (fuchsia) also undergo significant ligand-induced conformational changes. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2018. ; https://doi.org/10.1101/325936doi: bioRxiv preprint 

https://doi.org/10.1101/325936
http://creativecommons.org/licenses/by/4.0/


D) 293T cells were transfected with G78 (AD risk) PILRA and several point mutants of 

PILRA. Binding of NPDC1-mFC to PILRA variant-transfected cells was measured by 

flow cytometry. The percent of cells expressing PILRA and positive for NPDC1 is 

indicated in each panel considering G78 PILRA binding as 100% for each experiment. 

Statistical analysis is two-tailed unpaired t-test.

E) Binding of NPDC1.mFC to PILRA variants by surface plasmon resonance (SPR). 

Figure 4. PILRA G78R reduces entry of HSV-1 into hMDMs

A) Representative images of hMDM, infected with HSV-1 for 18 hrs at MOI 0.1, were 

fixed and stained with DAPI. 

B) LDH cytotoxicity assay was performed on supernatants harvested from HSV-1-

infected hMDMs after 18 hrs. Results are % cytotoxicity - amount of LDH in supernatant 

after infection compared to LDH released from cells completely lysed by lysis buffer, 

with completely lysed cells (maximum LDH release) considered as 100% for each donor. 

Each shape represents one donor pair. 

C) HSV-1 DNA was quantitated on DNA extracted from HSV-1-infected hMDMs after 6 

and 18 hrs by qPCR. Results are % HSV-1 DNA normalized to GAPDH considering G78 

donor as 100% for each donor pair. 

D,E) Viral titers in the supernatant of HSV-1-infected hMDMs were determined by 

plaque assay on Vero cells. Results are number of plaque forming units (pfu) per ml of 

supernatant collected from HSV-1-infected hMDMs. (D) 6, 18 and 36 hrs of infection 

(G78, solid lines; R78, dashed lines)(experiment 1) (E) 18 hrs of infection (data from two 

individual experiments). 
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Statistical analysis is two-tailed paired (B,D,E) or unpaired (C) t-test performed on 3-5 

genotyped individual donor pairs (p values  <0.05=*, <0.005=**, <0.0005=***, 

<0.0001=****)
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Supplementary Information file contains Supplementary Figures S1-S10 and 

Supplementary tables S1-S6
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Figure 1
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PILRA G78R reduces ligand binding

A) Association of variants in the 7q21 locus with AD risk in the IGAP phase 1 dataset 

[15].  

B,C) 293T cells were transfected with G78 (AD risk) PILRA and several point mutants of 

PILRA. Binding of NPDC1-mFC to PILRA variant-transfected cells was measured by 

flow cytometry. The percent of cells expressing PILRA and positive for NPDC1 is 

indicated in each panel considering  G78 (AD risk) PILRA binding as 100% for each 

experiment 

D,E,F,G) In the inverse experiment, 293T cells were transfected with different known 

ligands of PILRA (NPDC1, HSV-1 gB and myc-PIANP). Binding of different PILRA 

variants to ligand-transfected cells was analyzed by flow cytometry. Results are the 

percentage of MFI of PILRA-mFC binding on ligand-transfected cells considering G78 

(AD risk) PILRA binding as 100% for each experiment. 

Statistical analysis is two-tailed unpaired t-test (p values  <0.05= *, <0.005=**, 

<0.0005=***, <0.0001=****) performed on 3-5 independent experiments.
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Figure 2

C4A is a novel ligand for PILRA

A) Comparison of the peptide sequence around the O-glycosylated Thr  (position 0) of 

known and putative (§) PILRA ligands.

B) 293T cells were transfected with putative ligands of PILRA (SORCS1 ECD, APLP1 

ECD. or full length C4A) fused with C-terminal glycoprotein D (gD) tag and GPI anchor, 

or full length NPDC1 as positive control. Binding of G78 (AD risk) PILRA to ligand-

transfected cells was analyzed by flow cytometry. Results are fold-increase in binding to 

each putative ligand compared to vector control for each experiment. 
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C) 293T cells were transfected with full length C4A fused with C-terminal gD tag and 

GPI anchor. Binding of different PILRA variants to C4A-transfected cells was analyzed 

by flow cytometry. Results are the percentage of MFI of PILRA-mFc binding on ligand-

transfected cells considering G78 (AD risk) PILRA binding as 100% for each 

experiment. 

Statistical analysis is two-tailed unpaired t-test (p values  <0.05= *, <0.005=**, 

<0.0005=***, <0.0001=****) performed on 3-5 independent experiments.
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Figure 3

Structural determinants of PILRA in apo and ligand-bound conformations

A) The unliganded crystal structure of R78 (AD protective) PILRA (PDB 4NFB) 

displays an “open” conformation with an unformed sialic acid (SA) binding site. 
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B) The apo crystal structure of G78 (AD risk) PILRA (PDB 3WUZ) reveals that the 

Q140-R126 interaction network (productive for SA-coordination) is pre-formed and the 

“downward” movement of F76 is not impeded in the R78 side chain mediated 

interactions. 

C) The sialylated O-linked sugar T antigen (sTn)-bound PILRA structure (PDB 3WV0) 

reveals the ligand-induced conformational changes across the receptor that lead to 

engagement of the SA-motif by direct coordination to R126 and the critical involvement 

of F76 in peptide (sTn ligand) recognition. Aromatic residues including Y33 (fuchsia) 

and W59 (fuchsia) also undergo significant ligand-induced conformational changes. 

D) 293T cells were transfected with G78 (AD risk) PILRA and several point mutants of 

PILRA. Binding of NPDC1-mFC to PILRA variant-transfected cells was measured by 

flow cytometry. The percent of cells expressing PILRA and positive for NPDC1 is 

indicated in each panel considering G78 PILRA binding as 100% for each experiment. 

Statistical analysis is two-tailed unpaired t-test.

E) Binding of NPDC1.mFC to PILRA variants by surface plasmon resonance (SPR). 
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Figure 4

PILRA G78R reduces entry of HSV-1 into hMDMs

A) Representative images of hMDM, infected with HSV-1 for 18 hrs at MOI 0.1, were 

fixed and stained with DAPI. 
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B) LDH cytotoxicity assay was performed on supernatants harvested from HSV-1-

infected hMDMs after 18 hrs. Results are % cytotoxicity - amount of LDH in supernatant 

after infection compared to LDH released from cells completely lysed by lysis buffer, 

with completely lysed cells (maximum LDH release) considered as 100% for each donor. 

Each shape represents one donor pair. 

C) HSV-1 DNA was quantitated on DNA extracted from HSV-1-infected hMDMs after 6 

and 18 hrs by qPCR. Results are % HSV-1 DNA normalized to GAPDH considering G78 

donor as 100% for each donor pair. 

D,E) Viral titers in the supernatant of HSV-1-infected hMDMs were determined by 

plaque assay on Vero cells. Results are number of plaque forming units (pfu) per ml of 

supernatant collected from HSV-1-infected hMDMs. (D) 6, 18 and 36 hrs of infection 

(G78, solid lines; R78, dashed lines)(experiment 1) (E) 18 hrs of infection (data from two 

individual experiments). 

Statistical analysis is two-tailed paired (B,D,E) or unpaired (C) t-test performed on 3-5 

genotyped individual donor pairs (p values  <0.05=*, <0.005=**, <0.0005=***, 

<0.0001=****)
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