ABSTRACT
The analysis of whole genome sequencing data should, in theory, allow the discovery of interdependent loci that cause antibiotic resistance. In practice, however, identifying this epistasis remains a challenge as the vast number of possible interactions erodes statistical power. To solve this problem, we extend a method that has been successfully used to identify epistatic residues in proteins to infer genomic loci that are strongly coupled and associated with antibiotic resistance. Our method reduces the number of tests required for an epistatic genome-wide association study and increases the likelihood of identifying causal epistasis. We discovered 38 loci and 250 epistatic pairs that influence the dose needed to inhibit growth for five different antibiotics in 1,102 isolates of Neisseria gonorrhoeae that were confirmed in an independent dataset of 495 isolates. Many known resistance-affecting loci were recovered; however, the majority of loci occurred in unreported genes, including murE which was associated with cefixime. About half of the novel epistasis we report involved at least one locus previously associated with antibiotic resistance, including interactions between gyrA and parC associated with ciprofloxacin. Still, many combinations involved unreported loci and genes. Our work provides a systematic identification of epistasis pairs affecting antibiotic resistance in N. gonorrhoeae and a generalizable method for epistatic genome-wide association studies.