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Abstract 17 

Land-use change is massively reshaping terrestrial ecosystems worldwide, and is recognized as a key driver 18 

of biodiversity loss with negative consequences on ecosystem functioning. Understanding how species use 19 

resources across landscapes is essential for the design of effective management strategies. Despite recent 20 

advances in theoretical ecology, there is still a gap between theory and applied ecological science and we 21 

lack the tools to manage entire landscapes to maximize biodiversity conservation and ecosystem service 22 

delivery. Here, we propose a new approach that uses existing bipartite networks to create species˗habitat 23 

networks.  Networks enable powerful visualizations via a common language that defines most processes in 24 

terms of nodes and links. This approach explicitly links multiple species and habitat resources, provides tools 25 

to estimate the importance of particular species in a given landscape, and quantifies emerging properties of 26 

entire habitat networks. Most existing metrics used to study properties of bipartite ecological networks can 27 

easily be adapted to investigate species-habitat relationships. One key advantage of this approach is that the 28 

scale of the derived ecological information will match the scale of management interventions. The flexibility 29 

of the proposed approach is that it can be easily applied across a range of ecological fields such as species 30 

conservation, habitat restoration, ecosystem services management, or invasion ecology. Network emerging 31 

properties could also be used to test the effects of large scale drivers of global change upon ecosystem 32 

structure and stability.33 
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Community ecology across heterogeneous landscapes 34 

Understanding how species use resources across landscapes is essential for the design of effective 35 

management strategies to support biodiversity and ecosystems services. By using conceptual or mathematical 36 

models, theoretical ecology has greatly improved our understanding of the dynamic principles which govern 37 

the way populations and communities respond to landscape processes (Forman 1995, MacArthur and Wilson 38 

2001, Loreau et al. 2003). To date, patch-matrix models rooted in meta-community (Leibold et al. 2004) or 39 

island biogeography theory have largely focused on species responses to the amount and configuration of 40 

remnant habitats within a hostile matrix (Tscharntke et al. 2012, Hadley and Betts 2016) (Fig. 1A). Central 41 

tenets of these models are that species dispersal (i.e. the flow of individuals) occurs mainly between patches 42 

and that the focal population mostly relies on resources occurring within a specific habitat. As it is becoming 43 

increasingly clear that many species utilize a range of different habitats of varying qualities (Ricketts 2001, 44 

Tews et al. 2004, Driscoll et al. 2013), landscape ecology has moved beyond the dichotomy of patch-matrix 45 

models to explicitly incorporate landscape heterogeneity (Wiens et al. 1993, Fischer and Lindenmayer 2006, 46 

Cushman et al. 2010, Brudvig et al. 2017). Yet, while the meta-ecosystem concept has provided fundamental 47 

insights into the dynamics and functioning of ecosystems from local to regional scales (Loreau et al. 2003), 48 

there is still a gap between theory and empirical research and few methods have linked species and habitats 49 

in real landscapes (Gounand et al. 2017) 50 

The field of landscape ecology has made significant inroads toward understanding community 51 

responses to landscape processes at multiple spatial scales (Turner 2005, Fahrig et al. 2011). This empirical 52 

research has driven the field of applied ecology forward by providing a solid evidence base for managers and 53 

policy makers (Tscharntke et al. 2005, 2012, Mayer et al. 2016). However, most of these studies are based on 54 

another dichotomy, i.e. a focal local habitat vs. the surrounding landscape. Often the species community of 55 

interest is only sampled in one habitat and related to the landscape by using the proportion of suitable or 56 

unsuitable habitats (Fig. 1A). When landscape heterogeneity is taken into account, it is usually quantified 57 

using metrics that collapse complex processes into single indices (Frazier and Kedron 2017). Many examples 58 

of this approach in applied ecology exist (Clough et al. 2014) and recent advances in ecosystem services 59 

research have successfully applied the same approach to study key functions such as seed dispersal, 60 
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biocontrol (Schellhorn et al. 2015) or pollination (Kennedy et al. 2013). One downside of this research, 61 

however, is the lack of a mechanistic understanding of the links between multiple habitats and community-62 

level processes, indicating the need for broader conceptual frameworks of spatial patterns. 63 

Network approaches based on graph theory have been increasingly applied to the problem of 64 

describing complex and dynamic community level changes in ecology (Bascompte and Jordano 2007, Minor 65 

and Urban 2008, Memmott 2009, Blonder et al. 2012, Burkle et al. 2013, Albert et al. 2017, Gilarranz et al. 66 

2017, Harvey et al. 2017). The network paradigm is based on the representation of emerging properties of 67 

studied systems as oriented graphs: any system is traced back to a set of nodes (its constituent units) linked 68 

by edges corresponding to the relationships between nodes. This allows for a straightforward quantitative 69 

formalization of systems by computing mathematical descriptors of such graphs. In this way, network tools 70 

have already been applied to elucidate landscape processes, i.e. habitat patches have been represented as 71 

nodes and linked via dispersal to model connectivity at multiple spatial scales (Burns and Zotz 2010, Dale 72 

and Fortin 2010, Gonzalez et al. 2011). While these pioneering approaches have enabled the link between 73 

habitat configuration and species dispersal, they have failed both to upscale from species to community level, 74 

and to consider multiple habitat types simultaneously.  75 

Beyond the focal habitat: Introducing the species-habitat network 76 

Traditionally, patch-mosaic models have defined landscapes as complex and heterogeneous mosaics, 77 

constituted of many interacting discrete habitat patches. More recently, several gradient models of landscape 78 

structure have challenged the mosaic paradigm (Fischer and Lindenmayer 2006), suggesting that landscape 79 

heterogeneity should be modelled using multiple, continuous environmental gradients (Cushman et al. 2010). 80 

In both cases, explicitly accounting for species resource use requires the sampling of target species in 81 

multiple sites across the landscape. These ideas have led us to consider the whole landscape as a unit to 82 

quantify and analyse community response to landscape processes (Fig. 1B). Integrating and analysing 83 

species use of multiple sites within a landscape may seem a daunting task, especially because the number of 84 

species-sites links scale exponentially with the number of species and sites sampled. Fortunately, tools 85 

developed from ecological network theory can be used to analyse and describe such complex interactions. In 86 

particular, we advocate the modelling of species˗habitat interactions as bipartite networks (Box 1), analogous 87 
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to those describing antagonistic or mutualistic interactions (Bascompte and Jordano 2007). Bipartite 88 

networks are networks in which two types of nodes exist, and interactions are analysed only between nodes 89 

of different types. In the most simple case, habitat types and the species occurring within each habitat 90 

constitute the two types of nodes. The links between species and habitats are represented by the number of 91 

individuals occurring in a certain habitat at any given moment. The flexibility of the proposed approach 92 

allows habitat nodes to be further defined as individual sites where the community was sampled (Burns and 93 

Zotz 2010). This definition of a node can incorporate the underlying spatial processes associated with 94 

differences in landscape composition and configuration. That is, each individual site could affect network 95 

topology and stability depending on its attributes such as habitat quality, disturbance or connectivity. When 96 

species do not occupy readily identifiable habitat patches, a continuous variation in habitat quality and 97 

available resources around the sampling points can replace a discrete habitat categorization. Once the nodes 98 

are defined, the links need to be carefully formulated as they can affect the ecological interpretation of the 99 

species-habitat network. The operational definition of a link is the occurrence/abundance of a particular 100 

species in a certain location (Box 1). The focal species community would usually belong to the same trophic 101 

level sharing a similar functional role. Examples could include lichens, pollinators, ground-dwelling 102 

predatory arthropods, insectivorous mammals, etc. 103 

104 
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Box 1 Sampling a species-habitat network 105 

Any heterogeneous landscape and the species using its resources can be visualized as a bipartite 

network. In this example, we will consider the butterfly species occurring across an agricultural 

landscape in a temperate region. In the example, we sample the butterfly species occurring at 15 sites 

belonging to five habitats (forest, grassland, shrubland, fallow and urban area) within a landscape 

mosaic (1.5 x 1.5 km) (Figure IA). 

 

Figure I (A) A species-habitat network of 15 sites of varying size and quality belonging to five habitats in which a 

butterfly community is sampled, (B) data matrix that can be derived from the sampling, and (C) example of types 

of species-habitat link. 

 

The 15 sites may represent different qualities (e.g. size, tree cover or management) and spatial 

configurations. If species do not occupy readily identifiable habitat patches (e.g. forest-shrub gradient), 

a continuous variation in habitat quality and available resources around the sampling points can replace 

the discrete habitat categorization. The nodes in the network are represented by the butterfly species and 

the sampling sites. The numbers indicate the link strength (number of individuals in each site) (Figure 

IB). The number of sampling sites is selected to be representative of the resources and habitat diversity. 

In the example, the butterfly-habitat network is built using the cumulative abundance from three rounds 

of sampling (spring, early summer and summer) using a transect walk method. In a transect walk, 

butterflies are recorded in a fixed width band (typically 5 m wide) within each site. Particular attention 

should be paid to the functional interpretation of the links. If we consider one grassland in this network 

(Figure IC), a butterfly species is recorded in that site because individuals can use multiple resources 

(e.g. host plants for reproduction, nectar for adult feeding or plants for roosting or shelter) or simply 

because individuals are using that site as a stepping stone for dispersal. Hence, the choice of the 

sampling method will dictate the interpretation of the ecological data. In this case a transect walk 
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emphasizes the weight of adult feeding over reproduction. On the other hand, an alternative sampling 

focused on butterfly larvae and host plants can inform about species habitat use for reproduction 

(Dainese et al. 2017). This idea can be expanded to any taxa that use resources across heterogeneous 

landscapes. 

 106 

Building species-habitat networks 107 

Several studies have shown that individual species and community responses to landscape processes depend 108 

on the spatial scale over which the landscape metrics are quantified (Steffan-Dewenter et al. 2002, Fahrig et 109 

al. 2011). The selection of the appropriate spatial extent is thus the first key issue that needs to be addressed 110 

when building a species˗habitat network. The spatial extent in which the community is sampled should be 111 

selected according to species’ foraging ranges (e.g. for mobile organisms) or propagule dispersal (e.g. for 112 

sessile organisms) and to the ecological hypotheses underpinning the study. This issue is similar to the 113 

selection of buffer radii when adopting a traditional approach to quantify landscape composition or 114 

configuration. Once the spatial extent is defined, the species communities need to be sampled across the 115 

landscape. In most cases, the most pragmatic solution would be to adopt a ‘habitat-centric’ approach where 116 

the number of sampled sites is proportional to the habitat area. It is important to stress that as the spatial 117 

extent of the habitat mosaic used by the species is generally large (e.g. 1-10 km for mobile organisms), it is 118 

likely that most surveyed species-habitat networks would be subunits of much larger networks (Jordano 119 

2016). 120 

While the definition of species as nodes is usually straightforward, the way in which habitats are 121 

defined as nodes can be more complex (Frazier and Kedron 2017). Spatial grain and habitat classification 122 

can affect the topology (and hence interpretation) of the network. In modified landscapes, different habitats 123 

are often organized in patches, which can be defined as discrete areas with a definite shape, size and 124 

configuration. The focal species community may be used to guide the identification of habitat types that are 125 

functionally relevant. From an operational point of view, we suggest that habitat nodes are defined according 126 

to the dominant vegetation (e.g. crop, forest, semi-natural grasslands, etc.), accounting for differences in 127 

structure and function for different communities. However, a species-habitat network does not necessarily 128 
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require a patchy habitat structure and a representation of landscape heterogeneity using continuous gradients 129 

can also be incorporated in this framework (Fischer and Lindenmayer 2006). 130 

Finally, understanding how and why the topology of the networks changes over time, and how these 131 

changes affect species resource use across the landscape, can help to predict the consequences of human 132 

impacts upon community dynamics (Blonder et al. 2012). Incorporating a temporal perspective, however, 133 

requires careful thought of the timing (when) and spacing (how frequently) of the sampling. For instance, a 134 

longitudinal design with repeated observations within or across years can inform the degree of temporal 135 

variability in the species-habitat use (Laliberté and Tylianakis 2010). In the case of species-habitat networks 136 

at equilibrium, system stability to perturbations can be further investigated using both empirical and 137 

simulation models (May 1972, Memmott et al. 2007, Thébault and Fontaine 2010). 138 

Use and limitations of the framework 139 

There are several important conditions to note when operationalising species-habitat networks. First, users 140 

must ensure that the data inputs are realistic and relevant to the community sampled to ensure meaningful 141 

results are obtained through the network analysis. For sessile organisms such as lichen or plant species, 142 

occurrence directly links to resource use and habitat preference (Burns and Zotz 2010). On the contrary for 143 

mobile organisms that use multiple resources, species occurrence can assume different ecological meanings 144 

(Kremen et al. 2007). If we consider a specific habitat, a species can be recorded at that site because 145 

individuals can use multiple resources (e.g. host plants for reproduction, preys, nesting site or structure for 146 

roosting or shelter) or simply because individuals are using that site as a stepping stone for dispersal. Hence, 147 

depending on the species traits and the sampling method chosen the species-habitat networks can capture 148 

different community properties (Box 1). 149 

Second, not all taxa can be appropriately described by species-habitat networks. One situation where 150 

the framework is unlikely to be applicable is when average species dispersal in the community is too large 151 

(e.g. large mammals or birds) compared with the feasibility of field sampling.  152 

Third, the species-habitat networks may be limited in use when the landscape structure is 153 

characterized by high habitat heterogeneity at a spatial scale much smaller than the average species dispersal. 154 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 21, 2018. ; https://doi.org/10.1101/326041doi: bioRxiv preprint 

https://doi.org/10.1101/326041
http://creativecommons.org/licenses/by-nc/4.0/


9 

For instance, sampling insect communities in highly complex forest landscapes such as those in tropical 155 

regions might be challenging. On the contrary, human-altered landscapes with high contrast between habitat 156 

types provide ideal conditions to apply the framework. 157 

Fourth, the required sampling effort is likely to be relatively higher than traditional observational 158 

landscape studies. However, sampling a greater number of sites will more likely capture the intrinsically high 159 

complexity of community response to landscape processes, which is pivotal to adequately address particular 160 

ecological questions. Additionally, while species-level is the obvious unit to consider in this context, species 161 

may also be grouped using functional traits to reduce network dimensionality (Eklöf et al. 2013). As for most 162 

empirical ecological interaction networks, species-habitat networks would suffer to some extent from under-163 

sampling. Hence, limitations imposed by sampling incompleteness need to be carefully explored (Vizentin-164 

Bugoni et al. 2016). Robust estimates of the actual number of individuals of mobile species occurring across 165 

a landscape mosaic require an adequate sampling effort that needs to be explicitly evaluated (Jordano 2016). 166 

Tools for analysing species-habitat networks 167 

The appeal of a network approach is that they enable very powerful visualizations via a common language 168 

that defines most processes in terms of nodes and links. Most existing metrics used to study properties of 169 

bipartite ecological networks can easily be adapted to the study of species-habitat networks. These metrics 170 

can be broadly divided in two groups: emergent properties of the whole network and node-level metrics that 171 

measure the role of single nodes (i.e. single habitat sites or species) in the network (Dormann et al. 2009) 172 

(Fig. 2). As metric choice will depend on the nature of the question, we advocate a hypothesis-driven 173 

approach whereby users decide a priori which metrics will address which research question. 174 

In bipartite networks, nestedness is a central property that describes network structure. Studies 175 

evaluating beta-diversity have long recognized that species turnover among sites can be decomposed into 176 

nestedness and turnover components (Baselga 2010, Cardoso et al. 2014). When sites with lower diversity 177 

contain a subset of the species of sites with higher diversity, the beta-diversity is dominated by the 178 

nestedness component (Fig. 2A). Scaling up from pairwise habitat comparisons to the network level, a 179 

network is said to be nested when the communities of sites that have a few links (i.e. species) are a subset of 180 

the communities of sites with more links (Atmar and Patterson 1993). In a nested species-habitat network, 181 
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the entire system will likely be affected if the most species-rich habitat or site is removed. In contrast, the 182 

removal of species-poor habitats that only interact with a few habitat generalists, is unlikely to have 183 

significant ripple effects. 184 

In a bipartite network it is also possible to identify modules. A module comprises a set of habitat 185 

sites and species that interact more with each other than with other sites and species outside the module (Fig. 186 

2B). Modularity measures the strength of division of a network into modules. Often, networks with a 187 

modular structure are expected to have a lower risk of collapse due to their buffering capacity to system 188 

perturbations (Dormann et al. 2017, Gilarranz et al. 2017). However, the loss of specific sites may also affect 189 

the associated species in the same module due to low redundancy. Hence, both nestedness and modularity 190 

can have profound conservation implications (Dormann and Strauss 2014). 191 

A common way to assess those implications is to look at network robustness. The robustness of a 192 

network can be a key metric for conservation prioritization of high value sites and ecosystem management 193 

(Sole and Montoya 2001), as it is defined as the network resilience to the loss of nodes. For instance, simple 194 

simulations removing habitat randomly or in realistic sequences are one way to quantify community 195 

robustness to habitat loss (Fig. 2C). While particular species-habitat networks might be robust to random 196 

removals of habitats, they may also be highly sensitive to targeted habitat loss. 197 

Understanding network selectiveness is central to assess the extent of habitat generalization 198 

(Blüthgen et al. 2006). An unselective network is characterized by having sites used proportionally to their 199 

size (green line in Fig. 2D), while selective networks are characterized by species using preferred sites, 200 

irrespective of site area (blue line in Fig. 2D). This metric can provide information about the consequences of 201 

different land-use change scenarios for species communities.  202 

Species˗habitat network analysis can also provide insights into the roles of specific habitat sites or 203 

species in the network. While some of these metrics can be derived from classic community ecology, the 204 

network approach enables scaling up to whole communities. First, the influence of one site upon another site 205 

can be assessed using apparent influence metrics (Muller et al. 1999). This index quantifies how much one 206 

habitat site contributes to sustaining the species present in another site (Fig. 2E). Interestingly, this index is 207 

not symmetrical (influence of node a upon b can be high, while the influence of node b upon a can be low) 208 
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and more complex relations can be added, like adding time directionality in cases when the phenology of the 209 

habitat is known (e.g. flower phenology).  210 

Another useful metric is node strength (Bascompte et al. 2006). This metric captures, for example, a 211 

single site’s importance taking into account how much the species depend on this site. A site can have high 212 

strength if it supports a high number of species with high dependency (i.e. specialist) on it (node a in Fig. 213 

2F). Alternatively, sites that only host a few generalist species (node b) have low strength playing a minor 214 

role in the landscape (Collado et al. 2018). 215 

We can also see the contribution of particular nodes to network level metrics like modularity or 216 

nestedness. The example of modularity is the most enlightening as modularity algorithms can also assess the 217 

role of each node in the network (Olesen et al. 2007). For example, using among-module connectivity (c) we 218 

can identify hub species connecting different modules (Fig. 2G). This can help to identify key-stone sites or 219 

species that can affect the robustness of the whole network. As for the whole network, habitat generality or 220 

preference can be also considered at the node level, using selectivity metrics (Fig. 2H) (Neu et al. 1974). 221 

Overall, the characterization of nodes as individual habitat sites can be used to address questions 222 

regarding the extent to which particular network properties are related with ecological properties of the site 223 

(e.g. habitat quality, resources, area or isolation). Here, we have provided examples of a few commonly used 224 

metrics, while several comprehensive reviews of different metrics are available (Blüthgen et al. 2006, 225 

Dormann et al. 2009, Dormann and Strauss 2014). In Box 2, we present a worked example of species-habitat 226 

network using a published dataset. 227 

228 
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Box 2. Analysing species-habitat networks: a worked example 229 

Here, we illustrate a simple example of our approach by re-analysing a published dataset (Hill and 

Bartomeus 2016). The data comprises all bumblebee species sampled in multiple sites along 10 landscapes 

of 4 km
2
 (2 x 2 km) in Sweden. To exemplify how to apply common metrics, we will focus on a single 

landscape and build a species-habitat network. Even with a simple visualization as a bipartite network 

(Figure IIA), some ecological information can be obtained. 

 

Figure II (A) Visual representation of the species-habitat network in one landscape where nine sites were sampled, 

and (B) plots showing the modules composing the network (red outline) with species abundance in each site (blue 

shading 

 

For example, B. pascuorum is the most abundant species and is connected to most habitats, especially to 

semi-natural habitats and the maintained roadside is the most species-rich site. To facilitate conservation 

decision-making, we can calculate different metrics depending on the conservation aim. First, we show that 

this network is significantly more nested than expected by chance (observed NODF= 20.84, p< 0.001), i.e. 

species-poor sites tend to only host generalists that are also present in species-rich sites. If the aim is to 

protect the highest number of species with the minimum effort, a conservation strategy focusing only on the 

few most species-rich sites might be the best option. It is also possible to identify modules (Figure IIB), and 

calculate among-module (c) connectivity which in turn provides information about the role of each node in 

the network structure. Here, sites 6, 8 and 9 (c values close to 0.6) tend to act as connectors among different 
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modules, and should thus be prioritized for conservation if the aim is to preserve the integrity of the network 

as a whole. To prioritize conservation, another option is to calculate site strength (S). The maintained 

roadside is the site with the highest strength (S= 4.36), because it hosts a large number of species and 

individuals that have a high dependence on this habitat. Finally, from a species perspective, we may be 

interested in habitat preferences. The selectivity (d’) index gives us information about the degree of habitat 

specialization of each species. With low values of d’, species such as B. humilis and B. soroeensis are 

among the most selective in this network. Since habitat specialists tend to be more vulnerable to extinction 

than generalists, these species should be the first included in conservation efforts (complete code to 

reproduce this and other analyses is available in the Supplementary Material). 

 

Implications for ecosystem management and policy 230 

Land-use change is massively reshaping terrestrial ecosystems worldwide, and is recognized as a key driver 231 

of biodiversity loss with negative consequences on ecosystem functioning (Cardinale et al. 2012). An urgent 232 

question is to understand how to manage whole landscapes to maximize biodiversity conservation or 233 

ecosystem services delivery (Mendenhall et al. 2016). The flexibility of the proposed approach is that it can 234 

easily be applied across a range of ecological fields such as species conservation, habitat restoration, 235 

ecosystem services management, or invasion ecology (Memmott et al. 2007). Here, we provide four 236 

important research directions that could be addressed by adopting species-habitat networks: 237 

a) Conservation prioritization. Conservation actions often face the trade-off between maximum protection of 238 

the environment and a limited budget. Site strength values in a landscape or in a protected area network can 239 

be used to prioritize which sites to conserve to maximize the biodiversity of any target taxon. 240 

b) Land-use change and community stability. Conservationists often aim to achieve maximum biodiversity 241 

representation, without an explicit focus on the long-term stability. Seminal works (May 1972) and more 242 

recent studies (Thébault and Fontaine 2010, Gilarranz et al. 2017) on ecological networks have tried to use 243 

architectural patterns such as modularity to understand the mechanisms underlying the stability of 244 

communities. Similarly, we can investigate if certain species-habitat structures confer stability to the system 245 

in order to predict the robustness of species-habitat interactions to habitat perturbations.  246 
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c) Maximizing biodiversity-based ecosystem services. Landscape interventions to support ecosystem services 247 

often require the introduction of new habitats (e.g. hedgerows, mass-flowering crops) across a landscape. For 248 

instance, pollinators and pest control agents are known to be enhanced by the proximity to semi-natural areas 249 

(Ricketts et al. 2008, Schellhorn et al. 2015, Grass et al. 2016). Simulations using different crop 250 

configurations and green infrastructures can be used to maximize the positive influence among sites. For 251 

example, placing early mass flowering crops in the right configuration may maximize ecosystem service 252 

delivery, without imposing negative effects on natural habitats (Magrach et al. 2017). 253 

d) Impact of invasive species. Landscapes are often invaded by alien species with a strong impact on native 254 

communities and ecosystem functioning. Here, the application of the species-habitat network will help to 255 

better understand the native community response to alien invasions across gradients of landscape 256 

composition and configuration. Incorporating a temporal perspective will elucidate how alien species move 257 

and use resources across the landscape. For instance, modularity or selectivity can provide key information 258 

on species spill-over and potential competition between natives and aliens. 259 

The dichotomy of focal habitat versus the surrounding landscape overlooks the diversity of processes 260 

that characterise real-world landscapes. Species-habitat networks enable characterization of not only species 261 

or habitat-level dynamics, but also the emerging properties of those landscapes, going beyond the traditional 262 

landscape patch-mosaic model (Wiens 1995). By sampling multiple networks along relevant environmental 263 

gradients, these emerging properties can be used to test the effects of large scale drivers of global change 264 

upon ecosystem structure and stability (Schleuning et al. 2012). One key advantage of the application of the 265 

species-habitat network is that the scale of the derived ecological information will match the scale of 266 

landscape management interventions. The versatility, visualization power and easy interpretation of these 267 

networks will enable the application of the species-habitat network concept to a wide array of real-world 268 

problems concerning biodiversity conservation and ecosystem service enhancement at different spatial 269 

scales. 270 
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Data Accessibility 273 

All code and data for creating the practical example included in the supplementary material is available at 274 

https://ibartomeus.github.io/hab-sp_ntw/demo.html. 275 
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FIGURES 397 

 398 

Figure 1. (A) Current spatial approach to study species community dynamics across heterogeneous 399 

landscapes. Meta-community ecology focuses on patches of one focal habitat embedded in a homogenous 400 

hostile matrix and linked through dispersal (black dotted arrows). Most empirical research in landscape 401 

ecology focuses on local habitat vs. landscape mosaic, where the landscape is quantified in terms of 402 

composition and/or configuration around a central point where the community is sampled (shadow buffer). 403 

Neither approach accounts for the interactions between multiple species and habitats outside the focal 404 

habitat. (B) The species-habitat network whereby the whole landscape is sampled and the species are 405 

quantified at multiple sites (line width proportional to species abundance). The landscape can be classified in 406 

patches according to the functional role of the different habitats for the target species community. If species 407 

do not occupy readily identifiable habitat patches, a continuous variation in habitat quality and available 408 

resources around the sampling sites can replace the discrete habitat categorization. 409 

 410 
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Figure 2. An untapped network toolbox for assessing species-habitat links. Bipartite network analysis is a 412 

mature field able to identify emerging properties of a system (A-D) as well as the roles that individual nodes 413 

(species or habitat sites) play in the network (E-H). Circles and rectangles represent species and habitat sites, 414 

respectively. Here, we present only a few examples of the metrics that can be computed (Blüthgen et al. 415 

2006, Dormann et al. 2009). See text for details. 416 
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