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Abstract

Resting state functional connectomics holds the promise of illumi-
nating and predicting individual differences in behavioral and clinical
phenotypes. To realize this goal, however, it is critical to gain greater
understanding of the nature, kind, and extent of population-wide inter-
individual connectomic variation. We examined whole-brain resting state
functional connectomes from healthy young adults from the Human Con-
nectome Project 1200 release. We found clear evidence of low rank struc-
ture in which a modest number of connectomic components, around 50-
150, account for a sizable portion of cross-individual connectomic vari-
ation. This number was convergently arrived at with multiple methods
including estimation of intrinsic dimensionality and assessment of recon-
struction of out-of-sample data. In addition, we show that these connec-
tomic components enable prediction of a broad array of neurocognitive
and clinical symptom variables at levels comparable to a leading method
that is trained on the whole connectome. Qualitative observation re-
veals that these connectomic components exhibit extensive community
structure reflecting interrelationships between intrinsic connectivity net-
works. We provide quantitative validation of this observation using novel
stochastic block model-based methods. We propose that the fundamental
connectivity units identified in this study form an effective basis set for
quantifying and interpreting inter-individual connectomic differences, and
for predicting behavioral and clinical phenotypes.

1 Introduction

Resting state functional connectomics has emerged as a leading method for
mapping the organization of human brain networks [1, 2, 3]. In addition, it
presents a major opportunity for elucidation of the brain basis of individual dif-
ferences [4]: functional networks are thought to be critical substrates for major
neurocognitive and behavioral phenotypes [5], so across-individual differences
in network organizations may predict differences in these phenotypes [4]. The
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eventual goal is to refine phenotypic prediction sufficiently that functional con-
nectomes can serve as reliable, objective “biomarkers” of clinically meaningful
traits and dimensions [6, 7].

Notably, while attempts to utilize functional connectomes for prediction of
individual differences are numerous [6, 8], attempts to descriptively assess the
nature, kind, and extent of population-wide inter-individual functional connec-
tomic variation remain scarce [9, 10]. One important open question concerns
the dimensionality of inter-individual variation.

In high-dimensional data, there is often substantial dependency in the fea-
ture set, and it is often useful for a wide of variety of purposes—computation,
interpretation, explanation, and prediction—to identify low rank structure in
the data, i.e., major units that explain a substantial portion of the variation.
Over the last 15 years, there has been extensive work in detecting low rank
structure in intra-individual across-time variation in the connectome, i.e., the
tendency of distributed brain regions to exhibit coherent fluctuations in their
BOLD time series [11, 12, 13]. This work has culminated in the identification
of a small number of intrinsic connectivity networks (ICNs)—e.g., default mode
network (DMN) and fronto-parietal network (FPN)—as “fundamental units”
of intra-individual cross-time variation [2, 3, 14]. These units, in turn, have
played central roles in recent models and explanations of cognitive capacities
and behavioral phenotypes [15, 16, 17].

Importantly, however, there have not been corresponding systematic at-
tempts to identify low rank structure in patterns of inter-individual variation
(but see [18, 19] for limited attempts). This is the question we address in this
study. That is, analogous to the intra-individual case, are there major units
of inter-individual variation that explain a sizable portion of cross-individual
connectomic differences, and that can be effectively harnessed for the purposes
of understanding and predicting phenotypes of interest?

In this study, we provide evidence that the answer to this question is yes.
Using convergent methods, we show that a modest number of connectivity com-
ponents, around 50-150, do indeed capture a sizable share of inter-individual
differences, and they together constitute a highly effective basis set for pheno-
typic prediction. Thus, while the resting state connectome is a massive and
complex object encompassing tens to hundreds of thousands of connections (de-
pending on the parcellation), differences in a fairly small set of fundamental
units explain a sizable portion of how any two individuals meaningfully differ.

2 Methods

2.1 Data Acquisition

All data were from the HCP-1200 release [20]. Four runs of resting state
fMRI data (14.5 minutes each; two runs per day over two days) were acquired
on a modified Siemans Skyra 3T scanner using multiband gradient-echo EPI
(TR=720ms, TE=33ms, flip angle=52, multiband acceleration factor=8, 2mm
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isotropic voxels, FOV=208x180mm, 72 slices, alternating RL/LR phase en-
code direction). T1 weighted scans were acquired with 3D MPRAGE sequence
(TR=2400ms, TE=2.14ms, TI=1000ms, flip angle=8, 0.7mm isotropic voxels,
FOV=224mm, 256 sagittal slices). T2 weighted scans were acquired with a
Siemens SPACE sequence (TR=3200ms, TE=565ms, 0.7mm isotropic voxels,
FOV=224mm, 256 sagittal slices).

Subjects were eligible to be included if they had structural T1 and T2 data
and had 4 complete resting state fMRI runs (1206 subjects total in release files,
1003 with full resting state and structural).

2.2 Data Preprocessing

Processed volumetric data from the HCP minimal preprocessing pipeline includ-
ing ICA-FIX denoising were used. Full details of these steps can be found in [21]
and [22]. Briefly, T1w and T2w data were corrected for gradient-nonlinearity
and readout distortions, inhomogeneity corrected, and registered linearly and
non-linearly to MNI space using FSL’s FLIRT and FNIRT. blood oxygen level
dependent (BOLD) resting state fMRI data were also gradient-nonlinearity dis-
tortion corrected, rigidly realigned to adjust for motion, fieldmap corrected,
aligned to the structural images, and then registered to MNI space with the
nonlinear warping calculated from the structural images. Then FIX was ap-
plied on the data to identify and remove motion and other artifacts in the
time series. These files were used as a baseline for further processing and anal-
ysis (e.g. MNINonLinear/Results/rfMRI_REST1_RL/rfMRI_REST1_RL_hp2000_
clean.nii.gz from released HCP data).

Images were smoothed with a 6mm FWHM Gaussian kernel, and then re-
sampled to 3mm isotropic resolution. This step as well as the use of the volu-
metric data, rather than the surface data, were done to allow comparability with
other large datasets in ongoing and planned analyses that are not amenable to
surface-based processing.

The smoothed images then went through a number of resting state processing
steps, including motion artifact removal steps comparable to the type B (i.e.,
recommended) stream of Siegel et al. [23]. These steps include linear detrending,
CompCor to extract and regress out the top 5 principal components of white
matter and CSF [24], bandpass filtering from 0.1-0.01Hz, and motion scrubbing
of frames that exceed a framewise displacement of 0.5mm. Subjects with more
than 10% of frames censored were excluded from further analysis, leaving 966
subjects. A resting state quality control plot [25] relating motion effects by edge
length showed a near zero mean (0.006), low dispersion around the mean (sd
0.06) and absence of a meaningful distance-dependent relationship.

2.3 Connectome Generation

We next calculated spatially-averaged time series for each of 264 4.24mm radius
ROIs from the parcellation of Power et al. [14]. We then calculated Pearson’s
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correlation coefficients between each ROI. These were then were transformed
using Fisher’s r to z-transformation.

2.4 Train/Test/Retest Split

The 966 subjects after exclusions were divided into three groups. First, 38
subjects who had two separate completed scans were pulled aside for later test-
retest reliability analysis. Of the remaining subjects, 18 did not have complete
behavioral data for our analyses so were excluded. Next, 100 unrelated subjects
were randomly selected from all unrelated subjects to serve as our held-out test
set, with the other 810 serving as our training set.

2.5 Estimation of Intrinsic Dimensionality

In the training dataset, each subject’s connectome was vectorized and concate-
nated yielding an 810 subjects x 34,716 connections matrix. We estimated the
number of intrinsic dimensions of this matrix using two methods.

First, we used a maximum likelihood estimation method based on distance
between close neighbors [26], appropriate for low-dimensional data that is em-
bedded in a high-dimensional space in a complicated, potentially non-linear,
fashion. Levina and Bickel [26] provides a full derivation of the estimator using
a Poisson approximation and demonstrates improved performance relative to
alternatives in simulated and real data. The method averages over a range of
values of k, the number of nearest neighbors, from k1 to k2. We used the default
values k1 = 10 to k2 = 20 suggested by the original analysis.

Second, we used the method of Choi et al. [27], which attempts to calculate
an upper bound on the on the number of dimensions with exact type 1 error
control. This is a distribution-based method that leverages a post-selection
inference framework, and extends the work of Taylor, Loftus, and Tibshirani
[28] to the PCA setting.

To visualize the presence of low rank structure, we ordered the components
by eigenvalue (i.e., percent variance explained), and plotted these eigenvalues.
Next, we constructed a null distribution of eigenvalues by permutation methods.
Specifically, we permuted columns of the data matrix separately for each subject.
We plotted the permutation mean and 95% confidence interval for the null
distribution.

2.6 Principal Component Analysis

The subjects x connections matrix from the training dataset was next submitted
to principal components analysis using the pca function in MATLAB, yielding
809 components ordered by descending eigenvalues.
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2.7 Assessing Out-of-Sample Reconstruction

We examined the ability of an n-sized basis set (consisting of the first n PCA
components ordered by descending eigenvalues), to reconstruct out-of-sample
data, systematically varying the size of n. First, a full set of 809 PCA compo-
nents were learned on the training dataset. Next, for each value of n from 1 to
809, we did the following: Using multiple regression, each subject in the test
dataset was reconstructed as linear combination of the components of a n-sized
basis set. Goodness of reconstruction was measured by calculating the Pear-
son’s correlation across edges between actual versus reconstructed connectomes
for each subject and averaging across subjects.

2.8 Assessing Phenotypic Prediction

2.8.1 HCP Phenotypic Measures

We used a total of 11 phenotypes from the HCP data. Factor analysis, imple-
mented in SPSS 23, was used to produce two neuropsychological factors. First,
a general executive factor was created based on overall accuracy for three tasks:
n-back working memory task, relational processing task, and Penn Progressive
Matrices task. Factor loadings were 0.81, 0.80, and 0.76 respectively, and the
factor accounted for 62.2% of the variance in the variables. A speed of process-
ing variable was created based on three NIH toolbox tasks: processing speed,
flanker task, and card sort task (all age-adjusted performance), similar to Car-
lozzi et al. [29]. Of note, for subjects with accuracy above 80% (which is nearly
everyone in this sample), performance scoring on the latter two tasks is based
exclusively on reaction time. This variable had loadings of 0.75, 0.81, and 0.82
respectively, and the factor accounted for 63.0% of the variance in the variables.
From the Adult Self Report (ASR) instrument [30], we used three scale-derived
summary scores for psychopathology: overall internalizing, overall externalizing,
and attention. In addition, from the Neuroticism/Extroversion/Openness Five
Factor Inventory instrument [31], we used the five personality factors: openness
to experience, conscientiousness, extroversion, agreeableness, and neuroticism.
Finally, we used the Penn Progressive Matrices task by itself as it has been
featured in other connectome-based prediction studies of HCP data [32, 33].

In an additional analysis, we used multiple regression to remove a number
of potential confounds from each of the 11 phenotypic variables. Variables
regressed from the phenotypes were: age, age2, mean FD, mean FD2, gender,
brain size (S BrainSeg Vol), brain size2, and multiband reconstruction algorithm
version number (fMRI 3T ReconVrs). Analyses involving phenotypic prediction
(2.8.3 and 2.8.4) were then repeated with the confound-cleansed phenotypes.
Results were broadly similar to the original analyses, and are presented in the
Supplement.
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2.8.2 Brain Basis Set Modeling

To generate predictions of phenotypes from a basis set consisting of n com-
ponents, we used Brain Basis Set (BBS) modeling, similar to the approach
introduced in [18]. In a training dataset, we calculate the expression scores for
each of the n components for each subject. We then fit a linear regression model
with these expression scores as predictors and the phenotype of interest as the
outcome, saving B, the n x 1 vector of fitted coefficients for later use. In a
test dataset, we again calculate the expression scores for each of the n compo-
nents for each subject. Our predicted phenotype for each test subject is the dot
product of B learned from the training dataset with the vector of component
expression scores for that subject.

2.8.3 10-fold cross-validation procedure

We assessed prediction of HCP phenotypes as a function of number of compo-
nents in the predictive basis set, in order to identify the presence of plateaus
where adding components does not enhance predictive accuracy. This analysis
was performed using a 10-fold cross-validation procedure within the training
dataset split described above (to preserve the test dataset for additional anal-
yses described below). On each of the ten folds, we used the training partition
to learn new PCA components and then fit beta coefficients for BBS modeling.
We then made predictions for the phenotypes in the held-out test partition.
The correlations between actual phenotype and predicted phenotype were then
averaged across the ten folds.

2.8.4 Comparison with CPM

To further assess the effectiveness of a low rank basis set for capturing pheno-
typic differences in the HCP dataset, we compared the accuracy of phenotypic
predictions derived from the 100 component basis set (coupled with BBS mod-
eling) with predictions derived from an alternative leading method: connectome
predictive modeling (CPM) [4], which has achieved excellent results in a number
of studies using diverse phenotypes [34, 32, 35]. In brief, CPM is first trained
with every edge of the connectome to identify edges that are predictive of the
phenotype of interest above some prespecified level (e.g., Pearson’s correlation
with significance of p < 0.01). The sum of weights for these specified edges is
then calculated for each test subject, and these sums serve as “predicted scores”
that are correlated with the actual phenotypic scores. CPM treats positively
and negatively predictive edges differently, and we focus on the positive edges
in the main article, and present results for negative edges in the Supplement.

2.9 Density of Parcellation Analysis

To assess the robustness of the analysis to parcellations of systematically vary-
ing densities, we used the set of parcellations created by Craddock et al. [36].
These parcellations (available here) were produced with a spatially constrained

6

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2018. ; https://doi.org/10.1101/326082doi: bioRxiv preprint 

http://ccraddock.github.io/cluster_roi/atlases.html
https://doi.org/10.1101/326082
http://creativecommons.org/licenses/by/4.0/


spectral clustering approach that, for preset values of K, produces approxi-
mately K functionally and spatially coherent regions. We utilized parcellations
with K ranging from 100-900 in intervals of 100. For each parcellation, we re-
peated steps 3 through 8 of the above analysis in order to assess whether our
three methods for identifying low rank structure (assessment of: intrinsic di-
mensionality, out-of-sample reconstruction, and phenotypic prediction) differed
according to parcellation density. Of note, our implementation of the method
of Choi et al. did not converge for larger parcellations (K > 500) and so we
focus on the the method of Levina and Bickel for this analysis.

2.10 Assessing Community Structure

2.11 Stochastic Block Model

For all 809 components, we assessed the presence of community structure cor-
responding to ICNs from the parcellation of Power et al. [14] using a non-
parametric testing procedure based on random permutations of the data. For
each of the 809 components, we first fix node community assignments according
to the Power parcellation [14], and then estimate the parameters of a stochastic
block model (SBM [37]) with these fixed community assignments. We replace
the Bernoulli distribution assumption on binary edges made by the classical
SBM with a normal distribution assumption on edge weights, since we work
with Fisher-transformed correlations as edge weights. Once these parameters
are estimated, we summarize the fit with the profile log-likelihood statistic.
Then we permute node labels many times, keeping the total number of nodes in
each of the communities fixed, and obtain a profile likelihood value from each of
these fits corresponding to permuted node labels. We then obtained a p-value
by comparing the profile likelihood for the Power parcellation to the empirical
null distribution of profile likelihoods. Finally, the p-values for the 809 compo-
nents were adjusted for multiple comparisons using Bonferroni’s correction, to
control the Family-Wise Error Rate at α = 0.05. A more detailed description
of this procedure is provided in Appendix A.

2.12 Test/Retest Reliability

Test-retest reliability was assessed in 38 subjects in the HCP test-retest dataset.
Reliability was assessed with intra-class correlation (ICC) statistic, specifically
type (2,1) according to the scheme of Shrout and Fleiss [38]. For each subject,
ICC’s were calculated for each individual edge as well as for expression scores
for each component in the 100-member basis set. Since aggregating edges can
itself improve ICC, we also examined ICC’s for “random” aggregations of edges
created by permuting the edges of each of the 100 components. For each compo-
nent, 1000 randomly permuted components were created in this way, and ICC’s
for the expressions of these components were calculated.
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3 Results

3.1 There is convergent evidence for substantial low rank
structure in cross-individual connectomic variation based
on three different methods.

3.1.1 Method 1: Assessing Intrinsic dimensionality

Figure 1 shows the percent variance explained (i.e., eigenvalues) for all 809
components (in blue). Also plotted is mean eigenvalues for 1000 realizations of
random data created through permutation methods (in red). This plot provides
initial suggestive evidence of significant low rank stricture in the data, indicated
by the substantially elevated variance explained by early components derived
from observed connectomes relative to what components derived from random
data.

We next turned to quantitative dimensionality estimation procedures. Ap-
plying the maximum likelihood method from Levina and Bickel [26] yielded an
estimated dimensionality of 62. Applying the dimensionality estimation method
of Choi et al. [27] found an upper bound of 147 components with α set at 0.05.
Importantly, these two results should be seen as complementary and not nec-
essarily in tension, as the Levina and Bickel method attempts to arrive at the
number of components that is most likely given the data, while the Choi et
al. method attempts to provide an upper bound on the number of components,
with statistical control over type 1 errors. Taken together, these methods pro-
vide strong initial evidence for substantial low rank structure in cross-individual
connectomic variation. In addition, they suggest a plausible range for the num-
ber of true dimensions in the data as being somewhere between 50 and 150.

3.1.2 Method 2: Assessing out of sample reconstruction

A second method for detecting and quantifying low rank structure relies on
examining the ability of the PCA components to accurately reconstruct con-
nectomes from an independent test sample, i.e., a sample that was not used to
generate the components. Figure 2 shows the Pearson’s correlations between
actual test sample connectomes and connectomes reconstructed with a PCA-
derived basis set, as a function of the number of components in the basis set.
Using all 809 components in the basis set, this correlation was 0.68, and this
represents the ceiling correlation that is achievable. With 50, 100, and 150
components, the correlation is 0.47, 0.53, 0.57, respectively. This represents,
respectively, 69%, 78%, and 84% of ceiling, and it provides additional evidence
that a low rank representation captures a sizable portion of the generalizable
variance in the data.

8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2018. ; https://doi.org/10.1101/326082doi: bioRxiv preprint 

https://doi.org/10.1101/326082
http://creativecommons.org/licenses/by/4.0/


3.1.3 Method 3: Assessing predictive accuracy with respect to a
broad range of HCP phenotypes

An additional means to assess low rank structure consists in examining predic-
tion of criterion variables: If a modest sized basis set captures a large portion of
cross-individual variation, then it ought to predict a broad range of behavioral
and clinical phenotypes (that are plausibly linked to functional connectomic
variation) similarly to the full unreduced dataset.

For each of 11 phenotypes, we used the BBS modeling method to make pre-
dictions of phenotype values for each subject based on connectomic component
expression scores. We applied BBS to the 810 subjects in the train dataset in a
10-fold cross validation procedure (see Methods 2.8.3).

As shown in Figure 3, there is a noticeable plateau at around 50-100 com-
ponents for most of the phenotypes: Adding further components to the basis
set beyond this number does not appreciably increase accuracy of phenotypic
prediction. Table 1 shows the correlations between predicted and actual pheno-
types across three basis set sizes: 50, 100, and 150 components. All three basis
sets perform similarly, though there is a slight advantage for the 100-component
basis set, especially with regard to the processing speed factor.

To further assess the performance of a modest sized basis set in predicting
phenotypes of interest, we compared performance with CPM, a leading alterna-
tive method for phenotypic prediction that is trained on the whole connectome
[4]. Since the 100-component basis set performed slightly better than the others
in cross-validation within the training dataset, we focused on this basis set for
comparison with CPM in the held out test set.

For each of the 11 phenotypes, we trained both methods in the training
dataset and tested accuracy of phenotypic prediction in the held out test dataset.
Results showed that performance of BBS was comparable to or better than
CPM on all 11 phenotypes (comparable to CPM on 8 phenotypes and better
than CPM on the other 3 phenotypes; Table 1).

3.1.4 Role of parcellation density

We next examined the robustness of the preceding three analyses to parcellations
of varying densities. We used Craddock and colleagues’ parcellations [36] derived
from a spectral clustering algorithm with K, the prespecified number of parcels,
set from 100 to 900 in increments of 100. While there were some differences
observed with the most sparse parcellation (K=100), for all analyses in which
K exceeded 200, the results were highly stable and broadly similar to what we
observed with the Power parcellation with 264 ROIs (Figure 4).

3.2 Network structure of the fundamental units of cross-
individual differences

We next turn to characterizing connectivity patterns in the components them-
selves. Figure 5, panels A through C, shows the first three components with

9

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2018. ; https://doi.org/10.1101/326082doi: bioRxiv preprint 

https://doi.org/10.1101/326082
http://creativecommons.org/licenses/by/4.0/


Phenotype BBS CPM
General Executive 0.44 0.42
Processing Speed 0.39* 0.23

Penn Progressive Matrices 0.30 0.32
ASR Externalizing 0.24* 0.03
ASR Internalizing 0.20 0.04

ASR Attention 0.15* 0.00
NEO Openness 0.18 0.11

NEO-Conscientiousness 0.19 0.15
NEO-Extroversion 0.13 0.04

NEO-Agreeableness 0.19 0.10
NEO-Neuroticism 0.00 0.05

Table 1: Pearson’s correlations between actual and predicted phenotypes for
two different predictive modeling approaches. BBS = Brain Basis Set modeling
(with 100 component basis set); CPM = Connectome Predictive Modeling [4].
* = statistically significant difference at p < 0.05.

nodes organized by membership in ICN communities (e.g., DMN, FPN, etc.)
according the node assignments of Power et al. [14]. Qualitatively, these com-
ponents appear to exhibit prominent ICN structure: the lines on these figures,
which represent boundaries of ICN-ICN interrelationships, appear to be highly
informative for characterizing connectivity patterns in the components.

To quantitatively assess the presence of ICN-based community structure in
these components, we utilized an SBM-based method as described in Methods
(see 2.10) coupled with permutation tests for statistical significance. We found
that for all 809 components, the observed components’ connectivity patterns
are highly statistically significantly more likely under Power ICN community
assignments than alternative randomly shuffled assignments (permutation-based
p-values for all components survive Bonferroni correction for 809 tests with α =
0.05). Additionally, as a descriptive follow up to quantify the extent of network
structure in the components, we investigated how, for each component, the
profile log-likelihood corresponding to the Power et al. parcellation [14] differed
from the median profile log-likelihood across the permutations (see Figure 6.
This analysis suggests that while ICN structure is significantly present in all
components, such structure is most prominent in early components and plateaus
substantially around component 100 to 200.

Given evidence of prominent network structure in the components, espe-
cially of earlier components, we sought to further characterize their patterns
of network interrelationships. Figure 7 shows network-to-network relationships
for the first 100 components. Visual network, DMN, and FPN are especially
prominent.
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3.3 Test-retest reliability

The preceding analyses suggest that a modest sized basis set is sufficient to
quantify cross-individual variation across the entire connectome, especially the
meaningful (i.e., phenotypically predictive) aspects of this variation. A fur-
ther question concerns the stability of the basis set—or more specifically, each
subject’s component expression scores—across scanning sessions.

To address this question, we examined the intra-class correlation (ICC) of
component expression scores in the 38 HCP test-retest subjects. Components
were generated in the full train dataset and assessed across the two scanning ses-
sions of the test-retest dataset, which was not used to generate the components.
The mean ICC for individual edges is 0.54, similar to values seen in previ-
ous studies [39]. In contrast, the ICC for the components of cross-individual
variation are notably higher. Focusing on the 100-component basis set, which
performed well in phenotypic prediction, the mean ICC is 0.78.

Some of this improvement might be due to chance, as aggregates tend to
be more stable than the elements that are aggregated. To test this possibility,
we calculated the mean ICC for random permutations of these 100 components
(1000 permutations of each component). Mean ICC for permuted components
was 0.65, so the boost in ICC seen in the actually observed 100 components
is substantially over and above what can be explained by simply aggregating
random collections of edges.

4 Discussion

In resting state fMRI, the presence of low rank structure in intra-individual
variation is well known: a small set of fundamental units—ICNs such as DMN
and FPN—account for a sizable portion of variation in the BOLD signal across
time within a scanning session. In this study, we extend the search for useful
low rank structure to inter-individual connectomic variation. We found con-
vergent evidence that a modest number of fundamental units, roughly 50-150,
capture a sizable share of how the resting state functional connectomes of any
two healthy adults differ. Moreover, we found these components exhibit high
levels of network community structure (aiding interpretability) and they have
very good test-retest reliability. We propose that the fundamental connectivity
units identified in this study form an effective basis set for quantifying and inter-
preting systematic inter-individual connectomic differences, and for predicting
behavioral and clinical phenotypes.

The fundamental units of inter-individual variation reflect ICN struc-
ture A remarkable feature of the connectomic components that emerged in
this study is that they strongly reflect ICN structure. ICN boundaries are de-
termined from a strictly intra-individual phenomenon: coherence of the resting
state BOLD time series across regions within a person during a scanning session
[40, 14, 3]. There is no necessity that ICNs should be implicated in across-
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individual differences in functional connectomes; the set of edges that make
individuals different could just have easily have crossed ICN boundaries freely.
That is not what we found, however, based both on qualitative observation as
well as quantitative assessment.

The finding that there is extensive ICN structure in these components jointly
helps to illuminate two issues. First, it helps to explain why we were successful in
finding low rank structure in the first place. Second, it potentially illuminates
the mechanisms by which the inter-individual differences we observed arose.
Both of these points warrant elaboration.

There is growing understanding of the maturational trajectories of large-
scale ICNs and principles by which they take shape. Resting state imaging
studies in infants suggest at least some important ICNs are in a highly immature
state in the fetal and infant brain with weak intra-network connectivity and low
levels of network separation [41, 42, 43]. Over the course of childhood to early
adolescence, massive changes occur: integration of connections within ICNs
[44, 45], segregation of DMN from attention/control networks [46, 47, 18], and
cross-modal linkages in which structural connections co-develop with functional
connections [48].

The overall picture, then, involves highly complex and choreographed de-
velopmental processes that shape large populations of interconnections between
ICNs. Suppose, now, that there are factors, for example, genetic factors or en-
vironmental influences, that modulate these neurodevelopmental ICN-shaping
processes, and these factors operate differently across individuals. For example,
suppose DMN and attention/control network segregation is modulated by some
factor that exhibits a graded level of expression across individuals, and similarly
for the other intra- and inter-ICN changes observed during youth.

A model along these lines in which developmental processes impart cohe-
sive changes to large populations of ICN-to-ICN connections is well suited for
explaining the findings we actually observed. In particular, such a model read-
ily explains why we observed significant low rank structure in inter-individual
variation in connectomes, as such structure necessarily exists if individuals sys-
tematically differ at large aggregates of connections. In addition, the model
explains the patterns we observed in the connectomic components themselves.
These components exhibit extensive ICN structure, which is predicted if the
neurodevelopmental generative processes that produce inter-individual connec-
tomic differences impart aggregate intra-ICN and inter-ICN alterations.

In short, then, we propose that adult inter-individual connectomic varia-
tion—especially the meaningful aspects of this variation that is relevant to ex-
plaining neurocognitive and behavioral phenotypes—importantly reflects the
legacy of individual-differences in ICN development. This hypothesis invites
detailed future investigation, ideally in longitudinal datasets that permit pre-
cise quantification of ICN maturational trajectories as well as adult connectomic
variation.
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Success at Phenotypic Prediction and Test-Retest Reliability The
BBS modeling approach leverages a modest number of units of inter-individual
variation—in this study we focuses on a 100-component basis set. Yet we found
this method predicts HCP phenotypic variables (such as executive functioning,
processing speed, and externalizing) just as well, or in some cases better than,
CPM, an alternative highly successful method that is trained on every edge of
the connectome [4]. The most likely explanation for this result is that system-
atic connectomic differences across individuals really do have substantial low
rank structure. Thus restricting one’s predictor set to a modest number of con-
nectomic components, which is sufficient to capture this structure, yields strong
phenotypic prediction.

An additional complementary explanation emphasizes the issue of signal-to-
noise ratio and test-retest reliability. While the inter-session test-retest relia-
bility of individual edges of the resting state functional connectome has been
found to only fair [39, 49], the connectomic components identified in this study
exhibit substantially better reliabilities. This improvement arises, most likely,
because high eigenvalue components—i.e., components that explain a large por-
tion of inter-individual connectomic variation—are more likely to be latching
onto “real” brain differences, i.e., stable cross-individual differences that gen-
uinely exist in nature. In contrast, connectivity features that explain only a
tiny portion of inter-individual variation have a greater probability of reflecting
noise, which, by definition, lacks test-retest reliability. It follows that restrict-
ing analysis to a modest number of high eigenvalue components can boost the
signal-to-noise ratio of the included predictors, contributing to better prediction
of unseen data (see [50] for a related argument).

Implications for connectomic statistical analysis Our results have broader
implications for methods of statistical analyses of connectomes, especially meth-
ods aimed at predicting phenotypic differences across individuals and between
groups [51, 52]. A persistent challenge in individual differences research has been
the shear size of functional connectomes [53]. This sometimes forces researchers
to choose between focusing on a small set of “connections of interest” or else
undertake a whole connectome statistical search and pay a substantial price in
terms of multiple comparisons correction. Our results suggest that the tradeoffs
need not be so stark. There is a massive amount of dependence among edges
in connectomes across individuals. Thus a basis set with a modest number of
components allows researchers interested in individual differences to undertake
whole-connectome inquiry while dramatically reducing the multiple comparison
cost.

More broadly, there is a pressing need to leverage prior knowledge about the
nature, kind, and extent of inter-individual variation in functional connectomes
to further guide and constrain statistical models in neuroimaging individual dif-
ferences research. Our observation of extensive low rank structure, i.e., a modest
number of components account for a sizable portion of cross-individual differ-
ences, represents one kind of prior knowledge. Our observation of prominent
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ICN structure within these components, discussed earlier, is also highly relevant
in this context. Future studies should leverage this observation, for example
using block structure-based regularization, to inform and constrain statistical
models of inter-individual differences, and thereby increase the chances of robust
out-of-sample generalization.

In sum, this study identified fundamental units in cross-individual differences
in functional connectomes. These fundamental units constitute a highly effective
and interpretable basis set for phenotypic prediction and they open the door to
novel methods for detecting and quantifying individual differences. Our results
invite further research into the neurodevelopmental processes that shape ICNs,
which could help to explain why adult inter-individual connectomic differences
take these characteristic forms.

Note: Supplement will be available soon.
Funding: CS was supported by R01MH107741 and U01DA041106. CS and

LL were supported by a grant from the Dana Foundation David Mahoney Neu-
roimaging Program. LL and YK were supported by NSF grant DMS-1521551.

Figure 1: Percent Variance Explained For Components Derived From Ac-
tual Versus Random Data. For observed components (blue), percent variance
explained of early components is much larger than mean percent variance ex-
plained of components derived from random data (red). This pattern is sugges-
tive of substantial low rank structure in observed connectomes.
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Figure 2: Out of Sample Reconstruction of Connectomes. With 100 components
(dashed line), the correlation between actual and reconstructed connectomes is
0.50. Importantly, this correlation is only 0.68 using all 809 components, so
a basis set consisting of 100 components achieves roughly three fourths of the
“ceiling” correlation that is achievable.
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Figure 3: Phenotype Predictive Accuracy as a Function of Basis Set Size. For
most phenotypes, there is a plateau after 50 to 100 components (dotted line)
after which adding further components to the prediction model basis set does
not appreciably improve performance.
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Figure 4: Assessing Role of Parcellation Density. Three methods for identifying
low rank structure yielded stable results across parcellations of varying density.
Panel A: Estimation of intrinsic dimensionality with the method of Levina and
Bickel [26]. Panel C: Out-of-sample reconstruction. Panels D and E: Predictive
accuracy with respect to 11 HCP phenotypes. All above analyses used a 100-
component basis set, with additional analyses for the 50 and 150 component
basis set in the Supplement).
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Figure 5: Components 1, 2, and 3. The first three components of inter-individual
connectomic variation are displayed, with nodes organized by membership in
13 ICNs according to assignments of Power et al. [14]. The boundaries of
ICNs are determined from a strictly intra-individual phenomenon: coherence
of the BOLD time series within a person across time. It is notable, then,
that inter-individual connectomic differences clearly involve substantial ICN
structure (which we further corroborate utilizing a novel quantitative approach
based on stochastic block modeling). 1=Somatomotor-hand; 2= Somatomo-
tor -faces; 3=Cingulo-opercular; 4=Auditory; 5=Default; 6=Memory retrieval;
7=Visual; 8=Fronto-parietal; 9=Salience; 10=Subcortical; 11=Ventral Atten-
tion; 12=Dorsal Attention; 13=Cerebellum
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Figure 6: Profile log-likelihood of ICN-based community structure in each com-
ponent. This statistic serves to quantify presence of ICN structure in each
component using a stochastic block model (SBM) framework. The red trace is
the profile log-likelihood from the SBM according to the community assignments
given in Power et al. [14]. The blue trace is the median profile log-likelihood
across many shufflings of the community assignments. See Appendix A for de-
tails. ICN structure is most prominent in early (high eigenvalue) components.
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Figure 7: Network Structure of the Connectomic Components. For the first
100 components, altered connectivity patterns are shown using colored squares.
Each square represents altered mean connectivity among connections linking
pairs of networks. 1=Somatomotor-hand; 2= Somatomotor -faces; 3=Cingulo-
opercular; 4=Auditory; 5=Default; 6=Memory retrieval; 7=Visual; 8=Fronto-
parietal; 9=Salience; 10=Subcortical; 11=Ventral Attention; 12=Dorsal Atten-
tion; 13=Cerebellum.
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Appendices

A Details Regarding Assessment of Community
Structure

A.1 The Stochastic Block Model

The SBM [1] is a well-established generative model for networks with commu-
nities. Under the SBM, each of the n nodes is independently assigned to one
of K communities, with probability of assignment to community k given by
πk,

∑K
i=1 πk = 1. Given a realization of the community assignments vector c,

where ci is the community label of node i, the SBM generates edge weights
Aij between nodes i and j independently, from a distribution depending only
on the community labels ci and cj . If the distribution is parameterized by a
parameter θci,cj , the distribution of the entire network is determined by the set
of parameters θkl, k, l = 1, . . . ,K, with θkl = θlk if the network is symmetric, as
it is in our case. In the classical formulation of the SBM, the adjacency matrix
is assumed to be binary, in which case the distribution of Aij is Bernoulli and
θkl = P (Aij = 1|ci = k, cj = l). In our case, because we work with weighted
matrices and the weights are Fisher-transformed correlations, we model the dis-
tribution of Aij as normal, determined by parameters θkl = (µkl, σ

2
kl).

A.2 Calculating profile likelihood under the SBM

In our setting, we have an a priori community membership as given by the
Power et al. parcellation [2]. The log-likelihood of the observed weights for a
given community assignment, c, is given by

logL(θ, π|A) =
K∑

k=1

nk log(πk) +
n∑

i=1

i−1∑
j=1

log f(Aij ; θci,cj ),

=
K∑

k=1

nk log(πk) +
n∑

i=1

i−1∑
j=1

[
−1

2
log(2π)− log σci,cj −

(Aij − µci,cj )2

2σ2
ci,cj

,

]

where nk is the number of nodes in community k, and f(·; θkl) is the probability
density function of N(µkl, σ

2
kl).

Maximizing the likelihood of the SBM over community assignments is an
NP-hard problem, but for a given c, maximizing over π and θ is easy and
there is a closed form solution. Let Skl denote the set of node pairs connecting
community k to community l, Skl = {i < j : ci = k, cj = l}, and let nkl = |Skl|
denote the number of such pairs. Then the maximum likelihood estimates of
parameters for a given c are
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π̂k =
nk
n
,

µ̂kl =
1

nkl

∑
(i,j)∈Skl

Aij ,

σ̂2
kl =

1

nkl

∑
(i,j)∈Skl

(Aij − µ̂kl)
2 ,

the usual MLEs under the normal distribution. Plugging in these values into
the profile likelihood gives the maximized profile likelihood, which we use as the
test statistic.

To carry out the test, we need to compare the value of the observed pro-
file log-likelihood, l̂, to the distribution of profile log-likelihoods under the null
hypothesis of no community structure in the data. We obtain this distribution
empirically, shuffling the labels of the given parcellation c randomly and recom-
puting the profile log-likelihood in the same way, m = 20,000 times in total,
to obtain the values lj , j = 1, . . . ,m. Finally, we estimated empirically the
probability that a profile log-likelihood L sampled from this null distribution
will exceed l̂, as

P (L ≥ l̂) = max

(
1

m
,

1

m

m∑
i=1

I(li ≥ l̂)

)
,

where I is the indicator function.
Note that permutation of the labels does not change the number of nodes in

each community, so the terms involving π̂k’s can omitted.
This procedure is repeated for each of the 809 components of interest, and

the resulting 809 p-values are Bonferroni-corrected for multiple comparisons.
The number of permutations was selected such that it would be mathematically
possible to achieve Bonferroni-corrected significance at α = .05.

In addition, for each component we retained both the profile log-likelihood
under the Power et al. parcellation [2] and the median profile log-likelihood
across the m shufflings, and plotted these as a function of the component number
(see Figure 6. Because of the use of logs, the ratio of likelihoods is proportional
to the difference of log-likelihoods, and one may descriptively interpret the “gap”
between the two traces as some indication of the magnitude of the divergence
from the null.
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