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Summary	
	
Resting	state	functional	connectomes	are	massive	and	complex.	It	is	an	open	
question,	however,	whether	connectomes	differ	across	individuals	in	a	
correspondingly	massive	number	of	ways,	or	whether	most	differences	take	a	small	
number	of	characteristic	forms.	We	systematically	investigated	this	question	and	
found	clear	evidence	of	low-rank	structure	in	which	a	modest	number	of	
connectomic	components,	around	50-150,	account	for	a	sizable	portion	of	inter-
individual	connectomic	variation.	This	number	was	convergently	arrived	at	with	
multiple	methods	including	estimation	of	intrinsic	dimensionality	and	assessment	of	
reconstruction	of	out-of-sample	data.	We	demonstrate	that	these	connectomic	
components	enable	prediction	of	a	broad	array	of	neurocognitive	and	clinical	
variables.	In	addition,	using	stochastic	block	modeling-based	methods,	we	show	
these	components	exhibit	extensive	community	structure	reflecting	
interrelationships	between	intrinsic	connectivity	networks.	We	propose	that	these	
connectivity	components	form	an	effective	basis	set	for	quantifying	and	interpreting	
inter-individual	connectomic	differences,	and	for	predicting	behavioral/clinical	
phenotypes.		
	
	

1.	 Introduction	
	
Resting	state	functional	connectomics	has	emerged	as	a	leading	method	for	mapping	
the	organization	of	human	brain	networks	(Biswal	et	al.,	2010;	Van	Dijk	et	al.,	2010;	
Buckner,	Krienen	and	Yeo,	2013;	Lee,	Smyser	and	Shimony,	2013;	Smith	et	al.,	
2013).	In	addition,	it	presents	a	major	opportunity	for	elucidation	of	the	brain	basis	
of	individual	differences	(Barch,	2013;	Castellanos	et	al.,	2013;	Matthews	and	
Hampshire,	2016;	Menon,	2011):	functional	networks	are	thought	to	be	critical	
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substrates	for	major	neurocognitive	and	behavioral	phenotypes	(Laird	et	al.,	2011;	
Bressler	and	Menon,	2010;	Mattar	et	al.,	2015),	so	across-individual	differences	in	
network	organizations	may	predict	differences	in	these	phenotypes	(Kelly	et	al.,	
2012;	Dubois	and	Adolphs,	2016).	The	eventual	goal	is	to	refine	phenotypic	
prediction	sufficiently	that	functional	connectomes	can	serve	as	reliable,	objective	
“biomarkers”	of	clinically	meaningful	traits	and	dimensions	(Castellanos	et	al.,	2013;	
Kaiser,	2013;	Woo	et	al.,	2017;	Bassett,	Xia	and	Satterthwaite,	2018;	Satterthwaite,	
Xia	and	Bassett,	2018).		
	
Notably,	while	attempts	to	utilize	functional	connectomes	for	prediction	of	
individual	differences	are	numerous	(Kelly	et	al.,	2012;	Dubois	and	Adolphs,	2016),	
attempts	to	descriptively	assess	the	nature,	kind,	and	extent	of	population-wide	
inter-individual	functional	connectomic	variation	remain	scarce,	c.f.,	Mueller	et	al.,	
2013;	Gordon	et	al.,	2017.	One	important	open	question	concerns	the	
dimensionality	of	inter-individual	variation.		
	
In	high	dimensional	data,	there	is	often	substantial	dependency	in	the	feature	set,	
and	it	is	often	useful	for	a	wide	of	variety	of	purposes—computation,	interpretation,	
explanation,	and	prediction—to	identify	low-rank	structure	in	the	data,	i.e.,	major	
components	that	explain	a	substantial	portion	of	the	variation.	Over	the	last	15	
years,	there	has	been	extensive	work	in	detecting	low-rank	structure	in	intra-
individual	across-time	variation	in	the	connectome,	i.e.,	the	tendency	of	distributed	
brain	regions	to	exhibit	coherent	fluctuations	in	their	BOLD	time	series	(Greicius	et	
al.,	2004;	van	de	Ven	et	al.,	2004;	Beckmann	et	al.,	2005).	This	work	has	culminated	
in	the	identification	of	a	small	number	of	intrinsic	connectivity	networks	(ICNs)	as	
major	components	of	intra-individual	cross-time	variation	(Power	et	al.,	2011;	Yeo	
et	al.,	2011;	Buckner,	Krienen	and	Yeo,	2013).	These	networks,	in	turn,	have	played	
central	roles	in	recent	models	and	explanations	of	cognitive	capacities	and	
behavioral	phenotypes	(Bressler	and	Menon,	2010;	Laird	et	al.,	2011;	Menon,	2011;	
Barch,	2013;	Cole	et	al.,	2013;	Mattar	et	al.,	2015).		
	
Importantly,	however,	there	have	not	been	corresponding	systematic	attempts	to	
identify	low-rank	structure	in	patterns	of	inter-individual	variation	(but	see	Kessler	
et	al.,	2014;	Kessler,	Angstadt	and	Sripada,	2016;	Amico	et	al.,	2017	for	limited	
attempts).	This	is	the	question	we	address	in	this	study.	That	is,	analogous	to	the	
intra-individual	case,	are	there	major	components	of	inter-individual	variation	that	
explain	a	sizable	portion	of	cross-individual	connectomic	differences,	and	that	can	
be	effectively	harnessed	for	the	purposes	of	understanding	and	predicting	
phenotypes	of	interest?	
	
In	this	study,	we	provide	evidence	that	the	answer	to	this	question	is	yes.	Using	
convergent	methods,	we	show	that	a	modest	number	of	connectivity	components,	
around	50-150,	do	indeed	capture	a	sizable	share	of	inter-individual	differences,	
and	they	together	constitute	a	highly	effective	basis	set	for	phenotypic	prediction.	
Thus,	while	the	resting	state	connectome	is	a	massive	and	complex	object	
encompassing	tens	to	hundreds	of	thousands	of	connections	(depending	on	the	
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parcellation),	differences	in	a	fairly	small	set	of	components	explain	a	sizable	
portion	of	how	any	two	individuals	meaningfully	differ.	
	

2.	 Methods	
	
2.1	 Subjects	and	Data	Acquisition	
All	subjects	and	data	were	from	the	HCP-1200	release	(Van	Essen	et	al.,	2013;	WU-
Minn	HCP,	2017).	All	subjects	provided	informed	consent.	Subject	recruitment	
procedures	and	informed	consent	forms,	including	consent	to	share	de-identified	
data,	were	approved	by	the	Washington	University	institutional	review	board.	Four	
runs	of	resting	state	fMRI	data	(14.5	minutes	each;	two	runs	per	day	over	two	days)	
were	acquired	on	a	modified	Siemans	Skyra	3T	scanner	using	multiband	gradient-
echo	EPI	(TR=720ms,	TE=33ms,	flip	angle	=	52°, multiband	acceleration	factor	=	8,	
2mm	isotropic	voxels,	FOV	=	208x180mm,	72	slices,	alternating	RL/LR	phase	
encode	direction).		T1	weighted	scans	were	acquired	with	3D	MPRAGE	sequence	
(TR=2400ms,	TE=2.14ms,	TI=1000ms,	flip	angle	=	8,	0.7mm	isotropic	voxels,	
FOV=224mm,	256	sagittal	slices).	T2	weighted	scans	were	acquired	with	a	Siemens	
SPACE	sequence	(TR=3200ms,	TE=565ms,	0.7mm	isotropic	voxels,	FOV=224mm,	
256	sagittal	slices).		
	
Subjects	were	eligible	to	be	included	if	they	had	structural	T1	and	T2	data	and	had	4	
complete	resting	state	fMRI	runs	(14m	30s	each;	1206	subjects	total	in	release	files,	
1003	with	full	resting	state	and	structural).	
	
2.2	 Data	Preprocessing	
Processed	volumetric	data	from	the	HCP	minimal	preprocessing	pipeline	including	
ICA-FIX	denoising	were	used.	Full	details	of	these	steps	can	be	found	in	Glasser	
(2013)	and	Salimi-Korshidi	(2014).	Briefly,	T1w	and	T2w	data	were	corrected	for	
gradient-nonlinearity	and	readout	distortions,	inhomogeneity	corrected,	and	
registered	linearly	and	non-linearly	to	MNI	space	using	FSL’s	FLIRT	and	FNIRT.	
BOLD	rfMRI	data	were	also	gradient-nonlinearity	distortion	corrected,	rigidly	
realigned	to	adjust	for	motion,	fieldmap	corrected,	aligned	to	the	structural	images,	
and	then	registered	to	MNI	space	with	the	nonlinear	warping	calculated	from	the	
structural	images.	Then	FIX	was	applied	on	the	data	to	identify	and	remove	motion	
and	other	artifacts	in	the	timeseries.	These	files	were	used	as	a	baseline	for	further	
processing	and	analysis	(e.g.	
MNINonLinear/Results/rfMRI_REST1_RL/rfMRI_REST1_RL_hp2000_clean.nii.gz	
from	released	HCP	data).	
	
Images	were	smoothed	with	a	6mm	FWHM	Gaussian	kernel,	and	then	resampled	to	
3mm	isotropic	resolution.	This	step	as	well	as	the	use	of	the	volumetric	data,	rather	
than	the	surface	data,	were	done	to	allow	comparability	with	other	large	datasets	in	
ongoing	and	planned	analyses	that	are	not	amenable	to	surface-based	processing.	
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The	smoothed	images	then	went	through	a	number	of	resting	state	processing	steps,	
including	a	motion	artifact	removal	steps	comparable	to	the	type	B	(i.e.,	
recommended)	stream	of	Siegel	et	al.	(2017).	These	steps	include	linear	detrending,	
CompCor	to	extract	and	regress	out	the	top	5	principal	components	of	white	matter	
and	CSF	(Behzadi	et	al.,	2007),	bandpass	filtering	from	0.1-0.01Hz,	and	motion	
scrubbing	of	frames	that	exceed	a	framewise	displacement	of	0.5mm.	Subjects	with	
more	than	10%	of	frames	censored	were	excluded	from	further	analysis,	leaving	
966	subjects.	A	resting	state	quality	control	plot	(Power	et	al.,	2014)	relating	motion	
effects	by	edge	length	showed	a	near	zero	mean	(0.006),	low	dispersion	around	the	
mean	(sd	0.06)	and	absence	of	a	meaningful	distance-dependent	relationship.	
	
2.3	 Connectome	Generation	
We	next	calculated	spatially-averaged	time	series	for	each	of	264	4.24mm	radius	
ROIs	from	the	parcellation	of	Power	et	al.	(Power	et	al.,	2011).	We	then	calculated	
Pearson’s	correlation	coefficients	between	each	ROI.	These	were	then	were	
transformed	using	Fisher’s	r	to	z-transformation.		
	
2.4	 Train/Test/Retest	Split	
The	966	subjects	after	exclusions	were	divided	into	three	groups.	First,	38	subjects	
who	had	two	separate	completed	scans	were	pulled	aside	for	later	test-retest	
reliability	analysis.	Of	the	remaining	subjects,	18	did	not	have	complete	behavioral	
data	for	our	analyses	so	were	excluded.	Next,	100	unrelated	subjects	were	randomly	
selected	from	all	unrelated	subjects	to	serve	as	our	held	out	test	set,	with	the	other	
810	serving	as	our	training	set.	
	
2.5	 Estimation	of	Intrinsic	Dimensionality	
In	the	training	dataset,	each	subject’s	connectome	was	vectorized	and	concatenated	
yielding	an	810	subjects	x	34,716	connections	matrix.	We	estimated	the	number	of	
intrinsic	dimensions	of	this	matrix	using	two	methods.	

First,	we	used	a	maximum	likelihood	estimation	method	based	on	distance	between	
close	neighbors	(Levina	and	Bickel,	2004),	appropriate	for	low-dimensional	data	
that	is	embedded	in	a	high-dimensional	space	in	a	complicated,	potentially	non-
linear,	fashion.	Levina	and	Bickel	(2004)	provides	a	full	derivation	of	the	estimator	
using	a	Poisson	approximation	and	demonstrates	improved	performance	relative	to	
alternatives	in	simulated	and	real	data.	The	method	averages	over	a	range	of	values	
of	k,	the	number	of	nearest	neighbors,	from	k1		to	k2.	We	used	the	default	values	k1		
=	10	to	k2	=	20	suggested	by	the	original	analysis.		

Second,	we	used	the	method	of	Choi	et	al.	(2017),	which	attempts	to	calculate	an	
upper	bound	on	the	on	the	number	of	dimensions	with	exact	type	1	error	control.	
This	is	a	distribution-based	method	that	leverages	a	post-selection	inference	
framework,	and	extends	the	work	of	Taylor,	Loftus,	and	Tibshirani	(2016)	to	the	
PCA	setting.		
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To	visualize	the	presence	of	low-rank	structure,	we	ordered	the	components	by	
eigenvalue	(i.e.,	percent	variance	explained),	and	plotted	these	eigenvalues.	Next	we	
constructed	a	null	distribution	of	eigenvalues	by	permutation	methods.	Specifically,	
we	permuted	columns	of	the	data	matrix	separately	for	each	subject.	We	plotted	the	
permutation	mean	and	95%	confidence	interval	for	the	null	distribution.		

2.6	 Principal	Component	Analysis	
The	subjects	x	connections	matrix	from	the	training	dataset	was	next	submitted	to	
principal	components	analysis	using	the	pca	function	in	MATLAB,	yielding	809	
components	ordered	by	descending	eigenvalues..	
	
2.7	 Assessing	Out-of-Sample	Reconstruction	
We	examined	the	ability	of	an	n-sized	basis	set	(consisting	of	the	first	n	PCA	
components	ordered	by	descending	eigenvalues),	to	reconstruct	out-of-sample	data,	
systematically	varying	the	size	of	n.	First,	a	full	set	of	809	PCA	components	were	
learned	on	the	training	dataset.	Next,	for	each	value	of	n	from	1	to	809,	we	did	the	
following:	Using	multiple	regression,	each	subject	in	the	test	dataset	was	
reconstructed	as	linear	combination	of	the	components	of	an	n-sized	basis	set.	
Goodness	of	reconstruction	was	measured	by	calculating	the	Pearson’s	correlation	
across	edges	between	actual	versus	reconstructed	connectomes	for	each	subject,	
and	averaging	across	subjects.		
	
2.8	 Assessing	Phenotypic	Prediction	
	

2.8.1	 HCP	Phenotypic	Measures	

We	used	a	total	of	11	phenotypes	from	the	HCP	data.	Factor	analysis,	implemented	
in	SPSS	23	(IBM,	Armonk,	NY),	was	used	to	produce	two	neuropsychological	factors	
from	the	HCP	task	data.	First,	a	general	executive	factor	was	created	based	on	
overall	accuracy	for	three	tasks:	n-back	working	memory	task,	relational	processing	
task,	and	Penn	Progressive	Matrices	task.	Factor	loadings	were	0.81,	0.80,	and	0.76	
respectively,	and	the	factor	accounted	for	62.2%	of	the	variance	in	the	variables.	A	
speed	of	processing	variable	was	created	based	on	three	NIH	toolbox	tasks:	
processing	speed,	flanker	task,	and	card	sort	task	(all	age-adjusted	performance),	
similar	to	Carlozzi	et	al.,	2015.	Of	note,	the	first	of	these	three	tasks	is	designed	to	be	
a	measure	of	processing	speed,	while	the	latter	two	primarily	reflect	processing	
speed	because	for	most	subjects	in	the	HCP	dataset,	accuracy	is	close	to	ceiling	
(Slotkin	et	al.,	2012).	This	variable	had	loadings	of	0.75,	0.81,	and	0.82	respectively,	
and	the	factor	accounted	for	63.0%	of	the	variance	in	the	variables.	From	the	Adult	
Self	Report	(ASR)	instrument	(Achenbach,	2009),	we	used	three	scale-derived	
summary	scores	for	psychopathology:	overall	internalizing,	overall	externalizing,	
and	attention.	In	addition,	from	the	Neuroticism/Extroversion/Openness	Five	
Factor	Inventory	instrument	(McCrae	and	Costa,	2004),	we	used	the	five	personality	
factors:	openness	to	experience,	conscientiousness,	extroversion,	agreeableness,	
and	neuroticism.	Finally,	we	used	the	Penn	Progressive	Matrices	task	by	itself	as	it	
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has	been	featured	in	other	connectome-based	prediction	studies	of	HCP	data	(Finn	
et	al.,	2015;	Ma,	Guntupalli	and	Haxby,	2017).		
	
In	an	additional	analysis,	we		used	multiple	regression	to	remove	a	number		of	
potential	confounds	from	each	of	the	11	phenotypic	variables.	Variables	regressed	
from	the	phenotypes	were:	age,	age2,	mean	FD,	mean	FD2,	gender,	brain	size	(S	
BrainSeg	Vol),	brain	size2,	and	multiband	reconstruction	algorithm	version	number	
(fMRI	3T	ReconVrs).	Analyses	involving	phenotypic	prediction	(§2.8.3	and	§2.8.4)	
were	then	repeated	with	the	confound-cleansed	phenotypes.	Results	were	broadly	
similar	to	the	original	analyses,	and	are	presented	in	the	Supplement.	
	

2.8.2		 Brain	Basis	Set	Modeling		

To	generate	predictions	of	phenotypes	from	a	basis	set	consisting	of	n	components,	
we	used	Brain	Basis	Set	(BBS)	modeling,	similar	to	the	approach	introduced	in	
Kessler,	Angstadt,	and	Sripada	2016.	In	a	training	dataset,	we	calculate	the	
expression	scores	for	each	of	the	n	components	for	each	subject.	We	then	fit	a	linear	
regression	model	with	these	expression	scores	as	predictors	and	the	phenotype	of	
interest	as	the	outcome,	saving	B,	the	n	x	1	vector	of	fitted	coefficients,	for	later	use.	
In	a	test	dataset,	we	again	calculate	the	expression	scores	for	each	of	the	n	
components	for	each	subject.	Our	predicted	phenotype	for	each	test	subject	is	the	
dot	product	of	B	learned	from	the	training	dataset	with	the	vector	of	component	
expression	scores	for	that	subject.			
	
2.8.3	 10-fold	cross	validation	procedure	
We	assessed	prediction	of	HCP	phenotypes	as	a	function	of	number	of	components	
in	the	predictive	basis	set,	in	order	to	identify	the	presence	of	plateaus	where	
adding	additional	components	does	not	enhance	predictive	accuracy.	This	analysis	
was	performed	using	a	10-fold	cross-validation	procedure	within	the	training	
dataset	split	described	above	(to	preserve	the	test	dataset	for	additional	analyses	
described	below).	On	each	of	the	ten	folds,	we	used	the	training	partition	to	learn	
new	PCA	components	and	then	fit	beta	coefficients	for	BBS	modeling.	We	then	made	
predictions	for	the	phenotypes	in	the	held	out	test	partition.	The	correlations	
between	actual	phenotype	and	predicted	phenotype	were	then	averaged	across	the	
ten	folds.	
	

2.8.4	 Comparison	with	CPM	

To	further	assess	the	effectiveness	of	a	low-rank	basis	set	for	capturing	phenotypic	
differences	in	the	HCP	dataset,	we	compared	the	accuracy	of	phenotypic	predictions	
derived	from	the	100	component	basis	set	(coupled	with	CBS	modeling)	with	
predictions	derived	from	an	alternative	leading	method:	connectome	predictive	
modeling	(CPM)	(Shen	et	al.,	2017),	which	has	achieved	excellent	results	in	a	
number	of	studies	using	diverse	phenotypes	(Finn	et	al.,	2015;	Rosenberg	et	al.,	
2016;	Yoo	et	al.,	2018;	Beaty	et	al.,	2018;	Lake	et	al.,	2018).	In	brief,	CPM	is	first	
trained	with	every	edge	of	the	connectome	to	identify	edges	that	are	predictive	of	
the	phenotype	of	interest	above	some	prespecified	level	(e.g.,	Pearson’s	correlation	
with	significance	of	p	<	0.01).	The	sum	of	weights	for	these	specified	edges	is	then	
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calculated	for	each	test	subject,	and	these	sums	serve	as	“predicted	scores”	that	are	
correlated	with	the	actual	phenotypic	scores.	CPM	treats	positively	and	negatively	
predictive	edges	differently,	and	we	focus	on	the	positive	edges	in	the	main	article,	
following	the	typical	practice	of	its	authors,	and	present	results	for	negative	edges	in	
the	Supplement.	
	
2.9	 Density	of	Parcellation	Analysis	
To	assess	the	robustness	of	the	analysis	to	parcellations	of	systematically	varying	
densities,	we	used	the	set	of	parcellations	created	by	Craddock	et	al.	(2011).	These	
parcellations	(available	here:	http://ccraddock.github.io/cluster_roi/atlases.html)	
were	produced	with	a	spatially	constrained	spectral	clustering	approach	that,	for	
preset	values	of	K,	produces	approximately	K	functionally	and	spatially	coherent	
regions.	We	utilized	parcellations	with	K	ranging	from	100-900	in	intervals	of	100.	
For	each	parcellation,	we	repeated	steps	3	through	8	of	the	above	analysis	in	order	
to	assess	whether	our	three	methods	for	identifying	low-rank	structure	(assessment	
of:	intrinsic	dimensionality,	out-of-sample-	reconstruction,	and	phenotypic	
prediction)	differed	according	to	parcellation	density.	Of	note,	our	implementation	
of	the	method	of	Choi	et	al.	did	not	converge	for	larger	parcellations	(K	>	500)	and	
so	we	focus	on	the	the	method	of	Levina	and	Bickel	for	this	analysis.	
	
2.10	 Assessing	Community	Structure	
For	all	809	components,	we	assessed	the	presence	of	community	structure	
corresponding	to	ICNs	from	the	parcellation	of	Power	et	al.	(2011)	using	a	stochastic	
block	model	(SBM;	Holland,	Laskey	and	Leinhardt,	1983),	a	well	established	
generative	model	for	graphs,	coupled	with	a	non-parametric	testing	procedure.	For	
each	of	the	809	components,	we	first	fix	node	community	assignments	according	to	
the	Power	parcellation	(Power	et	al.,	2011),	and	then	estimate	the	parameters	of	a	
SBM	with	these	fixed	assignments.	We	replace	the	Bernoulli	distribution	assumption	
on	binary	edges	made	by	the	classical	SBM	with	a	normal	distribution	assumption	
on	edge	weights,	since	we	work	with	Fisher-transformed	correlations	as	edge	
weights.	Once	these	parameters	are	estimated,	we	summarize	the	fit	with	the	profile	
log-likelihood	statistic.	We	then	randomly	permute	node	labels	many	times,	keeping	
the	total	number	of	nodes	in	each	of	the	communities	fixed,	and	obtain	a	profile	
likelihood	value	from	each	of	these	fits	corresponding	to	permuted	node	labels.	We	
then	obtain	a	p-value	by	comparing	the	profile	likelihood	for	the	Power	parcellation	
to	the	empirical	null	distribution	of	profile	likelihoods.	Finally,	the	p-values	for	the	
809	components	were	adjusted	for	multiple	comparisons	using	Bonferroni’s	
correction,	to	control	the	Family-Wise	Error	Rate	at	α	=	0.05.	A	more	detailed	
description	of	this	procedure	is	provided	in	the	Supplement.		
	

2.11	 Test/Retest	Reliability	
Test-retest	reliability	was	assessed	in	38	subjects	in	the	HCP	test-retest	dataset.	
Reliability	was	assessed	with	intra-class	correlation	(ICC)	statistic,	specifically	type	
(2,1)	according	to	the	scheme	of	Shrout	and	Fleiss	(1979).	For	each	subject,	ICC’s	
were	calculated	for	each	individual	edge	as	well	as	for	expression	scores	for	each	
component	in	the	100-member	basis	set.	Since	aggregating	edges	can	itself	improve	
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ICC,	we	also	examined	ICC’s	for	“random”	aggregations	of	edges	created	by	
permuting	the	edges	of	each	of	the	100	components.	For	each	component,	1000	
randomly	permuted	components	were	created	in	this	way,	and	ICC’s	for	the	
expressions	of	these	components	were	calculated.	
	

3	 Results	
	
3.1	 There	is	convergent	evidence	for	substantial	low-rank	
structure	in	cross-individual	connectomic	variation	based	on	three	
different	methods	
	
3.1.1	 Method	1:	Assessing	intrinsic	dimensionality	
Figure	1	shows	the	percent	variance	explained	(i.e.,	eigenvalues)	for	all	809	
components	(in	blue).	Also	plotted	is	mean	eigenvalues	for	1000	realizations	of	
random	data	created	through	permutation	methods	(in	red).	This	plot	provides	
initial	suggestive	evidence	of	significant	low-rank	stricture	in	the	data,	indicated	by	
the	substantially	elevated	variance	explained	by	early	components	derived	from	
observed	connectomes	relative	to	what	components	derived	from	random	data.		
	
We	next	turned	to	quantitative	dimensionality	estimation	procedures.	Applying	the	
maximum	likelihood	method	from	Levina	and	Bickel	(2004)	yielded	an	estimated	
dimensionality	of	62.	Applying	the	dimensionality	estimation	method	of	Choi	et	al	
(2017)	found	an	upper	bound	of	147	components	with	alpha	set	at	0.05.	
Importantly,	these	two	results	should	be	seen	as	complementary	and	not	
necessarily	in	tension,	as	the	Levina	and	Bickel	method	attempts	to	arrive	at	the	
number	of	components	that	is	most	likely	given	the	data,	while	the	Choi	et	al	method	
attempts	to	provide	an	upper	bound	on	the	number	of	components,	with	statistical	
control	over	type	1	errors.	Taken	together,	these	methods	provide	strong	initial	
evidence	for	substantial	low-rank	structure	in	cross-individual	connectomic	
variation.	In	addition,	they	suggest	a	plausible	range	for	the	number	of	true	
dimensions	in	the	data	as	being	somewhere	between	50	and	150.		
	
3.1.2	 Method	2:	Assessing	out	of	sample	reconstruction	
A	second	method	for	detecting	and	quantifying	low-rank	structure	relies	on	
examining	the	ability	of	the	PCA	components	to	accurately	reconstruct	connectomes	
from	an	independent	test	sample,	i.e.,	a	sample	that	was	not	used	to	generate	the	
components.	Figure	2	shows	the	Pearson’s	correlations	between	actual	test	sample	
connectomes	and	connectomes	reconstructed	with	a	PCA-derived	basis	set,	as	a	
function	of	the	number	of	components	in	the	basis	set.		Using	all	809	components	in	
the	basis	set,	this	correlation	was	0.68,	and	this	represents	the	ceiling	correlation	
that	is	achievable.	With	50,	100,	and	150	components,	the	correlation	is	0.47,	0.53,	
0.57,	respectively.	This	represents,	respectively,	69%,	78%,	and	84%	of	ceiling,	and	
it	provides	additional	evidence	that	a	low-rank	representation	captures	a	sizable	
portion	of	the	generalizable	variance	in	the	data.		
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3.1.3	 Method	3:	Assessing	predictive	accuracy	with	respect	to	a	broad	range	of	
HCP	phenotypes	
An	additional	means	to	assess	low-rank	structure	consists	in	examining	prediction	
of	criterion	variables:	If	a	modest	sized	basis	set	captures	a	large	portion	of	cross-
individual	variation,	then	it	ought	to	predict	a	broad	range	of	behavioral	and	clinical	
phenotypes	(that	are	plausibly	linked	to	functional	connectomic	variation)	similarly	
to	the	full	unreduced	dataset.	
	
For	each	of	11	phenotypes,	we	used	the	BBS	modeling	method	to	make	predictions	
of	phenotype	values	for	each	subject	based	on	connectomic	component	expression	
scores.	We	applied	BBS	to	the	810	subjects	in	the	training	dataset	in	a	10-fold	cross	
validation	procedure	(see	Methods,	§8.2).	As	shown	in	Figure	3,	there	is	a	noticeable	
plateau	at	around	50-100	components	for	most	of	the	phenotypes:	Adding	further	
components	to	the	basis	set	beyond	this	number	does	not	appreciably	increase	
accuracy	of	phenotypic	prediction.	Table	S1	shows	the	correlations	between	
predicted	and	actual	phenotypes	across	three	basis	set	sizes:	50,	100,	and	150	
components.	All	three	basis	sets	perform	similarly,	though	there	is	a	slight	
advantage	for	the	100-component	basis	set,	especially	with	regard	to	the	processing	
speed	factor.	
	
To	further	assess	the	performance	of	a	modest	sized	basis	set	in	predicting	
phenotypes	of	interest,	we	compared	performance	with	CPM,	a	leading	alternative	
method	for	phenotypic	prediction	that	is	trained	on	the	whole	connectome	(Shen	et	
al.,	2017).	Since	the	100-component	basis	set	performed	slightly	better	than	the	
others	in	cross-validation	within	the	training	dataset,	we	focused	on	this	basis	set	
for	comparison	with	CPM	in	the	held	out	test	set.		
	
For	each	of	the	11	phenotypes,	we	trained	both	methods	in	the	training	dataset	and	
tested	accuracy	of	phenotypic	prediction	in	the	held	out	test	dataset.	Results	
showed	that	performance	of	BBS	was	comparable	to	or	better	than	CPM	on	all	11	
phenotypes	(comparable	to	CPM	on	8	phenotypes	and	better	than	CPM	on	the	other	
3	phenotypes;	Table	1).	
	
3.1.4	 Role	of	parcellation	density	
We	next	examined	the	robustness	of	the	preceding	three	analyses	to	parcellations	of	
varying	densities.	We	used	Craddock	et	al.’s	parcellations	derived	from	a	spectral	
clustering	algorithm	with	K,	the	prespecified	number	of	parcels,	set	from	100	to	900	
in	increments	of	100.	While	there	were	some	differences	observed	with	the	most	
sparse	parcellation	(K=100),	for	all	analyses	in	which	K	exceeded	200,	the	results	
were	highly	stable	and	broadly	similar	to	what	we	observed	with	the	Power	
parcellation	with	264	ROIs	(Figure	3).		
	
3.2	 Network	Structure	of	Components	of	Cross-Individual	
Connectome	Variation	
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We	next	turn	to	characterizing	connectivity	patterns	in	the	components	themselves.	
Figure	5,	panels	A	through	C,	shows	the	first	three	components	with	nodes	
organized	by	membership	in	ICN	communities	(e.g.,	default	network,	fronto-parietal	
network,	etc.)	according	the	node	assignments	of	Power	et	al.	(2011).	Qualitatively,	
these	components	appear	to	exhibit	prominent	ICN	structure:	the	lines	on	these	
figures,	which	represent	boundaries	of	ICN-ICN	interrelationships,	appear	to	be	
highly	informative	for	characterizing	connectivity	patterns	in	the	components.		
	
To	quantitatively	assess	the	presence	of	ICN-based	community	structure	in	these	
components,	we	utilized	an	SBM-based	method	as	described	in	Methods	(see	2.10)	
coupled	with	permutation	tests	for	statistical	significance.	We	found	that	for	all	809	
components,	the	observed	components’	connectivity	patterns	are	highly	statistically	
significantly	more	likely	under	Power	ICN	community	assignments	than	alternative	
randomly	shuffled	assignments	(permutation-based	p-values	for	all	components	
survive	Bonferroni	correction	for	809	tests	with	α	=	0.05).	Additionally,	as	a	
descriptive	follow	up	to	quantify	the	extent	of	network	structure	in	the	components,	
we	investigated	how,	for	each	component,	the	profile	log-likelihood	corresponding	
to	the	Power	et	al.	parcellation	differed	from	the	median	profile	log-likelihood	
across	the	permutations	(see	Figure	6).	This	analysis	suggests	that	while	ICN	
structure	is	significantly	present	in	all	components,	such	structure	is	most	
prominent	in	early	components	and	plateaus	substantially	around	component	100	
to	200.	
	
Given	evidence	of	prominent	network	structure	in	the	components,	especially	in	
earlier	components,	we	sought	to	further	characterize	their	patterns	of	network	
interrelationships.	Figure	7	shows	network-to-network	relationships	for	the	first	
150	components.	Visual	network,	DMN,	and	FPN	are	especially	prominent.	Of	note,	
the	150-component	basis	set	is	available	for	viewing	and	download	here:	
https://sites.lsa.umich.edu/sripada/data/.	
	
3.3	 Test-retest	reliability		
The	preceding	analyses	suggest	that	a	modest-sized	basis	set	is	sufficient	to	quantify	
cross-individual	variation	across	the	entire	connectome,	especially	the	meaningful	
(i.e.,	phenotypically	predictive)	aspects	of	this	variation.	A	further	question	concerns	
the	stability	of	the	basis	set—or	more	specifically,	subjects’	component	expression	
scores—across	scanning	sessions.			
	
To	address	this	question,	we	examined	the	intra-class	correlation	(ICC)	of	
component	expression	scores	in	the	38	HCP	test-retest	subjects.	Components	were	
generated	in	the	full	training	dataset,	and	assessed	across	the	two	scanning	sessions	
of	the	test-retest	dataset,	which	was	not	used	to	generate	the	components.	The	
mean	ICC	for	individual	edges	is	.54,	similar	to	values	seen	in	previous	studies	
(Noble	et	al.,	2017).	In	contrast,	the	ICC	for	the	components	of	cross-individual	
variation	are	notably	higher.	Focusing	on	the	100-component	basis	set,	which	
performed	well	in	phenotypic	prediction,	the	mean	ICC	is	0.78.		
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Some	of	this	improvement	might	be	due	to	aggregation	itself,	as	aggregates	tend	to	
be	more	stable	than	the	elements	that	are	aggregated.	To	test	this	possibility,	we	
calculated	the	mean	ICC	for	random	permutations	of	these	100	components	(1000	
permutations	of	each	component).	Mean	ICC	for	permuted	components	was	0.65,	so	
the	boost	in	ICC	seen	in	the	actually	observed	100	components	is	substantially	over	
and	above	what	can	be	explained	by	simply	aggregating	random	collections	of	
edges.	
	
	

4	 Discussion	
	
In	resting	state	fMRI,	the	presence	of	low-rank	structure	in	intra-individual	
variation	is	well	known:	a	small	set	of	units—ICNs	such	as	DMN	and	FPN—account	
for	a	sizable	portion	of	variation	in	the	BOLD	signal	across	time	within	a	scanning	
session.	In	this	study,	we	extend	the	search	for	useful	low-rank	structure	to	inter-
individual	connectomic	variation.	We	found	convergent	evidence	that	a	modest	
number	of	components,	roughly	50-150,	capture	a	sizable	share	of	how	the	resting	
state	functional	connectomes	of	any	two	healthy	adults	differ.	Moreover,	we	found	
these	components	exhibit	high	levels	of	network	community	structure,	aiding	
interpretability,	and	they	have	very	good	test-retest	reliability.	We	propose	that	the	
connectivity	components	identified	in	this	study	form	an	effective	basis	set	for	
quantifying	and	interpreting	systematic	inter-individual	connectomic	differences,	
and	for	predicting	behavioral	and	clinical	phenotypes.		
	
The	components	of	inter-individual	connectomic	variation	reflect	ICN	structure	

A	remarkable	feature	of	the	connectomic	components	that	emerged	in	this	study	is	
that	they	strongly	reflect	ICN	structure.	ICN	boundaries	are	determined	from	a	
strictly	intra-individual	phenomenon:	coherence	of	the	resting	state	blood	oxygen	
level	dependent	(BOLD)	time	series	across	regions	within	a	person	during	a	
scanning	session	(Fox	et	al.,	2005;	Power	et	al.,	2011;	Yeo	et	al.,	2011).	There	is	no	
necessity	that	ICNs	should	be	implicated	in	across-individual	differences	in	
functional	connectomes;	the	set	of	edges	that	make	individuals	different	could	just	
have	easily	have	crossed	ICN	boundaries	freely.	That	is	not	what	we	found,	however,	
based	both	on	qualitative	observation	as	well	as	quantitative	assessment.	
	
The	finding	that	there	is	extensive	ICN	structure	in	these	components	jointly	helps	
to	illuminate	two	issues.	First,	it	helps	to	explain	why	we	were	successful	in	finding	
low-rank	structure	in	the	first	place.	Second,	it	potentially	illuminates	the	
mechanisms	by	which	the	inter-individual	differences	we	observed	arose.	Both	of	
these	points	warrant	elaboration.	
	
There	is	growing	understanding	of	the	maturational	trajectories	of	large-scale	ICNs	
and	principles	by	which	they	take	shape.	Resting	state	imaging	studies	in	fetuses	
suggest	at	least	some	important	ICNs	are	in	a	highly	immature	state	in	the	fetal	
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brain	with	weak	intra-network	connectivity	and	low	levels	of	network	separation	
(van	den	Heuvel	and	Thomason,	2016;	Grayson	and	Fair,	2017;	Keunen,	Counsell	
and	Benders,	2017).	Over	the	course	of	childhood	to	early	adolescence,	massive	
changes	occur:	integration	of	connections	within	ICNs	(Fair	et	al.,	2008,	2009),	
segregation	of	default	mode	network	from	attention/control	networks	(Fair	et	al.,	
2007;	Anderson	et	al.,	2011;	Kessler,	Angstadt	and	Sripada,	2016),	and	cross-modal	
linkages	in	which	structural	connections	co-develop	with	functional	connections	
(Byrge,	Sporns	and	Smith,	2014;	Supekar	et	al.,	2010;	Goñi	et	al.,	2014;	Betzel	et	al.,	
2014).	Importantly,	there	are	inter-individual	differences	in	how	these	
developmental	changes	in	ICN-ICN	interconnections	unfold	(Kessler	et	al.,	2014;	
Kessler,	Angstadt	and	Sripada,	2016;	Satterthwaite	et	al.,	2013,	2015).		
	
The	overall	picture,	then,	involves	highly	complex	and	choreographed	
developmental	processes	that	shape	large	populations	of	interconnections	between	
ICNs.	This	picture	is	well	suited	for	explaining	why	we	observed	significant	low-
rank	structure	in	inter-individual	variation	in	connectomes,	as	such	structure	
necessarily	exists	if	individuals	systematically	differ	at	large	aggregates	of	
connections.	In	addition,	the	model	explains	why	the	connectomic	components	
themselves	exhibit	extensive	ICN	structure,	as	the	presence	of	such	structure	
naturally	follows	if	the	generative	processes	that	produce	inter-individual	
connectomic	differences	impart	aggregate	intra-	and	inter-ICN	alterations.		
	
In	short,	then,	we	propose	that	adult	inter-individual	connectomic	variation—
especially	the	meaningful	aspects	of	this	variation	that	is	relevant	to	explaining	
neurocognitive	and	behavioral	phenotypes—importantly	reflects	the	legacy	of	inter-
individual	differences	in	ICN	development.	This	hypothesis	invites	detailed	future	
investigation,	ideally	in	longitudinal	datasets	that	permit	precise	quantification	of	
ICN	maturational	trajectories	as	well	as	adult	connectomic	variation.	
	
Success	at	Phenotypic	Prediction	and	Test-Retest	Reliability	

The	Brain	Basis	Set	(BBS)	modeling	approach	leverages	a	modest	number	of	
components	of	inter-individual	variation—in	this	study	we	focused	on	a	100-
component	basis	set.	Yet	we	found	this	method	predicts	HCP	phenotypic	variables	
(such	as	executive	functioning,	processing	speed,	and	externalizing)	just	as	well,	or	
in	some	cases	better	than,	Connectome	Predictive	Modeling	(CPM),	an	alternative	
highly	successful	method	that	is	trained	on	every	edge	of	the	connectome	(Shen	et	
al.,	2017).	The	most	likely	explanation	for	this	result	is	that	systematic	connectomic	
differences	across	individuals	really	do	have	substantial	low-rank	structure.	Thus	
restricting	one’s	predictor	set	to	a	modest	number	of	connectomic	components,	
which	is	sufficient	to	capture	this	structure,	yields	strong	phenotypic	prediction.			
	
An	additional	complementary	explanation	emphasizes	the	issue	of	signal-to-noise	
ratio	and	test-retest	reliability.	While	the	inter-session	test-retest	reliability	of	
individual	edges	of	the	resting	state	functional	connectome	has	been	found	to	be	
only	fair	(Birn	et	al.,	2013;	Noble	et	al.,	2017),	the	connectomic	components	
identified	in	this	study	exhibit	substantially	better	reliabilities.	This	improvement	
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arises,	most	likely,	because	high	eigenvalue	components—i.e.,	components	that	
explain	a	large	portion	of	inter-individual	connectomic	variation—are	more	likely	to	
be	latching	onto	“real”	brain	differences,	i.e.,	stable	cross-individual	differences	that	
genuinely	exist	in	nature.	In	contrast,	connectivity	features	that	explain	only	a	tiny	
portion	of	inter-individual	variation	have	a	greater	probability	of	reflecting	noise,	
which,	by	definition,	lacks	test-retest	reliability.	It	follows	that	restricting	analysis	to	
a	modest	number	of	high	eigenvalue	components	can	boost	the	signal-to-noise	ratio	
of	the	included	predictors,	contributing	to	better	prediction	of	unseen	data	(see	
Amico	and	Goñi,	2018	for	a	related	argument).		
	
Uniqueness	of	the	Basis	Set	

Our	primary	result	concerns	the	size	of	the	basis	set	needed	to	capture	meaningful	
inter-individual	connectomic	differences.	Resting	state	connectomes,	due	to	their	
massive	size,	allow	for	correspondingly	massive	variability:	individuals	could	
potentially	differ	in	countless	ways	across	tens	of	thousands	of	connections.	We	
have	shown,	however,	that	actual	inter-individual	variability	is	far	more	limited	and	
most	of	it	is	accounted	for	by	a	modest-sized	basis	set	of	roughly	50-150	
components.		
	
We	wish	to	emphasize	that	with	respect	to	representing	the	subspace	of	variation,	
the	connectomic	components	we	identified	are	not	unique.	These	components	are	
the	basis	of	a	subspace,	and	any	rotation	that	preserves	their	linear	independence	
will	result	in	a	new	basis	that	spans	the	exact	same	subspace.	There	is	thus	some	
flexibility	in	choosing	the	components	with	which	to	characterize	the	relevant	
subspace.	Ultimately,	the	choice	of	which	components	to	utilize	must	be	guided	by	
consilience	with	broader	theory:	a	basis	set	should	be	preferred	to	the	extent	that	
the	components	that	comprise	it	align	with	known	neurobiological	mechanisms	and	
processes.	In	this	context,	it	bears	notice	that	the	PCA-derived	components	that	
emerged	in	this	study	do	exhibit	a	number	of	neurobiologically	interesting	
properties.	High	eigenvalue	components,	in	particular,	disproportionately	
contribute	to	phenotypic	prediction	(Figure	3),	and	they	exhibit	higher	levels	of	ICN	
structure	(Figure	6).	This	provides	initial	evidence	that	that	the	specific	components	
found	by	PCA	could	potentially	have	neurobiological	meaning.		
	
Implications	for	connectomic	statistical	analysis	

Our	results	have	broader	implications	for	methods	of	statistical	analyses	of	
connectomes,	especially	methods	aimed	at	predicting	phenotypic	differences	across	
individuals	and	between	groups	(Meskaldji	et	al.,	2013;	Varoquaux	and	Craddock,	
2013).	A	persistent	challenge	in	individual	differences	research	has	been	the	shear	
size	of	functional	connectomes	(Zalesky	et	al.,	2012).	This	sometimes	forces	
researchers	to	choose	between	focusing	on	a	small	set	of	“connections	of	interest”	or	
else	undertake	a	whole	connectome	statistical	search	and	pay	a	substantial	price	in	
terms	of	multiple	comparisons	correction.	Our	results	suggest	that	the	tradeoffs	
need	not	be	so	stark.	There	is	a	massive	amount	of	dependence	among	edges	in	
connectomes	across	individuals.	Thus	a	basis	set	with	a	modest	number	of	
components	allows	researchers	interested	in	individual	differences	to	undertake	
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whole-connectome	inquiry	while	dramatically	reducing	the	multiple	comparison	
cost.		
	
More	broadly,	there	is	a	pressing	need	to	leverage	prior	knowledge	about	the	
nature,	kind,	and	extent	of	inter-individual	variation	in	functional	connectomes	to	
further	guide	and	constrain	statistical	models	in	neuroimaging	individual	
differences	research.	Our	observation	of	extensive	low-rank	structure,	i.e.,	a	modest	
number	of	components	account	for	a	sizable	portion	of	cross-individual	differences,	
represents	one	kind	of	prior	knowledge.	Our	observation	of	prominent	ICN	
structure	within	these	components,	discussed	earlier,	is	also	highly	relevant	in	this	
context.	Future	studies	should	leverage	this	observation,	for	example	using	block	
structure-based	regularization,	to	inform	and	constrain	statistical	models	of	inter-
individual	differences,	and	thereby	increase	the	chances	of	robust	out-of-sample	
generalization.		
	
In	sum,	in	this	study,	we	identified	a	parsimonious	basis	set	for	inter-individual	
differences	in	resting	state	functional	connectomes,	one	that	facilitates	
interpretation	of	connectomic	differences	and	prediction	of	phenotypes	of	interest.	
Our	results	invite	further	research	into	the	neurodevelopmental	processes	that	
shape	ICNs,	which	could	help	to	explain	why	adult	inter-individual	connectomic	
differences	take	a	modest	set	of	characteristic	forms.	
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Figures,	Titles,	and	Captions	
	
	

	
Figure	1:		Percent	Variance	Explained	For	Components	Derived	From	Actual	
Versus	Random	Data.	For	observed	components	(blue),	percent	variance	explained	
of	early	components	is	much	larger	than	mean	percent	variance	explained	of	
components	derived	from	random	data	(red).	This	pattern	is	suggestive	of	
substantial	low-rank	structure	in	observed	connectomes.	
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Figure	2:	Out	of	Sample	Reconstruction	of	Connectomes.	With	100	components	
(dashed	line),	the	correlation	between	actual	and	reconstructed	connectomes	is	
0.50.	Importantly,	this	correlation	is	only	0.68	using	all	809	components,	so	a	basis	
set	consisting	of	100	components	achieves	roughly	three	fourths	of	the	“ceiling”	
correlation	that	is	achievable.	
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Figure	3:	Phenotype	Predictive	Accuracy	as	a	Function	of	Basis	Set	Size.	For	
most	phenotypes,	there	is	a	plateau	after	50	to	100	components	(dotted	line)	after	
which	adding	further	components	to	the	prediction	model	basis	set	does	not	
appreciably	improve	performance.	
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Figure	4:	Assessing	Role	of	Parcellation	Density.	Three	methods	for	identifying	
low-rank	structure	yielded	stable	results	across	parcellations	of	varying	density.	
Panel	A:	Estimation	of	intrinsic	dimensionality	with	the	method	of	Levina	and	Bickel,	
2004.	Panel	B:	Out-of-sample	reconstruction.	Panels	C	and	D:	Predictive	accuracy	
with	respect	to	11	HCP	phenotypes.	Panels	B	through	D	used	a	100-component	basis	
set.	
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Figure	5:	Components	1,	2,	and	3.	The	first	three	components	of	inter-individual	
connectomic	variation	are	displayed,	with	nodes	organized	by	membership	in	13	
ICNs	according	to	assignments	of	Power	et	al.,	2011.	The	boundaries	of	ICNs	are	
determined	from	a	strictly	intra-individual	phenomenon:	coherence	of	the	BOLD	
time	series	within	a	person	across	time.	It	is	notable,	then,	that	inter-individual	
connectomic	differences	clearly	involve	substantial	ICN	structure	(which	we	further	
corroborate	utilizing	a	novel	quantitative	approach	based	on	stochastic	block	
modeling).	1=Somatomotor-hand;	2=Somatomotor-faces;	3=Cingulo-opercular;	
4=Auditory;	5=Default;	6=Memory	retrieval;	7=Visual;	8=Fronto-parietal;	
9=Salience;	10=Subcortical;	11=Ventral	Attention;	12=Dorsal	Attention;	
13=Cerebellum	
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Figure	6:	Profile	log-likelihood	of	ICN-based	community	structure	in	each	
component.	This	statistic	serves	to	quantify	presence	of	ICN	structure	in	each	
component	using	a	stochastic	block	model	(SBM)	framework.	The	red	trace	is	the	
profile	log-likelihood	from	the	SBM	according	to	the	community	assignments	given	
in	Power	et	al.,	2011.	The	blue	trace	is	the	median	profile	log-likelihood	across	many	
shufflings	of	the	community	assignments.	See	Supplementary	Methods	for	details.	
ICN	structure	is	most	prominent	in	early	(high	eigenvalue)	components.	
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Figure	7:	Network	Structure	of	the	Connectomic	Components.	For	the	first	150	
components,	altered	connectivity	patterns	are	shown	using	colored	squares.	Each	
square	represents	altered	mean	connectivity	among	connections	linking	pairs	of	
networks.	1=Somatomotor-hand;	2=	Somatomotor-faces;	3=Cingulo-opercular;	
4=Auditory;	5=Default;	6=Memory	retrieval;	7=Visual;	8=Fronto-	parietal;	
9=Salience;	10=Subcortical;	11=Ventral	Attention;	12=Dorsal	Attention;	
13=Cerebellum.	
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Tables	
	
Phenotype	 BBS	 CPM	
General	Executive	 0.44	 0.42	
Processing	Speed	 0.39*	 0.23	
Penn	Progressive	

Matrices	

0.30	 0.32	

ASR	Externalizing	 0.24*	 0.03	
ASR	Internalizing	 0.20	 0.04	
ASR	Attention	 0.15*	 0.00	
NEO-Openness	 0.18	 0.11	
NEO-Conscientiousness	 0.19	 0.15	
NEO-Extroversion	 0.13	 0.04	
NEO-Agreeableness	 0.19	 0.10	
NEO-Neuroticism	 0.00	 0.05	
	
Table	1:	Pearson’s	correlations	between	actual	and	predicted	phenotypes	for	
two	different	predictive	modeling	approaches.	BBS	=	Brain	Basis	Set	Modeling	
(with	100	component	basis	set);	CPM	=	Connectome	Predictive	Modeling	(Shen	et	al.,	
2017).	*=statistically	significant	difference	at	p<0.05.	
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1 Details Regarding Assessment of Community

Structure

1.1 The Stochastic Block Model

The SBM [1] is a well-established generative model for networks with commu-
nities. Under the SBM, each of the n nodes is independently assigned to one
of K communities, with probability of assignment to community k given by
⇡k,

PK
i=1 ⇡k = 1. Given a realization of the community assignments vector c,

where ci is the community label of node i, the SBM generates edge weights
Aij between nodes i and j independently, from a distribution depending only
on the community labels ci and cj . If the distribution is parameterized by a
parameter ✓ci,cj , the distribution of the entire network is determined by the set
of parameters ✓kl, k, l = 1, . . . ,K, with ✓kl = ✓lk if the network is symmetric, as
it is in our case. In the classical formulation of the SBM, the adjacency matrix
is assumed to be binary, in which case the distribution of Aij is Bernoulli and
✓kl = P (Aij = 1|ci = k, cj = l). In our case, because we work with weighted
matrices and the weights are Fisher-transformed correlations, we model the dis-
tribution of Aij as normal, determined by parameters ✓kl = (µkl,�2

kl).

1.2 Calculating profile likelihood under the SBM

In our setting, we have an a priori community membership as given by the
Power et al. parcellation [2]. The log-likelihood of the observed weights for a
given community assignment, c, is given by

logL(✓,⇡|A) =
KX

k=1

nk log(⇡k) +
nX

i=1

i�1X

j=1

log f(Aij ; ✓ci,cj ),

=
KX

k=1

nk log(⇡k) +
nX

i=1

i�1X

j=1

"
�1

2
log(2⇡)� log �ci,cj �

(Aij � µci,cj )
2

2�2
ci,cj

,

#

1
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where nk is the number of nodes in community k, and f(·; ✓kl) is the probability
density function of N(µkl,�2

kl).
Maximizing the likelihood of the SBM over community assignments is an

NP-hard problem, but for a given c, maximizing over ⇡ and ✓ is easy and
there is a closed form solution. Let Skl denote the set of node pairs connecting
community k to community l, Skl = {i < j : ci = k, cj = l}, and let nkl = |Skl|
denote the number of such pairs. Then the maximum likelihood estimates of
parameters for a given c are

⇡̂k =
nk

n
,

µ̂kl =
1

nkl

X

(i,j)2Skl

Aij ,

�̂2
kl =

1

nkl

X

(i,j)2Skl

(Aij � µ̂kl)
2 ,

the usual MLEs under the normal distribution. Plugging in these values into
the profile likelihood gives the maximized profile likelihood, which we use as the
test statistic.

To carry out the test, we need to compare the value of the observed pro-
file log-likelihood, l̂, to the distribution of profile log-likelihoods under the null
hypothesis of no community structure in the data. We obtain this distribution
empirically, shu✏ing the labels of the given parcellation c randomly and recom-
puting the profile log-likelihood in the same way, m = 20,000 times in total,
to obtain the values lj , j = 1, . . . ,m. Finally, we estimated empirically the
probability that a profile log-likelihood L sampled from this null distribution
will exceed l̂, as

P (L � l̂) = max

 
1

m
,

1

m

mX

i=1

I(li � l̂)

!
,

where I is the indicator function.
Note that permutation of the labels does not change the number of nodes in

each community, so the terms involving ⇡̂k’s can omitted.
This procedure is repeated for each of the 809 components of interest, and

the resulting 809 p-values are Bonferroni-corrected for multiple comparisons.
The number of permutations was selected such that it would be mathematically
possible to achieve Bonferroni-corrected significance at ↵ = .05.

In addition, for each component we retained both the profile log-likelihood
under the Power et al. parcellation [2] and the median profile log-likelihood
across the m shu✏ings, and plotted these as a function of the component num-
ber (see Figure XXX). Because of the use of logs, the ratio of likelihoods is
proportional to the di↵erence of log-likelihoods, and one may descriptively in-
terpret the “gap” between the two traces as some indication of the magnitude
of the divergence from the null.
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Supplementary	Table	
	
	
	
	
Phenotype	 BBS-50	 BBS-100	 BBS-150	 CPM	Pos	 CPM	Neg	 BBS-100	

covariate	
corrected	

General	Executive	 0.43	 0.44	 0.37	 0.42	 0.32	 0.39	
Processing	Speed	 0.17	 0.39	 0.33	 0.23	 0.24	 0.43	
Penn	Progressive	
Matrices	

0.31	 0.30	 0.23	 0.32	 0.30	 0.23	

ASR	Externalizing	 0.20	 0.24	 0.17	 0.03	 0.06	 0.25	
ASR	Internalizing	 0.15	 0.20	 0.15	 0.04	 -0.04	 0.19	
ASR	Attention	 0.14	 0.21	 0.07	 0.00	 -0.02	 0.20	
NEO-Openness	 0.14	 0.18	 0.23	 0.11	 0.07	 0.14	
NEO-
Conscientiousness	

0.17	 0.19	 0.16	 0.15	 0.13	 0.11	

NEO-Extroversion	 0.20	 0.14	 0.12	 0.04	 0.15	 0.18	
NEO-Agreeableness	 0.19	 0.19	 0.26	 0.10	 0.06	 0.08	
NEO-Neuroticism	 -0.02	 -0.01	 -0.03	 0.05	 -0.01	 -0.09	
	
Table	S1:	Pearson’s	correlations	between	actual	and	predicted	phenotypes	across	several	
predictive	models.	BBS	=	Connectome	Basis	Set,	number	following	hyphen	indicates	number	of	
components	in	basis	set;	CPM	=	Connectome	Predictive	Modeling,	pos	=	positive	edges,	neg	=	
negative	edges	(Shen	et	al.	2017).		
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