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Abstract
Open modi�cation searching (OMS) is a powerful search strategy that identi�es peptides carrying any type of modi�cation

by allowing a modi�ed spectrum to match against its unmodi�ed variant by using a very wide precursor mass window.

A drawback of this strategy, however, is that it leads to a large increase in search time. Although performing an open

search can be done using existing spectral library search engines by simply setting a wide precursor mass window, none

of these tools have been optimized for OMS, leading to excessive runtimes and suboptimal identi�cation results.

Here we present the ANN-SoLo tool for fast and accurate open spectral library searching. ANN-SoLo uses approximate

nearest neighbor indexing to speed up OMS by selecting only a limited number of the most relevant library spectra to

compare to an unknown query spectrum. This approach is combined with a cascade search strategy to maximize the

number of identi�ed unmodi�ed and modi�ed spectra while strictly controlling the false discovery rate, as well as a

shifted dot product score to sensitively match modi�ed spectra to their unmodi�ed counterparts.

ANN-SoLo outperforms the state-of-the-art SpectraST spectral library search engine both in terms of speed and the

number of identi�cations. On a previously published human cell line data set, ANN-SoLo con�dently identi�es 40 %

more spectra than SpectraST while achieving a speedup of an order of magnitude.

ANN-SoLo is implemented in Python and C++. It is freely available under the Apache 2.0 license at https://github.
com/bittremieux/ANN-SoLo.

1 Introduction

Although mass spectrometry (MS) is a very powerful

technique to characterize proteins in complex biologi-

cal samples, a signi�cant portion of the thousands of

spectra that are typically generated during a shotgun pro-

teomics experiment cannot be con�dently identi�ed. In

many cases a spectrum cannot be identi�ed because it

was generated by a peptide that contains one or more

post-translational modi�cations (PTMs) [15]. If a partic-

ular modi�cation has not been speci�ed in the search

settings, then spectra corresponding to peptides harbor-

ing this modi�cation will be assigned an incorrect amino

acid sequence. Because such false hits tend to receive

higher scores than other false positive matches, these

missed modi�cations have a detrimental e�ect on the

identi�cation performance [8].

On the one hand, protein modi�cations can be an ar-

tifact of the MS process because sometimes they are in-

troduced during sample preparation [7]. A common ex-

ample is alkylation by using iodoacetamide, which leads

to the attachment of a carbamidomethyl group to cys-

teine residues, preventing the denatured proteins from

reforming disul�de bridges. On the other hand, naturally

occurring PTMs can be very interesting from a biological

perspective as they often play important roles in many

cellular processes [60].

Unfortunately, although MS techniques have become

quite mature, comprehensive identi�cation of modi�ed

proteins in complex samples remains challenging [1, 38].

In the traditional search paradigm, all modi�cations of

interest have to be explicitly speci�ed in the search set-

tings to correctly identify the spectra that include one

or more of these modi�cations. This requirement leads

to a signi�cant search space increase because, for each

peptide, both its unmodi�ed version and all possible mod-

i�ed variants need to be considered, which results in

an increased computational load and reduced sensitiv-

ity. Consequently, only a limited selection of the most

prevalent modi�cations are commonly considered.

Alternatively, open modi�cation searching (OMS) is a

powerful strategy to identify modi�ed spectra. Whereas

traditionally only candidates that fall within a limited

mass window around the query spectrum’s precursor

mass are considered as a potential match, during OMS a

very wide precursor mass window exceeding the delta

mass induced by a PTM is used. This approach makes

it possible to compare a modi�ed query spectrum to its

unmodi�ed variant [2, 46]. As such, during an open

search all possible protein modi�cations for which the

mass di�erence falls within the precursor mass window,

which is typically on the order of several hundreds of

Dalton, are implicitly considered, including PTMs, amino

acid substitutions, cleavage variants, etc. Afterwards, the

presence and type of each modi�cation can be derived

from the di�erence between the observed precursor mass

and the mass of the unmodi�ed peptide.

Although OMS makes it possible to identify a wide
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Figure 1: The size of spectral libraries has increased as

more high-quality data sets have become available in

public data repositories. Whereas traditionally spectral

libraries were explicitly curated and compiled, e.g. by the

National Institute of Standards and Technology (NIST),

a recent alternative has been to automatically generate

large spectral libraries on a repository-wide scale, e.g.

based on all data sets in the PRoteomics IDEnti�cations

(PRIDE) and MassIVE databases [31, 32].

range of spectra containing diverse modi�cations, the use

of a very wide precursor mass window leads to a dras-

tically increased search space. Consequently, compared

to a standard search, the computational cost for an open

search is orders of magnitude higher. A popular approach

to keep OMS computationally feasible is to use spectral

libraries [3, 11, 33, 42, 62]. Because spectral libraries only

contain previously observed peptides, the search space is

often substantially restricted in comparison to sequence

database searching strategies that consider all theoreti-

cally possible peptides [30]. On the other hand, with the

increasing availability of high quality data sets in pub-

lic data repositories [50], spectral libraries have grown

substantially (�gure 1). Indeed, for some well-studied

organisms the spectral library size can rival the size of

the sequence database.

Here we present the Approximate Nearest Neighbor

Spectral Library (ANN-SoLo) search tool, which has

been optimized for fast and accurate open modi�cation

spectral library searching. Using a cascade search strat-

egy [37] ANN-SoLo �rst identi�es any unmodi�ed pep-

tides, followed by an open search to identify the modi�ed

peptides. During this open search ANN-SoLo uses an

approximate nearest neighbor (ANN) index to e�ciently

�nd a limited set of the most similar library spectra for

each query spectrum. During the open search the shifted

dot product is used to accurately match modi�ed query

spectra to their unmodi�ed library counterpart by taking

into account peak shifts caused by a modi�cation [11,

33].

Although some approaches have previously been pro-

posed to speed up spectral library searching, including

parallelizing spectral matching using graphics processing

units (GPUs) [6] and candidate �ltering based on a shared

peak count [59], these approaches did not deal with the

speci�c challenges posed by OMS. In contrast, the Liber-

ator and MzMod software tools are based on the Apache

Spark framework for distributed data processing to mas-

sively parallelize open spectral library searching [33].

Although these big data tools make it possible to process

large amounts of spectral data, they require a specialized

cluster or cloud infrastructure.

Additionally, several software tools have recently been

developed to speed up OMS when using a sequence

database instead of a spectral library. MSFragger uses an

index of theoretical fragments to quickly compute the

number of shared fragment ions between a query spec-

trum and theoretical spectra [39]. SpecOMS uses an FP-

tree-like data structure [9], called SpecTrees, to encode

the number of shared masses between all spectra [17]. Se-

quence tags are a popular approach to restrict the search

space as well. PIPI uses sequence tags of length 3 to per-

form a fuzzy tag-based �ltering [63]. TagGraph uses an

FM-index to �lter candidates based on substrings of de
novo derived sequences [21]. Finally, Open-pFind com-

bines tag-based �ltering to speed up open searches with

a subsequent standard search including highly abundant

variable modi�cations in a two-pass strategy [14].

Generally MS/MS spectrum identi�cation can be con-

sidered a nearest neighbor task: for a given query spec-

trum the most similar database spectrum, i.e. its nearest

neighbor, be it a real spectrum during spectral library

searching or a theoretical spectrum during sequence

database searching, has to be retrieved. Consequently

these nearest neighbor queries can be sped up by making

use of index structures. For example, a multiple vantage

point tree [51] and locality-sensitive hashing (LSH) [23]

have previously been proposed to speed up sequence

database searching.

These various tools that have recently been developed

for e�cient OMS on the one hand and the application

of multidimensional indexing techniques to speed up

spectral identi�cation on the other hand have so far ex-

clusively focused on sequence database searching. Here,

we show how ANN indexing can be used to speed up

open spectral library searching. Our ANN-SoLo tool is

able to e�ciently search very large spectral libraries and

sensitively identify spectra containing any modi�cation,

outperforming other spectral library search engines in

both speed and the number of identi�ed spectra.

ANN-SoLo is implemented in Python and C++. It

is freely available as open source under the per-

missive Apache 2.0 license at https://github.com/
bittremieux/ANN-SoLo.

2 Methods

2.1 Cascade spectral library searching

Spectral library searching works by comparing experi-

mental, unknown query spectra to previously observed,

known spectra in the spectral library. To identify a query

spectrum, its best matching library spectrum is found

and is assigned the corresponding peptide sequence [30,
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53]. Finding the closest matching library spectrum for a

given query spectrum can be divided into two steps: (i) a

candidate selection step during which a subset of spectra

in the spectral library are selected as candidate matches,

and (ii) a candidate ranking step during which, for each

candidate spectrum, a spectrum–spectrum match (SSM)

score is calculated to quantify the similarity between the

two spectra. Subsequently the candidate match with the

highest score is used as the identi�cation for the query

spectrum.

To perform an open search ANN-SoLo employs a cas-

cade search strategy consisting of two levels, which al-

lows it to maximize the number of identi�ed spectra while

strictly controlling the false discovery rate (FDR) [37]. In

the �rst level of the cascade search a small precursor

mass window is used to identify any unmodi�ed spectra.

The resulting SSMs are �ltered on FDR, and the con�-

dent SSMs below the FDR threshold are retained. Next,

the SSMs exceeding the FDR threshold are passed on to

the second level of the cascade search, in which a wide

precursor mass window is used to identify unmodi�ed

spectra. The resulting SSMs are �ltered on FDR as well

and combined with the accepted SSMs from the �rst level

to form the �nal set of spectrum identi�cations.

Below, we describe how ANN-SoLo addresses the can-

didate selection and candidate ranking steps during both

levels of the cascade open search, and describe how it

achieves both speed and accuracy.

2.1.1 Spectrum preprocessing

Prior to spectral library searching both the query spectra

and library spectra are similarly preprocessed to repre-

sent the spectra in a uniform way and discard low-quality

spectra [52]. Peaks corresponding to the precursor ion

and noise peaks with an intensity below 1 % of the in-

tensity of the most intense peak are removed and, if ap-

plicable, the spectrum is further restricted to its 50 most

intense peaks [41]. After peak removal, any spectrum

that contains fewer than 10 peaks remaining or with a

mass range less than 250 Da is discarded. Finally, peak

intensities are rank transformed to de-emphasize overly

dominant peaks [42].

2.1.2 Candidate selection

Typically, the candidate selection step consists of a pre-

cursor mass �lter, i.e. only the library spectra whose

precursor mass falls within a narrow window around the

query spectrum’s precursor mass are considered as candi-

dates. Especially for modern high-resolution instruments,

which can report masses with a (sub-)ppm accuracy, the

number of considered candidate spectra can be very small.

However, when a wider precursor mass window is used,

as in the case of open searches, the number of candidates

that are selected can increase by several orders of mag-

nitude. In this case the precursor mass window will not

be an e�ective �lter, and the search time will increase

accordingly.

During the �rst level of its cascade search ANN-SoLo

uses a small precursor mass window, and the search pro-

ceeds in the standard fashion. In contrast, during the

second level of its cascade search ANN-SoLo uses an

ANN index consisting of an ensemble of random projec-

tion trees [5] to e�ciently �lter the library spectra based

on their similarity to the query spectra.

To construct the ANN index each library spectrum is

vectorized to represent it as a point in a multidimensional

space. A spectrum is converted into a sparse vector by

dividing it into mass bins of 1 Da and assigning its peak

intensities to their corresponding mass bins, after which

the vector is normalized to have unit length. In case

multiple peaks in the mass spectrum are assigned to the

same mass bin their intensities are summed. Next, the

vectors for all library spectra are used to build a binary

index tree (�gure 2). This is done by recursively parti-

tioning the data space into two subspaces using random

split hyperplanes. Concretely, two points are randomly

sampled to construct a split hyperplane equidistant from

both points. This hyperplane divides the data points into

two subspaces based on their position relative to it (�g-

ure 2a). Next, for each of these two subspaces the same

procedure can be repeated: by randomly drawing a new

split hyperplane into the data subspace it can be further

partitioned into two smaller subspaces. This process is

recursively repeated to construct a binary index tree (�g-

ures 2b and 2c).

This binary index tree can be used to e�ciently �nd

the nearest neighbor for a given query point. Instead

of having to compare the query point to all data points

the index tree can be traversed to �nd the data subspace

to which the query point would belong and which will

likely contain its nearest neighbor (�gures 2d and 2e). In

this fashion a nearest neighbor query can be performed

in logarithmic time in terms of the number of data points,

whereas it would require linear time in terms of the num-

ber of data points to compare the query point against all

data points in a brute-force fashion.

Unfortunately, the nearest neighbor for the query point

might not be located in the data subspace that has been

selected, but instead it might be present in an adjacent

data subspace. In this case it is not possible to directly

identify the actual nearest neighbor and only an approxi-

mate result will be achieved. To reduce the risk of missing

the actual nearest neighbor multiple complementary in-

dex trees are used. Because random split hyperplanes are

used to divide the data space while constructing the initial

tree, an alternative index tree can be created by making

use of di�erent split hyperplanes. The new random split

hyperplanes cause the data space to be subdivided dif-

ferently, leading to a di�erent binary index tree. As a

result, the risk of missing an actual nearest neighbor is

minimized by using both index trees simultaneously to

answer a query. During querying the data subspaces to

which a query point belongs are identi�ed for each tree

individually, after which the data points in both of these

subspaces are combined to �nd the actual nearest neigh-

bor. Finally, additional index trees can be constructed in

a similar fashion to form an ensemble of index trees, with

each tree providing a complementary view on the data.

Through the combination of this ensemble of index trees

the risk of missing the actual nearest neighbor is further
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(a) The data space is partitioned into two

subspaces using a random split hyperplane.

(b) Each subspace is recursively partitioned

further.
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(c) Subspace partitioning results in a binary

index tree being constructed.

(d)The data subspace to which a query item

belongs is retrieved to �nd its nearest neigh-

bors.
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(e) This subspace is e�ciently found using

the binary index tree.

(f) A composite data subspace is compiled

from multiple index trees to obtain a better

approximation.

Figure 2: Approximate nearest neighbor indexing and searching using an ensemble of random split hyperplane index

trees.

decreased (�gure 2f). As such the number of trees in the

ensemble is a hyperparameter that can be used to con-

�gure a trade-o� between accuracy and speed, as using

more trees reduces the risk of missing the actual nearest

neighbor at the expense of some increased computational

requirements.

2.1.3 Candidate ranking

During the candidate ranking step the similarities be-

tween the query spectrum and all library spectra that

have been selected in the previous step are evaluated

to determine the highest-scoring SSM. Even though the

ANN index already retrieves the most likely candidate

spectra based on their similarity, a subsequent ranking

step remains necessary. This is because the vectors em-

ployed for ANN indexing only represent the spectra at

a coarse, 1 Da bin granularity. In contrast, for high-

resolution mass spectra a more accurate score can be

computed using a low fragment mass tolerance to ob-

tain the optimal match. Additionally, during the open

search the shifted dot product is used as scoring method

to take PTMs into account and accurately match modi�ed

spectra to their unmodi�ed variant, as described next.

The dot product is a well-established scoring method to

rank SSMs. An important advantage of the dot product is

that, despite its simplicity, it is able to accurately capture

the similarity between two mass spectra [55]. Addition-

ally, it can be computed very e�ciently as it has a time

complexity of O(n), where n is the total number of peaks

in the two spectra being compared. Based on these ad-

vantageous properties the dot product has been used by

several spectral library search engines [26, 41]. Similarly,

ANN-SoLo uses the dot product to identify unmodi�ed

spectra during the �rst level of its cascade search.

However, because the dot product only considers di-

rectly matching peaks with identical masses (while taking

the fragment mass tolerance into account) it is less suit-

able to identify modi�ed spectra. Instead, during the

second level of its cascade search ANN-SoLo uses a varia-

tion on the dot product, called the shifted dot product [11,

33]. This shifted dot product also considers peaks that

are shifted according to the precursor mass di�erence

between the two spectra that are being matched to accu-

rately identify modi�ed spectra (�gure 3). We here brie�y

describe an algorithm to compute the shifted dot product

in O(n log n) time complexity [33].

First, the precursor mass di�erence between the two

spectra is calculated and normalized according to the

precursor charge. Next, all potential peak pairs, with
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(a) The standard dot product only matches the pre�x fragments that do not include the acetylation.
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(b) The shifted dot product correctly matches both unmodi�ed and modi�ed fragments.

Figure 3: The shifted dot product enables more accurate matching between an unmodi�ed library spectrum (bottom)

and a modi�ed query spectrum (top) than the standard dot product. As can be derived from the precursor mass di�erence

the peptide GLFIIDDKGILR has undergone acetylation (mass 42.010 565 Da) on the lysine at position 8. The standard

dot product only takes directly matching peaks into account, while the shifted dot product can consider shifted peaks

according to the precursor mass di�erence and charge, correctly assigning a high score to this match.
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and without a mass shift (taking into account di�erent

charges), can be determined in a linear pass through

both spectra. Each peak pair is scored by multiplying

the intensities of both peaks, as in the standard dot prod-

uct. Unshifted peak matches and shifted peak matches

that include an annotated peak are scored fully while

shifted peak matches without an annotation are slightly

penalized to minimize the in�uence of potential spurious

matches. Next, to calculate the �nal shifted dot product

score the peak matches are sorted on their intensity prod-

uct, after which they are summed in a greedy fashion

while avoiding to match a single peak in either of the two

spectra more than once.

2.2 FDR calculation
False discovery rates are calculated in two phases after

both levels of the cascade search using the target–decoy

strategy [24]. Speci�cally, FDRs are estimated based on

a concatenated spectral library containing both target

and decoy spectra (see section 2.3) using the number of

decoys divided by the number of target SSMs.

During the �rst level of the cascade search the SSMs

are directly �ltered on the FDR. In contrast, because the

score distributions of peptides with di�erent modi�ca-

tions can exhibit distinct properties, during the second

level of the cascade search the SSMs are �ltered using

the subgroup FDR strategy [27]. To combine SSMs with

identical modi�cations they are grouped based on their

charge-normalized precursor mass di�erence between

the query spectra and library spectra. The SSMs are split

into subgroups by iteratively selecting the SSM with the

highest match score alongside all other remaining SSMs

whose precursor mass di�erence falls within a 0.1 Da

range. Because FDR estimates become progressively less

reliable if only a limited number of observations are con-

sidered FDR �ltering is only done for subgroups that

contain at least �ve SSMs. Subgroups that contain fewer

SSMs are combined into a residual group instead whose

FDR is jointly calculated in the end.

2.3 Data sets
The �rst data set we used was generated in the context

of the 2012 study by the Proteome Informatics Research

Group of the Association of Biomolecular Resource Facili-

ties. The goal of this study was to assess the community’s

ability to analyze modi�ed peptides [12]. Towards this

end, various participating researchers were asked to iden-

tify an unknown data set, after which their pro�ciency

in handling modi�ed peptides was evaluated. The pro-

vided data set consisted of a mixture of synthetic peptides

with biologically occurring modi�cations combined with

a yeast whole cell lysate as background, and the spectra

were measured using a TripleTOF instrument. For full

details on the sample preparation and acquisition see the

original publication by Chalkley et al. [12]. This high qual-

ity data set has been recommended as a reference data set

for the evaluation of identi�cation algorithms [28]. All

data was downloaded from the MassIVE data repository

(accession MSV000078492).

To search the iPRG2012 data set the human ion

trap (version 2012/05/30) and yeast ion trap (version

2012/04/06) spectral libraries compiled by NIST and ob-

tained from the PeptideAtlas [18] website were used.

First, both spectral libraries were concatenated using

SpectraST [41], after which additional decoy spectra

were added in a 1:1 ratio using the shu�e-and-reposition

method [40]. This resulted in a single large spectral

library �le containing 799 574 spectra. The fragment

masses in the NIST ion trap spectral libraries are only

speci�ed to the nearest tenth of a Dalton. Due to the

limited mass accuracy and resolution of the ion trap in-

struments from which these spectral libraries are derived,

care has to be taken to specify a suitable fragment mass

tolerance when using this spectral library.

The second data set consists of spectra measured from

the HEK293 human cell line [15]. As per Chick et al.

[15], the HEK293 cells were �rst lysed, trypsinized, and

separated into 24 fractions, after which high-resolution

and high-mass accuracy MS/MS spectra were obtained

on an LTQ Orbitrap Elite mass spectrometer. For full

details on the sample preparation and acquisition see the

original publication by Chick et al. [15]. Raw �les were

downloaded from PRIDE [58] (project PXD001468) and

converted to MGF �les using msconvert [13].

To search the HEK293 data set the MassIVE-KB pep-

tide spectral library (version 2017/11/27) was used. This is

a repository-wide human higher-energy collisional disso-

ciation spectral library derived from over 30 TB of human

MS/MS proteomics data. The original spectral library con-

tained 2 148 752 MS/MS spectra, from which duplicates

were removed using SpectraST [41] by retaining only the

best replicate spectrum for each individual peptide ion,

resulting in a spectral library containing 1 504 951 spec-

tra. Next, decoy spectra were added in a 1:1 ratio using

the shu�e-and-reposition method [40], resulting in a �-

nal spectral library containing 3 009 902 spectra. To the

best of our knowledge this is the largest spectral library

reported in the literature to date.

All MS/MS data, spectral libraries, and identi�cation

results have been deposited to the ProteomeXchange Con-

sortium [20] via the PRIDE partner repository [58].

2.4 Search se�ings

2.4.1 ANN-SoLo

The spectrum preprocessing settings are as described in

section 2.1.1. For the iPRG2012 data set a precursor mass

window of 20 ppm was used for the standard search and

20 ppm followed by 300 Da for the cascade open searches.

Additionally, a fragment mass tolerance of 0.25 Da was

used in all cases. For the HEK293 data set a precur-

sor mass window of 5 ppm was used for the standard

searches and a precursor mass window of 5 ppm followed

by 500 Da was used for the cascade open searches. For all

HEK293 searches a fragment mass tolerance of 0.02 Da

was used.

Two major hyperparameters in�uence the perfor-

mance of the ANN index: the number of trees in the

index and the number of nodes to inspect per query. We
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discuss the e�ect of these hyperparameters in detail in

section 3.2. For the iPRG2012 data set we used ANN in-

dices consisting of 100 to 1000 trees, while the number

of nodes inspected during querying was varied between

20 000 and 400 000. To analyze the HEK293 data set an

ANN index consisting of 1000 trees was used and 200 000

nodes were inspected during searching.

2.4.2 SpectraST

We mainly compared the performance of ANN-SoLo

against the state-of-the-art spectral library search engine

SpectraST [41].

We used SpectraST version 5.0 as part of the Trans-

Proteomic Pipeline version 5.1.0 [19]. We tried to specify

the SpectraST search settings for processing the HEK293

data set as closely as possible to the ANN-SoLo settings

to ensure a fair comparison. Spectra were preprocessed

to have a minimum mass range of 250 Da and only the 50

most intense peaks were retained. Peak-to-peak matching

and rank-based scoring was used to evaluate SSMs. Li-

brary caching was enabled, which is an essential require-

ment in order to be able to complete the open searches.

Similar to the ANN-SoLo settings a precursor mass win-

dow of 500 Da was used for the open searches. In contrast,

for the standard searches a precursor mass window of

0.02 Da was used as SpectraST does not support speci-

�cation of tolerances in ppm units. A fragment mass

tolerance of 0.02 Da was used in all cases. FDRs were

estimated using the subgroup FDR strategy described in

section 2.2.

2.5 Code availability
The ANN-SoLo software is written in Python, making

use of various open-source libraries such as NumPy [57],

SciPy, and pandas [44] for scienti�c computing and Mat-

plotlib [34], Seaborn [61], and Jupyter notebooks [49] for

visualization purposes. Pyteomics [29] is used to support

some mass spectrometry-speci�c functionality, such as

reading input �les and for FDR calculation.

ANN indexing during the candidate selection step is

based on the open-source Approximate Nearest Neigh-

bors Oh Yeah (Annoy) library [54], which was originally

developed at Spotify to support large-scale music rec-

ommendations. Dot product and shifted dot product cal-

culation is implemented as an external C++ module to

optimize the candidate ranking step for speed.

All code is released as open source under the per-

missive Apache 2.0 license and is available at https:
//github.com/bittremieux/ANN-SoLo.

3 Results

3.1 Cascade open search maximally
identifies unmodified and modified
peptides

The advantage of an open search compared to a standard

search is that modi�ed peptides can be identi�ed without

having to specify the expected modi�cations. However,

Search mode Similarity measure # SSMs

Standard search dot product 3610

Open search dot product 4970

Open search shifted dot product 6051

Table 1: The number of accepted SSMs at a 1 % FDR

threshold for various searches of the iPRG2012 data set.

The open search identi�es all unmodi�ed spectra previ-

ously identi�ed in the standard search as well as addi-

tional modi�ed spectra. A further increase in identi�ca-

tions is achieved by using the shifted dot product to score

modi�ed SSMs.

using a wide precursor mass window might lead to a loss

in identi�cations of spectra that would have previously

been identi�ed during a standard search. Whereas a spe-

ci�c query spectrum might be identi�ed di�erently with

a slightly higher score when using a wide precursor mass

window than when using a small precursor mass window,

as the search space is signi�cantly larger in the former

case these scores cannot be directly compared. Instead,

through its cascade search strategy ANN-SoLo maximally

identi�es both unmodi�ed and modi�ed peptides. Based

on the iPRG2012 data set ANN-SoLo achieves a 38 % in-

crease in identi�cations when performing an open search

compared to a standard search (table 1), with the addi-

tional identi�cations corresponding to modi�ed peptides.

Moreover, a further 30 % increase in identi�cations is

achieved by using the shifted dot product instead of the

standard dot product to score the spectral similarity of

modi�ed spectra (table 1). Because the shifted dot product

explicitly accounts for modi�cation-induced shifts in the

fragment ion peaks it more accurately identi�es modi�ed

spectra. As a result, by employing a cascade open search

strategy and using an optimized scoring function mod-

i�ed spectra can be accurately matched to the spectral

library, resulting in a total increase in identi�cations of

68 % when comparing a standard search against an open

search on the iPRG2012 data set.

3.2 Approximate nearest neighbor
indexing speeds up open search

By using an ANN index only a limited number of the most

relevant library spectra are retrieved during the candidate

selection step, which speeds up the subsequent candidate

ranking step because far fewer SSM scores have to be

computed. Two major hyperparameters in�uence the

performance of the ANN index: the number of trees in the

index ensemble, which controls the index construction

during an initialization phase, and the number of tree

nodes to inspect when evaluating a query, which controls

the performance during searching.

Using more trees has a positive e�ect on the accuracy

of the ANN index by providing multiple complementary

views on the data subspaces, as detailed previously. How-

ever, this improvement comes at the expense of some

increased computational requirements becase more in-

dex trees need to be traversed. Additionally, the number
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Figure 4: Runtime versus number of identi�cations for

various searches of the iPRG2012 data set. Timing results

in this �gure and in table 2 were obtained on a single-

core Intel Xeon E5-2680 v2 processor. An open search

identi�es a signi�cantly higher number of spectra than

a standard search at the expense of a large increase in

runtime. The ANN-SoLo results show that the ANN index

signi�cantly reduces the time required for open searches.

The multiple ANN-SoLo results correspond to di�erent

con�gurations of the ANN index hyperparameters, with

the settings that lie on the Pareto frontier shown. Even

when maximizing accuracy to achieve the same number

of identi�cations as the brute-force approach ANN-SoLo

considerably speeds up the search.

of tree nodes to inspect when evaluating a query can sim-

ilarly be used to con�gure the accuracy of the ANN index.

Instead of only inspecting the subspace that exactly con-

tains the query point the neighboring subspaces that are

closest to the query point across all index trees can be

inspected as well. This approach helps to avoid missing

the nearest neighbors for the query point. Because the

number of nodes to inspect is speci�ed across all trees in

the ANN index, this hyperparameter is to some extent

related to the number of trees used.

These two hyperparameters constitute a trade-o� be-

tween speed and accuracy, both when constructing the

ANN index and at runtime. In general, using more trees

and inspecting more nodes will lead to a more faithful

approximation of the set of nearest neighbors retrieved

from the ANN index, at the expense of an increase in com-

putational requirements. Based on the iPRG2012 data set

there is a clear di�erence in runtime between a stan-

dard search and the traditional brute-force approach of

performing an open search on the one hand, and the ad-

vantage of using an ANN index for the open search on

the other hand (�gure 4). As shown previously, the open

search allows us to identify a signi�cantly higher number

of spectra, with the newly identi�ed spectra correspond-

ing to modi�ed peptides. Unfortunately, this comes at the

expense of a large increase in runtime, rendering OMS

infeasible in practice. In contrast, by making use of an

ANN index ANN-SoLo signi�cantly decreases the time

required to perform an open search, making OMS a viable

strategy.

The ANN-SoLo speedup results from a reduction in the

number of candidates that have to be evaluated during
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Figure 5: Pro�ling shows how much time was spent in

each part of the code for various searches of the iPRG2012

data set. During a brute-force open search the majority

of time is spent during the candidate ranking step, while

ANN indexing helps to select only a limited number of

candidates and minimize the time required to rank these

candidates. Note that relative time consumptions are

reported: using an ANN index results in a signi�cant

speedup, as shown previously. Correspondingly, for ex-

ample, although the relative I/O time consumption is

higher when using an ANN index than in the brute-force

case, the absolute I/O time consumption is lower.

the candidate ranking step (�gure 5). A standard search

only takes a very short amount of time, with I/O costs

for reading the experimental and library spectra forming

the major bottleneck. In contrast, the massive increase in

runtime of a brute-force open search is caused by the fact

that when a very wide precursor mass window is used

each query spectrum must be compared against a very

large number of library spectra. Using an ANN index

instead puts the focus on the candidate selection step

to only retrieve the most relevant candidates. As a re-

sult, the relative proportion of work during the candidate

ranking step signi�cantly decreases. The ANN index also

makes it possible to use complex scoring functions with-

out incurring an overly excessive slowdown. Although

the shifted dot product is computationally more expen-

sive than the standard dot product, negative e�ects on the

total runtime are limited due to the optimized candidate

selection step.

3.3 ANN-SoLo outperforms SpectraST in
terms of speed and number of
identifications

We compared ANN-SoLo to SpectraST, a commonly used

spectral library search engine, in terms of speed and the

number of identi�cations on the HEK293 data set (ta-

ble 2). For a standard search SpectraST is clearly faster

than ANN-SoLo. This can be attributed to simple imple-

mentation di�erences, of which a notable factor is that

ANN-SoLo is mainly implemented in the Python pro-

gramming language while SpectraST is implemented in

C++. As Python is an interpreted programming language

it can be up to a hundred times slower than a compiled
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Search engine Time (min) # SSMs # Peptides

Standard search
SpectraST 5 369 242 109 518

ANN-SoLo 24 352 938 113 108

Open search
SpectraST 1277 531 886 137 064

ANN-SoLo 107 745 327 195 999

Table 2: Runtime and identi�cation rates for ANN-SoLo

and SpectraST on the HEK293 data set. The runtime is

reported in minutes and represents the average runtime

over all 24 raw �les. The identi�cation rate is reported

in terms of the number of accepted SSMs at 1 % FDR and

the number of corresponding unique peptidoforms and

is reported for the entire 24-run data set.

programming language such as C++, as benchmarks have

shown for several general tasks. In contrast, for the open

search ANN-SoLo is an order of magnitude faster than

SpectraST, reducing the search time from almost a day

on average to under two hours, despite the inherent pro-

gramming language disadvantage. This result clearly

shows the massive advantage of ANN indexing to speed

up OMS.

Furthermore, by using a cascade search strategy to

maximize the number of identi�ed unmodi�ed and mod-

i�ed spectra and the shifted dot product to sensitively

match modi�ed spectra to their unmodi�ed counterpart

ANN-SoLo successfully achieves a higher identi�cation

rate than SpectraST, surpassing even previously reported

results [15, 39].

Next, we have investigated which modi�cations fre-

quently occur in this HEK293 human cell line data set

based on the precursor mass di�erences for the identi�ed

SSMs. By referencing the observed precursor mass dif-

ferences against the Unimod public database of protein

modi�cations [16] we can derive the chemical events that

likely explain the observed mass di�erences (table 3). We

can see that common modi�cations, such as oxidation,

frequently occur. Additionally, mass shifts corresponding

to various amino acid substitutions can be frequently ob-

served. These can potentially indicate single amino acid

variants, but can likely also be explained by the incom-

plete coverage of the human proteome by our spectral

library. Consequently, OMS can to some extent allevi-

ate a longstanding criticism of spectral library searching

in that it is only able to re-identify spectra that have

been previously observed. Finally, the precise mapping

of these mass di�erences to a known modi�cation fur-

ther substantiates the validity of these identi�cations and

con�rms that OMS can be used to accurately identify

modi�ed peptides.

4 Conclusions

Here we have introduced the ANN-SoLo spectral library

search engine. ANN-SoLo uses ANN indexing to e�-

ciently select the most likely candidate matches from a

# SSMs ∆m (Da) Potential modi�cation

369 341 0.003

46 659 1.005 First isotopic peak

31 473 15.998 Oxidation or hydroxylation

/ Ala → Ser substitution /

Phe → Tyr substitution

14 088 2.006 Second isotopic peak

6 418 −0.991 Amidation

5 777 −17.023 Pyro-glu from Q / loss of ammo-

nia

5 433 17.002 Replacement of proton with am-

monium ion

4 815 183.039 Aminoethylbenzenesulfonylation

4 777 27.998 Formylation / Ser → Asp sub-

stitution / Thr → Glu substitu-

tion

3 266 301.991 Unidenti�ed modi�cation [15,

39]

Table 3: The most frequent precursor mass di�erences

for the HEK293 data set and likely modi�cations sourced

from Unimod corresponding to these precursor mass dif-

ferences. The delta-mass column contains the median

precursor mass di�erence of that SSM subgroup.

spectral library based on their spectral similarity with the

query spectrum. As candidate retrieval using the ANN

index only depends on spectral similarity without taking

precursor mass information into account this strategy

naturally lends itself to OMS. By using the ANN index the

number of candidates that need to be evaluated for each

query spectrum can be reduced by orders of magnitude,

decreasing the time required to perform an open search

accordingly. Furthermore, because the number of poten-

tial matches that needs to be evaluated is small this opens

up the possibility to use more computationally expen-

sive similarity measures to score SSMs without incurring

an overly large performance hit. This is exempli�ed by

our use of the shifted dot product, which allows us to

accurately match a modi�ed spectrum to its unmodi�ed

counterpart.

Thanks to these advances open spectral library search-

ing has become a feasible strategy for the sensitive identi-

�cation of modi�ed peptides. We have demonstrated how

an extremely large spectral library can be used to detect

peptide modi�cations at a large scale, which can give im-

portant insights into their biological activity. Notably, we

have used a repository-wide spectral library which has

been derived from a massive amount of publicly available

spectral data. Using a spectral library of such size for

open searching with a traditional search engine would

drastically su�er from excessive runtimes. In contrast,

ANN-SoLo makes it possible to perform such searches in

a reasonable time frame.

A small disadvantage of using an ANN index, how-

ever, is that this index needs to be constructed prior to

MS/MS spectrum identi�cation. Especially when many

index trees are used in combination with a large spectral

library building the ANN index may take a non-negligible
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amount of time. However, this step only needs to happen

once, after which the ANN index can be reused for sub-

sequent searches. Additionally, the space requirement of

the ANN index is proportional to the size of the spectral

library for which it is constructed. The ANN index will

typically be larger than other commonly used indexing

methods to assist MS/MS spectrum identi�cation, such

as a peptide index [22, 47] or a fragment ion index [39],

because the ANN index contains a low-resolution vector

representation for each spectrum in the spectral library.

Nonetheless, for current spectral libraries the memory

requirements remain feasible.

The application of ANN indexing need not be restricted

to open spectral library searching. Other identi�cation

tasks which exhibit a large search space, such as metapro-

teomics [45, 48], or activities which consist of large-scale

spectral processing tasks, such as spectral clustering [25,

30, 31, 56], can similarly bene�t from ANN indexing to

achieve substantial speedups.

Furthermore, although here we have used an ANN

index consisting of an ensemble of random projection

trees several alternative methods for ANN indexing exist.

Some examples of ANN indexing techniques which have

exhibited excellent empirical performance [5] include hi-

erarchical navigable small world graphs [43], LSH [4],

product quantization [36], etc. Additionally, non-metric

space indexing can potentially be used to retrieve can-

didates based on the shifted dot product similarity di-

rectly [10]. An investigation into whether these tech-

niques are suitable to speed up spectral library searching

remains as future work. Another promising approach

to achieve further speedups is by making use of special-

ized hardware such as GPUs, both for candidate selection

using an ANN index [35] as well as to evaluate SSMs [6].

Finally, the FDR procedure plays an important role in

evaluating the identi�cation results of an open search.

As using a very wide precursor mass window leads to a

large increase in search space the probability of having a

high-scoring spurious match is considerably higher for

an open search compared to a standard search, and such

high-scoring decoy matches can have a large in�uence

on the number of accepted identi�cations when using

a global FDR strategy. In contrast, the subgroup FDR

procedure calculates the FDR separately for spectra that

have distinct modi�cations [27]. In practice we have ob-

served that subgroups that unambiguously correspond

to known modi�cations often contain very few decoy

matches. In contrast, many decoy matches do not belong

to a common subgroup as their precursor mass di�erence

is randomly distributed across the range of the precursor

mass window. Instead these decoy SSMs are combined in

the residual group for FDR calculation, minimizing their

negative in�uence on the accepted identi�cations. Cau-

tion has to be observed though as the actual FDR might

be underestimated when too small groups are used [27].

It is a standing research question whether alternative

approaches are needed for the accurate FDR estimation

of open searches [21, 39].

The ANN-SoLo spectral library searching engine is

freely available as open source. The source code and

detailed instructions can be found at https://github.

com/bittremieux/ANN-SoLo.
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