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Abstract1

Why groups of individuals sometimes exhibit collective ‘wisdom’ and other times mal-2

adaptive ‘herding’ is an enduring conundrum. Here we show that this apparent conflict is3

regulated by the social learning strategies deployed. We examined the patterns of human4

social learning through an interactive online experiment with 699 participants, varying both5

task uncertainty and group size, then used hierarchical Bayesian model-ftting to identify6

the individual learning strategies exhibited by participants. Challenging tasks elicit greater7

conformity amongst individuals, with rates of copying increasing with group size, leading to8

high probabilities of herding amongst large groups confronted with uncertainty. Conversely,9

the reduced social learning of small groups, and the greater probability that social informa-10

tion would be accurate for less-challenging tasks, generated ‘wisdom of the crowd’ effects11

in other circumstances. Our model-based approach provides evidence that the likelihood of12

collective intelligence versus herding can be predicted, resolving a longstanding puzzle in13

the literature.14

Keywords:15

collective intelligence, herding, social learning, computational modelling, web-based exper-16

iment, hierarchical Bayesian approach17
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Understanding themechanisms that account for accurate collective decision-making amongst18

groups of animals – ‘collective intelligence’ – has been a central focus of animal behaviour re-19

search1–5. There are a large number of biological examples showing that collectives of poorly20

informed individuals can achieve a high performance in solving cognitive problems under un-21

certainty6–10. Although these findings suggest fundamental cognitive benefits of grouping11,22

there is also a long-standing recognition, especially for humans, that interacting individuals may23

sometimes be overwhelmed by the ‘extraordinary popular delusions and madness of crowds’12.24

Herd behaviour (i.e. an alignment of thoughts or behaviours of individuals in a group) occurs25

because individuals imitate each other13–15, even if each is a rational decision-maker16. Imita-26

tion is thought to be a cause of financial bubbles12;17, ‘groupthink’18 and volatility in cultural27

markets19;20. More generally, interdependence between individual decisions may undermine the28

wisdom of crowds effect21 (but see22), whilst potential disadvantages of information transfer are29

well-recognised in the biological literature23;24. It seems that information transmission among30

individuals, and making decisions collectively, is a double-edged sword: combining decisions31

may provide the benefits of collecitve intelligence, but at the same time, increase the risk of an32

informational cascade16. Collectively, an understanding of whether and, if so, how it is possible33

to prevent or reduce the risk of maladaptive herding, while concurrently keeping or enhancing34

collective intelligence, is largely lacking.35

A balance between using individual and social information may play a key role in deter-36

mining the trade-off between collective wisdom and ‘madness’25. If individuals are too reliant37

on copying others’ behaviour, any idea, even a maladaptive one, can propagate in the social38

group through positive feedbacks2;26. For instance, disproportionally strong positive responses39
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to recruitment signals in social insects have been shown to trap the whole colony to exploit a40

suboptimal, out-dated resource24;27. Likewise, conformity-biased transmission in humans and41

other animals can potentially lead groups to converge on a maladaptive behaviour16;23;28;29. On42

the other hand, however, if individuals completely ignore social information so as to be indepen-43

dent, they will fail to exploit the benefits of aggregating information through social interactions.44

The extent to which individuals should use social information should fall between these two45

extremes. Evolutionary models predict that the balance between independence and interdepen-46

dence in collective decision-making may be changeable, contingent upon the individual-level47

flexibility and inter-individual variability associated with the social learning strategies deployed48

in diverse environmental states28;30;31.49

Experimental studies report that animals (including humans) increase their use of social in-50

formation as the returns from asocial learning become more unreliable32–37, whilst theory and51

data suggest that the benefits to individuals of social learning increase with group size34;38–42.52

Selectivity in the predicted use of social information may impact on collective decision-making53

because slight differences in the parameter values of social information use are known to be able54

to alter qualitatively the collective behavioural dynamics1;2;5;43;44. Therefore, researchers should55

expect populations to exhibit a higher risk of being trapped with maladaptive behaviour with56

increasing group size and decreasing reliability of asocial learning (and concomitant increased57

reliance on social learning).58

From the viewpoint of the classic wisdom of crowds theory, increasing group size may in-59

crease collective accuracy45–48. The relative advantage of the collective over solitary individuals60

may also be highlighted by increased task difficulty, because there would be more room for the61
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performance of difficult tasks to be improved compared to easier tasks in which high accuracy62

can be achieved by asocial learning only. To understand the collective decision performance of63

social learners fully requires fine-grained quantitative studies of social learning strategies and64

their relations to collective dynamics, linked to sophisticated computational analysis.65

The aims of this study were twofold. First, we set to test the hypothesis that the circumstances66

under which collective decision making will generate ‘wisdom’ can be predicted with knowledge67

of the precise learning strategies individuals deploy, through a combination of experimentation68

and theoretical modelling. The choice of an abstract decision-making task allowed us to imple-69

ment a computational modelling approach, which has been increasingly deployed in quantitative70

studies of animal social learning strategies35;49–51. In particular, computational modelling al-71

lowed us to conduct a parametric description of different information-gathering processes and72

to estimate the parameter values at an individual-level resolution. This approach allows us to73

characterise the complex relationship between individual-level decision, learning strategies and74

collective-level behavioural dynamics.75

Second, we added resolution to our analyses by manipulating both task uncertainty and group76

size in our web-based experiments with adult human subjects, predicting that these factors would77

induce heavier use of social information in humans, and thereby alter the balance between col-78

lective intelligence and the risk of inflexible herding. To do this, we focused on human groups79

exposed to a simple gambling task called a multi-player ‘multi-armed bandit’, where both asocial80

and social sources of information were available35;51;52. Through development of an interactive,81

web-based collective decision-making task, and use of hierarchical Bayesian statistical meth-82

ods in fitting our computational model to the experimental data, we identify the individual-level83
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learning strategies of participants as well as quantify variation in different learning parameters,84

allowing us to conduct an informed exploration of the population-level outcomes. The results85

provide clear evidence that the collective behavioural dynamics can be predicted with knowledge86

of human social learning strategies.87

Below, we firstly deploy agent-based simulation to illustrate how the model parameters re-88

lating to social learning can in principle affect the collective-level behavioural dynamics. The89

simulation provides us with precise, quantitative predictions concerning the complex relation-90

ship between individual behaviour and group dynamics. Second, we present the findings of91

a multi-player web-based experiment with human participants that utilises the gambling task92

framework. Applying a hierarchical Bayesian statistical method, we estimated the model’s pa-93

rameters for each of 699 different individuals, allowing us to (i) examine whether and, if so, how94

social information use is affected by different group size and task uncertainty, and (ii) whether95

and how social-information use affects both collective intelligence and the risk of maladaptive96

herding.97

1 Results98

1.1 The relationship between social learning and the collective behaviour99

Figure 1 shows the relationship between the average decision accuracy and individual-level social100

information use obtained from our individual-based model simulations, highlighting the trade-101

off between accuracy and flexibility of collective decision-making. When the mean conformity102

exponent is small (i.e. �̄ = (
∑

i �i)∕individuals = 1), large groups are able to recover the decision103

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 9, 2018. ; https://doi.org/10.1101/326637doi: bioRxiv preprint 

https://doi.org/10.1101/326637
http://creativecommons.org/licenses/by-nc-nd/4.0/


accuracy quickly as do small groups after the location of the optimal option has been switched,104

whereas overall improvement by increasing group size in decision accuracy is subtle when the105

average social learning weight is also small (i.e. �̄ = (
∑

i
∑

t �i,t)∕(individuals × rounds) = 0.3;106

Figure 1A and 1C). On the other hand, when both the conformity exponent �̄ and the social107

learning weight �̄ are large, average performance is no longer monotonically improving with in-108

creasing group size, and it is under these circumstances that the strong herding effect becomes109

prominent (Figure 1D). Although the high conformity bias with low social learning weight makes110

large groups more accurate before the environment changes, larger groups are less flexible in per-111

formance recovery (Figure 1C). The patten is robust for other parameter regions (Supplementary112

Supplementary Figure 2).113

Figure 2C and 2D indicate that when both �̄ and �̄ are large the collective choices converged114

either on the good option or on one of the poor options almost randomly, regardless of the option’s115

quality, and that once individuals start converging on an option the population gets stuck. As a116

result, the distribution of the groups’ average performance over the replications becomes a bi-117

modal ‘U-shape’. Interestingly, however, the maladaptive herding effect remains relatively weak118

in smaller groups (see Figure 1D; the dotted line). This is because the majority of individuals in119

smaller groups (i.e. two individuals out of three) are more likely to break the cultural inertia by120

simultaneously exploring another option by chance than are the majority in larger groups (e.g.121

six out of ten).122

In summary, the model simulation suggests an interaction between social learning weight123

�̄ and conformity exponent �̄ on decision accuracy and the risk of inflexible herding. When124

the conformity exponent is not too large, increasing group size can increase decision accuracy125
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while concurrently retaining decision flexibility across a broad range of the mean social learning126

weights. When the conformity bias becomes large, however, the risk of inflexible herding arises,127

and, when both social learning parameters are large, collective intelligence is rare and inflexible128

herd behaviour dominates.129

1.2 Collective performance of human participants130

Figure 3A shows behavioural dynamics of human participants in different group sizes and dif-131

ferent task uncertainty conditions (see Supplementary Supplementary Figure 3 for each group’s132

behaviour). The average decision performance of collectives (i.e. group size ≥ 2) exceeded that133

of solitary individuals (i.e. group size = 1) in the Moderate-uncertainty condition (i.e. the 95%134

Bayesian CI of �t exceeds 0 at regions t ∈ [9, 40] and [67, 70]; Figure 3B). In other uncertainty135

conditions, no global positive effect of grouping was observed, suggesting that collective intel-136

ligence was prominent only in the Moderate-uncertainty condition. However, the main effect of137

group size was positive in the post-change period of the Low-uncertainty condition (mean and138

the 95% Bayesian CI of!2 = 0.67 [0.44, 0.91]; Table 1), suggesting that the average performance139

of large groups (e.g. 12 ≤ group size ≤ 16) were better, and hence more flexible, than smaller140

groups and solitaries (Figure 3A). On the other hand, in the Moderate-uncertainty condition, the141

average performance of the collectives dropped below that of the solitaries after the environmen-142

tal change (i.e. �t < 0 at a region t ∈ [42, 45]; Figure 3B). Also, the main effect of group size143

was negative in the post-change period (mean and the 95% Bayesian CI of !2 = -0.26 [-0.44,144

-0.11]; Table 1), suggesting that larger groups were more likely to get stuck in the out-dated op-145

tion in the Moderate-uncertainty condition. In the High-uncertainty condition, the main effect of146
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Figure 1: Findings of the individual-based model showing the effects of social information use on the average

decision accuracy over replications. The x-axis gives the round and y-axis gives the proportion of individuals

expected to choose the optimal slot (i.e. decision accuracy) averaged over all replications. The vertical dashed line

indicates the timing of environmental (i.e. payoff) change (at t = 41). Different group sizes are shown by different

styles (black (dotted): n = 3, orange (dashed): n = 10, red (solid): n = 30). We set the average slopes for the social

learning weight to be equal to zero for the sake of simplicity; namely, �� = 0. Other free parameter values (i.e. �� ,

��∗0 , �� ,�� , ��∗0 , �� , �� , �� and ��) are best approximates to the experimental fitted values (see Table 2 and

Supplementary Table 1).
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Figure 2: Results from the individual-based model simulations showing the distribution of each group’s mean

accuracy before environmental change (t ≤ 40). The x-axis gives the mean decision accuracy over the first 40

rounds (i.e. the environment 1) for each replication. Different group sizes are shown by different styles (black

(dotted): n = 3, orange (dashed): n = 10, red (solid): n = 30). The other free parameter values are the same as in

Figure 1.
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group size was positive in the prior-change period and negative post-change (mean and the 95%147

Bayesian CIs are !1 = 0.07 [0.00, 0.15] and !2 = -0.10 [-0.17, -0.02]; Table 1), although the148

effect size was too small to differentiate performances of different group sizes visually (Figure149

3A). Using monetary earnings as an outcome variable of decision performance did not change150

our conclusions qualitatively (supporting Supplementary Figure 4 and Supplementary Table 2).151

Our phenomenological model regression established that manipulating both task uncertainty152

and group size indeed affected the collective decision dynamics. Below, we address whether or153

not the pattern could be explained with knowledge of human social learning strategies estimated154

through our learning and decision-making computational model.155

1.3 Estimation of human social information use156

Using posterior estimation values obtained by the hierarchical Bayesian model fitting method157

(Table 2), we were able to categorise the participants as deploying one of three different learn-158

ing strategies based on their fitted conformity exponent values; namely, the ‘positive frequency-159

dependent copying’ strategy (�i ≫ 0), the ‘negative-frequency dependent copying’ strategy160

(�i ≪ 0) and the ‘random choice’ strategy (�i ≈ 0). Note that we could not reliably detect161

the ‘weak positive’ frequency-dependent strategy (0 < �i ≤ 1) due to the limitation of statisti-162

cal power (Supplementary Figure 5). Some individuals whose ‘true’ conformity exponent fell163

between zero and one would have been categorised as exhibiting a random choice strategy (Sup-164

plementary Figure 7). Individuals identified as exhibiting a positive frequency-dependent copiers165

were mainly those whose conformity exponent was larger than one (�i > 1).166

Figure 4A show the estimated frequencies of different learning strategies. Generally speak-167
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2 ≤ n ≤ 92 ≤ n ≤ 9 2 ≤ n ≤ 6
8 ≤ n ≤ 17 12 ≤ n ≤ 2712 ≤ n ≤ 16

D

B

C

Figure 3: Time evolutions and distributions of decision performance for each condition. A: The average

decision accuracies of the experimental participants (red: large groups, orange: small groups, dark grey: lone

individuals). All individual performances were averaged within the same size category (solid lines). The

light-shaded areas, dark-shaded areas, and dashed curves show the 95%, 50%, and median Bayesian credible

intervals of the phenomenological, time-series logistic regression. Sample sizes for large, small, and lone groups

are: N = 43,N = 44 andN = 38 for the Low-uncertainty condition;N = 52,N = 56 andN = 37 for the

Moderate-uncertainty condition; andN = 259,N = 168 andN = 58 for the High-uncertainty condition,

respectively. B: Change in the main effect of the dummy variable of grouping on the decision accuracy at the

phenomenological regression model. The shaded areas are the Bayesian CIs and solid curves are the median. C, D:

Change and distribution in average decision accuracy of the individual-based post-hoc simulations of the learning

process model using the experimentally fit parameter values. C: All replications were averaged within the same size

category (solid lines). The shaded areas give the 50% quantiles. The experimental horizon (i.e. t = 70) is indicated

by the vertical line. D: Performance was averaged within prior- and post-change periods for each replication for

each group sizes category.
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ing, participants were more likely to utilize a positive frequency-dependent copying strategy168

than the other two strategies (the 95% Bayesian CI of the intercept of the GLMM predicting the169

probability to use the positive frequency-dependent copying strategy is above zero, [1.05, 2.50];170

Supplementary Table 4). We found that positive frequency-dependent copying decreased with171

increasing task uncertainty (the 95% Bayesian CI of task uncertainty effect is below zero, [-1.88,172

-0.25]; Supplementary Table 4). We found no clear effects of either the group size, age or gender173

on adoption of the positive frequency-dependent copying strategy, except for the negative inter-174

action effect between age and task uncertainty (the 95% Bayesian CI of the age × uncertainty175

interaction = [-1.46, -0.15]; Supplementary Table 4).176

We also investigated the effects of group size and task uncertainty on the fitted individual177

parameter values. We found that the individual mean social learning weight parameter (i.e. �̄i =178

(
∑

t �i,t)∕(total rounds)) increased with group size (the 95% Bayesian CI = [0.15, 0.93]; Figure179

4B; Supplementary Table 5), and decreased with uncertainty (the 95% Bayesian CI = [-0.98,180

-0.22]), and age of subject (the 95% Bayesian CI = [-0.36, -0.02]). However, the negative effects181

of task uncertainty and age disappeared when we focused only on �̄i of the positive frequency-182

dependent copying individuals, and only the positive effect of the group size was confirmed183

(Supplementary Table 6; Supplementary Figure 6). It is worth noting that the meaning of the184

social learning weight is different between these three different strategies: The social learning185

weight regulates positive reactions to the majorities’ behaviour for positive frequency-dependent186

copiers, whereas it regulates avoidance of the majority for negative-frequency dependent copiers,187

and determines the probability of random decision-making for the random choice strategists.188

The individual conformity exponent parameter �i increased with task uncertainty (the 95%189
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Bayesian CI = [0.38, 1.41]), but we found no significant effects of group size, age, gender or190

interactions (Figure 4C; Supplementary Table 7). These results were qualitatively unchanged191

when we focused only on the positive frequency-dependent copying individuals (Supplementary192

Table 8; Supplementary Figure 6).193

We observed extensive individual variation in social information use. The greater the task’s194

uncertainty, the larger were individual variances in both the mean social learning weight and the195

conformity exponent (the 95% Bayesian CI of the GLMM’s variation parameter for �̄i was [1.11,196

1.62] (Supplementary Table 5) and for �i was [1.07, 1.54] (Supplementary Table 7)). This was197

confirmed when focusing only on the positive frequency-dependent copying individuals: The198

Bayesian 95% CIs were [1.14, 1.80] (Supplementary Table 6) and [0.71, 1.10] (Supplementary199

Table 8), respectively.200

The manner in which individual variation in social-information use of positive frequency-201

dependent copying individuals changes over time is visualised in Figure 5. The social learn-202

ing weights generally decreased with experimental round. However, some individuals in the203

Moderate- and the High-uncertain conditions accelerated rather than decreased their reliance on204

social learning over time. Interestingly, those accelerating individuals tended to have a larger205

conformity exponent (Supplementary Figure 5). In addition, the time-dependent �i,t in our al-206

ternative model generally increased with experimental round in the Moderate- and the High-207

uncertainty conditions (Supplementary Figure 10), although the fitting of �i,t in the alternative208

model was relatively unreliable (Supplementary Figure 9). These findings suggest that con-209

formists tended to use asocial learning at the outset (i.e. exploration asocially) but increasingly210

started to conform as the task proceeded (i.e. exploitation socially).211
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Positive freq. dep.

C

A

B

Negative

freq. dep.

Random choice

Figure 4: Model fitting for the three different task’s uncertain conditions (the Low-, Moderate- and

High-uncertainty) and the different group size. Three different learning strategies are shown in different styles

(red-triangle: positive frequency-dependent learning, blue-circle: negative frequency-dependent learning;

grey-circle: nearly random choice strategy). (A) Frequencies of three different learning strategies. Note that a sum

of the frequencies of these three strategies in the same group size does not necessarily equal to 1, because there are a

small number of individuals eliminated from this analysis due to insufficient data. (B) Estimated social learning

weight, and (C) estimated conformity exponent, for each individual shown for each learning strategy. The 50%

Bayesian CIs of the fitted GLMMs are shown by dashed lines and shaded areas. The horizontal lines in (C) show a

region −1 < �i < 1. Sample sizes for Negative Frequency Dependent, Positive Frequency Dependent, and Random

Choice strategies are: N = 2,N = 61 andN = 14 for the Low-uncertainty condition;N = 3,N = 80 andN = 15

for the Moderate-uncertainty condition; andN = 32,N = 260 andN = 106 for the High-uncertainty condition,

respectively.
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Figure 5: Change in fitted values (i.e. median of the Bayesian posterior distribution) of the social learning

weight �i,t with time for each Positive Frequency Dependent individual, for each level of task uncertainty.

Thick dashed lines are the median values of �i,t across the subjects for each uncertainty condition. Individual

conformity exponent values �i are shown in different colours (higher �i is darker). Sample size for each task

uncertainty condition is: N = 61 (Low-uncertainty),N = 80 (Moderate-uncertainty) andN = 260

(High-uncertainty).

Extensive variation in the temporal dynamics of the social learning weight �i,t was also found212

for the negative-frequency dependent copying individuals but not found for random choice indi-213

viduals (Supplementary Figure 5). Individuals deploying a random choice strategy exhibited a214

�i,t that approached to zero, indicating that their decision-making increasingly relied exclusively215

on the softmax choice rule, rather than unguided random choices, as the task proceeded.216

No significant fixed effects were found in other asocial learning parameters such as the learn-217

ing rate �i and the mean inverse temperature �̄i = (
∑

t �i,t)∕(total rounds) (Supplementary Table218

9, Supplementary Table 10 and Supplementary Figure 6).219

In summary, our experiments on adult humans revealed asymmetric influences of increasing220

task uncertainty and increasing group size on the social learning parameters. The conformity221

exponent increased with task uncertainty on average but the proportion of positive frequency-222
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dependent copying individuals showed a corresponding decrease, due to the extensive individual223

variation emerging in the High-uncertain condition. Conversely, group size had a positive effect224

on the mean social learning weight, but did not affect conformity.225

1.4 Social learning strategies explain the collective dynamics226

The post-hoc simulation provides statistical predictions on how likely it is, given the fitted learn-227

ing model parameters, that groups of individuals make accurate decisions and that they exhibit228

inflexible herding. Figure 3C shows the change over time in performance with different group229

sizes and different uncertainty conditions, generated by the post-hoc simulation (see also Sup-230

plementary Figure 3). The trajectories of the simulated dynamics recovered nicely the pattern231

observed in the experiment (Figure 3A and 3C), suggesting that the strategic changes in the232

individual-level social information use (Figure 4) could explain the collective-level behavioural233

pattern.234

Figure 3D shows that larger groups are more likely to make accurate decisions than are235

both small groups and solitaries in the period prior to change across all uncertainty conditions,236

suggesting collective intelligence was operating. In the post-change period, however, perfor-237

mance differed between the conditions. In the Low-uncertainty condition, where we found that238

the participants were most likely to have a relatively weak positive frequency-dependence (i.e.239

�̄ = 1.65), large groups performed better than did small groups over 59.5% of total 10,000240

repetitions. However, in the Moderate-uncertainty condition, where we found that participants241

were most likely to have strong positive frequency dependence (�̄ = 3.00, c.f. 1.65 in the Low-242

uncertainty condition), the large groups were more likely to get stuck on the suboptimal option,243
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and hence the small groups performed better than did the large groups over 69.5% of repetitions244

(Figure 3D). The decision accuracy did not substantially differ with group size in the post-change245

period in the High-uncertainty condition although the large groups performed slightly better than246

did the small groups (50.8% of the repetitions).247

Interestingly, although their relatively low conformity biases, there were some groups in the248

Low-uncertainty condition that seemed to exhibit herding (the ‘humped’ area at the lefthand side249

to the peak of the performance distribution in the post-change period; Figure 3D). This might be250

due to the lower softmax exploration rates among social learners in the Low-uncertainty condition251

(i.e. both ��∗0 and �� were large; Table 2): the whole population gets stuck because all individuals252

are very exploitative on their past experience.253

2 Discussion254

We investigated whether and how human social learning strategies regulate the trade-off between255

collective intelligence and inflexible herding behaviour using a collective learning-and-decision-256

making task combined with simulation and model fitting. We examined whether manipulat-257

ing the reliability of asocial learning and group size would affect the use of social information,258

and thereby alter the collective human decision dynamics, as suggested by our computational259

model simulation. Although a theoretical study has suggested that reliance on social learning260

and conformity bias would play a role in collective dynamics2;5;53, thus far no empirical studies261

have quantitatively investigated the population-level consequences of these two different social262

learning processes. Our high-resolution, model-based behavioural analysis using a hierarchi-263

cal Bayesian statistics enabled us to identify individual-level patterns and variation of different264
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learning parameters and to explore their population-level outcomes. The results provide quanti-265

tative support for our hypothesis that the collective decision performance can be predicted with266

quantitative knowledge of social learning strategies.267

Overall, our individual-based computational model recovered the behavioural pattern sug-268

gested by the phenomenological regression (Figure 3). Using the post-hoc simulation with269

individually-fit model parameters, we confirmed that in the Low-uncertainty condition, where270

individuals had weaker positive frequency bias (i.e. �̄ ≈ 1.65), larger groups were able to be271

more accurate than smaller groups while retaining flexibility in their decision-making9, although272

their low asocial exploration rates seemed to undermine the potential flexibility. However, in the273

Moderate- and the High-uncertain conditions where individuals had the higher conformity ex-274

ponent parameters (i.e. �̄ ≈ 3.0 and 2.7, respectively), larger groups performed better prior to275

environmental change but were vulnerable to getting stuck with an out-dated maladaptive option276

post change. Therefore, the changes in the level of conformity in human individuals34;41 indeed277

incurred a trade-off between the collective intelligence effect and the risk of inflexible herding.278

Although the social learning weight increased with increasing group size, the overall mean279

value was �̄i ≈ 0.3 (Figure 4B; Supplementary Figure 5; Supplementary Figure 6) and it de-280

creased on average as the task proceeded (Figure 5). This implies a weaker social than asocial281

influence on decision-making as reported in several other experimental studies35;54–56 although282

evolutionary models tend to predict heavier reliance on social learning than experimental studies283

report57;58. Thanks to this relatively weak reliance of social learning, the kind of extreme herding284

that would have blindly led a group to any option regardless of its quality, such as the ‘symmetry285

breaking’ known in trail-laying ant collective foraging systems2;5;26, did not occur (Figure 2).286
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Individual differences in rates of exploration might also help to mitigate potential herding.287

Although a majority of participants adopted a positive frequency-dependent copying strategy,288

some individuals exhibited negative frequency dependence or random decision-making (Figure289

4A). The random choice strategy was associated with more exploration than the other strate-290

gies, because it led to an almost random choice at a rate �i, irrespective of the options’ quality.291

Negative-frequency dependent copying individuals could also be highly exploratory. These indi-292

viduals tended to avoid choosing an option upon which other people had converged and would ex-293

plore the other two ‘unpopular’ options. Interestingly, in the High-uncertain condition the mean294

social learning weights of the negative-frequency dependent copying individuals (�̄i ≈ 0.5) were295

larger than that of the other two strategies (�̄i ≈ 0.1, Supplementary Figure 5), indicating that296

these individuals engaged in such majority-avoiding exploration relatively frequently. Such a297

high variety in social information use59–62 and exploratory tendencies would prevent individuals298

from converging on a single option, leading to a mitigation of herding but concurrently dimin-299

ishing the decision accuracy in high-uncertainty circumstances (Figure 3).300

A methodological advantage of using computational models to study social learning strate-301

gies is its explicitness of assumptions about the temporal dynamics of behaviour, which enabled302

us to distinguish different learning strategies63–65. For example, very exploitative asocial re-303

inforcement learners (i.e. for whom exploitation parameter �i,t is large and the social learning304

weight �i,t is nearly zero, as seen in the Low-uncertainty condition) and conformity-biased social305

learners (where the conformity exponent �i is large and �i,t is positive, as seen in the Moderate-306

uncertain condition) would eventually converge on the same option, resulting in the same final307

behavioural steady state. However, how they explored the environment, as well as how they re-308
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acted to the other individuals in the same group, are significantly different and they could produce309

qualitatively different collective temporal dynamics.310

However, our computational model could not fully capture other, potentially more sophisti-311

cated forms of social learning strategies that participants might deploy, which might be a reason312

for the seemingly low rate of social learning observed in the experiment compared to theory57;58.313

Indeed, the post-hoc simulation sometimes failed to recover the observed behavioural trajecto-314

ries. In particular, experimental groups with n = 12, n = 16, and one group in n = 9, in the315

Low-uncertainty condition performed very well, exceeding the 95% CIs of the post-hoc simu-316

lation after the environmental change (Supplementary Figure 3). This indicates that collective317

behaviour in these groups was more flexible than our model predicted. Further empirical studies318

that consider a wider range of possible social learning strategies, e.g. ‘copy-rapidly-increasing-319

option’ strategy66 or Bayesian updating57;67, are needed to explore computational underpinnings320

of social learning and collective behaviour.321

The Internet-based experimentation allowed us to conduct a real-time interactive behavioural322

task with larger subject pools than a conventional laboratory-based experiment. This enabled us323

not only to quantify the individual-level learning-and-decision processes68 but also to map these324

individual-level processes on to the larger-scale collective behaviour5;15;20. Although there are325

always questions about the validity of participants’ behaviour when recruited via web-based tools,326

we believe that the computational modelling approach coupled with higher statistical power due327

to the large sample size, compensates for any drawbacks. The fact that our learning model could328

approximate the participants’ decision trajectories effectively suggest that most of the participants329

engaged seriously with solving the task. An increasing body of evidence supports the argument330

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 9, 2018. ; https://doi.org/10.1101/326637doi: bioRxiv preprint 

https://doi.org/10.1101/326637
http://creativecommons.org/licenses/by-nc-nd/4.0/


that web-based behavioural experiments are as reliable as results from the laboratory69;70.331

The diverse effects of social influence on the collective wisdom of a group has been draw-332

ing substantial attention19;21;22;71;72. The bulk of this literature, including many jury models and333

election models45;73, has focused primarily on the static estimation problem, where the ‘truth’ is334

fixed from the outset. However, in reality, there are many situations under which the state of the335

true value is changing over time so that monitoring and tracking the pattern of change is a crucial336

determinant of decision performance74. In such temporally dynamic environments, decision-337

making and learning are coordinated to affect future behavioural outcomes recursively75. Our338

experimental task provides a simple vehicle for exploring collective intelligence in a dynamic339

situation, which encompasses this learning-and-decision-making feedback loop. Potentially, in-340

tegrating the wisdom of crowds with social learning and collective dynamics research will facil-341

itate the more tractable use of collective intelligence in a temporary changing world.342

In summary, a combination of experimentation and theoretical modelling sheds new light on343

when groups of individuals will exhibit the wisdom of the crowds and when inflexible herding.344

Our analysis implies that herding is most likely amongst individuals in large groups exposed to345

challenging tasks. That is because challenging tasks lead to greater uncertainty and thereby elicit346

greater conformist learning amongst individuals, whilst rates of copying increase with group347

size. Difficult tasks, by definition, render identification of the optimal behavior harder, allowing348

groups sometimes to converge on maladaptive outcomes. Conversely, the reduced conformity349

levels of individuals in small groups, and the greater probability that social information would350

be accurate for less-challenging tasks, generated ‘wisdom of the crowd’ effects in most other cir-351

cumstances. Our findings provide clear evidence that the conflict between collective intelligence352
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and maladaptive herding can be predicted with knowledge of human social learning strategies.353

3 Material and methods354

3.1 Participants355

The experimental procedure was approved by the Ethics Committee at the University of St An-356

drews (BL10808). A total of 755 subjects (354 females, 377 males, 2 others and 22 unspecified;357

mean age (1 SD.) = 34.33 (10.9)) participated through Amazon’s Mechanical Turk. All partic-358

ipants consented to participation through an online consent form at the beginning of the task.359

We excluded subjects who disconnected to the online task before completing at least the first 30360

rounds from our computational-model fitting analysis due to unreliability of the model-parameter361

estimation, resulted in 699 subjects (573 subjects entered the group (i.e. N ≥ 2) and 126 entered362

the solitary (i.e. N = 1) condition). The task was only available for individuals who had greater363

than or equal to 90% HIT approval rate and who accessed from the United States. Although364

no sample-size calculation was performed in advance, our parameter recovery test confirmed365

that the sample size was sufficient for estimation of individual parameters using a hierarchical366

Bayesian method.367

3.2 Design of the experimental manipulations368

The three uncertainty conditions were: Low-uncertainty condition (differences between mean369

payoffs were 1.264), Moderate-uncertainty condition (differences between mean payoffs were370

0.742) and High-uncertainty condition (differences between mean payoffs were 0.3). The mean371
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payoff associated with the ‘excellent’ slot in all three conditions was fixed to 3.1 cents (Supple-372

mentary Figure 1). Each task uncertainty condition was randomly assigned for each different HIT373

session, and participants were allowed to participate in one HIT only. Sample size after the data374

exclusion for each uncertainty condition was: N = 113 (Low-uncertainty condition), N = 132375

(Moderate-Uncertain condition), and N = 454 (High-uncertain condition). We assigned more376

sessions to the High-uncertainty condition compared to the other two because we expected that377

larger group sizes would be needed to generate the collective wisdom in noisier environments.378

To manipulate the size of each group, we varied the capacity of the waiting room from 10 to379

30. Because the task was being advertised on the Worker website at AMT for approximately 2380

hours, some participants occasionally arrived after the earlier groups had already started. In that381

case the participant entered the newly opened waiting room which was open for the next 5 min-382

utes. The number of participants arriving declined with time because newly posted alternative383

HITs were advertised on the top of the task list, which decreased our task’s visibility. This meant384

that a later-starting session tended to begin before reaching maximum room capacity, resulting385

in the smaller group size. Therefore, the actual size differed between groups (Supplementary386

Figure 3, Supplementary Table 1). Data collection and analysis were not performed blind to the387

conditions of the experiments.388

3.3 The multi-player three-armed bandit task389

To study the relationship between social information use and collective behavioural dynamics,390

we focused on a well-established learning-and-decision problem called a ‘multi-armed bandit’391

task, represented here as repeated choices between three slot machines (Supplementary Figure 1,392
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Video 1, for detail see Supplementary Method). Participants played the task for 70 rounds. The393

slots paid off money noisily (in the US cents), varying around two different means during the394

first 40 rounds such that there was one ‘good’ slot and two other options giving poorer average395

returns. From the round 41st, however, one of the ‘poor’ slots abruptly increased its mean payoff396

to become ‘excellent’ (i.e. superior to ‘good’). The purpose of this environmental change was397

to observe the effects of maladaptive herding by potentially trapping groups in the out-of-date398

suboptimal (good) slot, as individuals did not know whether or how an environmental change399

would occur. Through making choices and earning a reward from each choice, individuals could400

gradually learn which slot generated the highest rewards.401

In addition to this asocial learning, we provided social information for each member of the402

group specifying the frequency with which group members chose each slot. All group mem-403

bers played the same task with the same conditions simultaneously, and all individuals had been404

instructed that this was the case, and hence understood that the social information would be in-405

formative.406

Task uncertainty was experimentally manipulated by changing the difference between the407

mean payoffs for the slot machines. In the task with the least uncertainty, the distribution of408

payoffs barely overlapped, whilst in the task with the greatest uncertainty the distribution of409

payoffs overlapped considerably (Supplementary Figure 1).410

3.4 The computational learning-and-decision-making model411

We modelled individual behavioural processes by assuming that individual i makes a choice for412

option m at round t, in accordance with the choice-probability Pi,t(m) that is a weighted average413
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of social and asocial influences:414

Pi,t(m) = �i,t × Social influencei,m,t + (1 − �i,t) × Asocial influencei,m,t, (1)

where �i,t is the social learning weight (0 ≤ �i,t ≤ 1).415

For the social influence, we assumed a frequency-dependent copying strategy by which an416

individual copies others’ behaviour in accordance with the distribution of social frequency infor-417

mation49–51;55:418

Social influencei,m,t =

(

Ft−1(m) + 0.1
)�i

∑

k∈options

(

Ft−1(k) + 0.1
)�i

, (2)

where Ft−1(m) is a number of choices made by other individuals (excluding her/his own choice)419

for the option m in the preceding round t − 1 (t ≥ 2). �i is individual i’s conformity exponent,420

−∞ ≤ �i ≤ +∞. When this exponent is larger than zero, higher social influence is given421

to an option which was chosen by more individuals (i.e. positive frequency bias). When this422

exponent is larger than zero (�i > 0), higher social influence is afforded to an option chosen423

by more individuals (i.e. positive frequency bias), with conformity bias arising when �i > 1,424

such that disproportionally more social influence is given to the most common option28. When425

�i < 0, on the other hand, higher social influence is afforded to the option that fewest individuals426

chose in the preceding round t − 1 (i.e. negative frequency bias). To implement the negative427

frequency dependence, we added a small number 0.1 to F so that an option chosen by no one428

(i.e. Ft−1 = 0) could provide the highest social influence when �i < 0. Note, there is no social429

influence when �i = 0 because in this case the ‘social influence’ favours an uniformly random430
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choice, i.e., Si,t(m) = f 0
m∕(f

0
1 +f

0
2 +f

0
3 ) = 1∕3, independent of the social frequency distribution.431

Note also that, in the first round t = 1, we assumed that the choice is only determined by the432

asocial softmax function because there is no social information available.433

For the asocial influence, we used a standard reinforcement learning with ‘softmax’ choice434

rule75, widely applied in human social learning studies e.g.35;51;55. An individual i updates the435

estimated average reward associated with an option m at round t, namely Q-value (Qi,t(m)), ac-436

cording to the Rescorla-Wagner rule as follows:437

Qi,t+1(m) = Qi,t(m) + �i1(m,mi,t)
(

ri,t(m) −Qi,t(m)
)

, (3)

where �i (0 ≤ �i ≤ 1) is a learning rate parameter of individual i determining the weight given to438

new experience and ri,t(m) is the amount of monetary reward obtained from choosing the option439

m in round t. 1(m,mi,t) is the binary action-indicator function of individual i, given by440

1(m,mi,t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if mi,t = m or t = 1,

0, otherwise.

(4)

Therefore, Qi,t(m) is updated only when the option m was chosen; when the option m was not441

chosen, Qi,t(m) is not updated (i.e. Qi,t+1(m) = Qi,t(m)). Note that, only in the first round t = 1,442

all Q-values are updated by using the chosen option’s reward ri,1(m), so that the individual can443

set a naive ‘intuition’ about the magnitude of reward values she/he would expect to earn from a444

choice in the task; namely, Qi,t=2(1) = Qi,t=2(2) = Qi,t=2(3) = �iri,t=1(m). In practical terms,445

this prevents the model from being overly sensitive to the first experience. Before the first choice,446

individuals had no prior preference for either option (i.e. Qi,1(1) = Qi,1(2) = Qi,1(3) = 0).447
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The Q-value is then translated into the asocial influence through the softmax (or logit choice)448

function:449

Ai,t(m) =
exp

(

�i,tQi,t(m)
)

∑

k∈options exp
(

�i,tQi,t(k)
) , (5)

where �i,t, called inverse temperature, manipulates individual i’s sensitivity to the Q-values (in450

other words, controlling the proneness to explore). As �i,t goes to zero, asocial influence ap-451

proximates to a random choice (i.e. highly explorative). Conversely, if �i,t → +∞, the aso-452

cial influence leads to a deterministic choice in favour of the option with the highest Q-value453

(i.e. highly exploitative). For intermediate values of �i,t, individual i exhibits a balance be-454

tween exploration and exploitation35;68. We allowed for the possibility that the balance between455

exploration-exploitation could change as the task proceeds. To depict such time dependence in456

exploration, we used the equation: �i,t = �∗i,0 + �it∕70. If the slope �i is positive (negative), aso-457

cial influence Ai,t becomes more and more exploitative (explorative) as round t increases. For a458

model fitting purpose, the time-dependent term �it is scaled by the total round number 70.459

We allowed that the social learning weight �i,t could also change over time as assumed in460

the inverse temperature �i,t. To let �i,t satisfy the constraint 0 ≤ �i,t ≤ 1, we used the following461

sigmoidal function:462

�i,t =
1

1 + exp(−(�∗i,0 + �it∕70))
. (6)

If the slope �i is positive (negative), the social influence increases (decreases) over time. We463

set the social learning weight equal to zero when group size is one (i.e. when an individual464

participated in the task alone and/or when
∑

k∈options Ft−1(k) = 0).465
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We modelled both the inverse temperature �i,t and the social learning weight �i,t as a time466

function since otherwise it would be challenging to distinguish different patterns of learning in467

this social learning task63. The parameter recovery test confirmed that we were able to differenti-468

ate such processes under these assumptions (Supplementary Figure 7, Supplementary Figure 8).469

While we also considered the possibility of the conformity exponent being time-dependent (i.e.470

�i,t = �∗i,0 + it∕70), the parameter recovery test suggested that the individual slope parameter471

i was not reliably recovered (Supplementary Figure 9), and hence we concentrated our anal-472

ysis on the time-independent �i model. We confirmed that instead using the alternative model473

where both social learning parameters were time-dependent (i.e. �i,t and �i,t) did not qualitatively474

change our results (Supplementary Figure 10).475

One concern might be the asymmetry between the asocial softmax influence which takes476

many prior experiences into account (depending upon a learning rate) and the social influence477

referring only the most recent frequency information Ft−1. The choice frequency appeared at478

round t is the most reliable social information, compared to the past frequencies, because it could479

be the most ‘updated’ information as long as the other individuals have made informed decisions480

in their best knowledge. In contrast, option’s reward just obtained at t − 1, which was inde-481

pendently and randomly drawn from a probability distribution, is less reliable than accumulated482

Q-values taking past rewards into account. Although many other formulations for asocial and483

social learning processes were possible, we believe that our current choice – time-depth asocial484

reinforcement learning with the most-updated-frequency-dependent copying was a reasonable485

first step.486

In summary, the model has six free parameters that were estimated for each individual human487
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participant; namely, �i, �∗i,0, �i, �
∗
i,0, �i, and �i. To fit the model, we used a hierarchical Bayesian488

method (HBM), estimating the global means (��, ��∗0 , ��, ��∗0 , ��, and ��) and the global vari-489

ations (��, ��∗0 , ��, ��∗0 , ��, and ��) for each of the three experimental conditions (i.e. the Low-,490

Moderate- and High-uncertain condition), which govern overall distributions of individual pa-491

rameter values. It has become recognised that the HBM can provide more robust and reliable492

parameter estimation than conventional maximum likelihood point estimation in complex cog-493

nitive models76, a conclusion with which our parameter recovery test agreed (Supplementary494

Figure 7, Supplementary Figure 8).495

3.5 Agent-based model simulation496

We ran a series of individual-based model simulations assuming that a group of individuals play497

our three-armed bandit task for 90 rounds (under theModerate-uncertainty condition) and that in-498

dividuals behave in accordance with the computational learning-and-decision model. We varied499

the group size (n ∈ {3, 10, 30}), themean social learningweight (�̄ ∈ {0.01, 0.1, 0.2, 0.3, ..., 0.9})500

and the mean conformity exponent (�̄ ∈ {0.5, 1, 3, 6}), running 10,000 replications for each of501

the possible parameter × group size combinations. As for the other parameter values (e.g. the502

asocial reinforcement learning parameters; �, �∗0 , �), here we used the experimentally fitted global503

means (Table 2 and Supplementary Table 3). Relaxation of this assumption (i.e. using a different504

set of asocial learning parameters) does not qualitatively change our story (Supplementary Fig-505

ure 2). Note that each individual’s parameter values were randomly drawn from the distributions506

centred by the global mean parameter values fixed to each simulation run. Therefore, the actual507

composition of individual parameter values were different between individuals even within the508
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same social group.509

3.6 Generalised linear mixed models510

To directly analyse the effects of group size and task uncertainty on the time evolution of decision511

performance, we conducted a statistical analysis using a phenomenological model, namely, a512

hidden Markov process logistic regression without assuming any specific learning-and-decision-513

making processes. The dependent valuable was whether the participant chose the best option (1)514

or not (0). The model includes fixed effects of grouping �, standardised group size !, and an515

intercept with a random effect of individuals �+�i. We assumed that the intercept and the effect516

of grouping change from round to round, as a random walk process. For the effect of group size517

we considered the effect of the 1st environment 1 ≤ t ≤ 40 and that of the 2nd environment,518

namely, !1 and !2, separately.519

To examine whether increasing group size and increasing task uncertainty affected individ-520

ual use of the positive frequency-dependent copying strategy, we used a hierarchical Bayesian521

logistic regression model with a random effect of groups. The dependent valuable was whether522

the participant used the positive frequency-dependent copying (1) or not (0). The model includes523

fixed effects of group size (standardised), task uncertainty (0: Low, 0.5: Moderate, 1: High), age524

(standardised), gender (0: male, 1: female, NA: others or unspecified), and possible two-way525

interactions between these fixed effects.526

We also investigated the effects of both group size and the task’s uncertainty on the fitted527

values of the learning parameters. We used a hierarchical Bayesian gaussian regression model528

predicting the individual fitted parameter values. The model includes effects of group size (stan-529
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dardised), task uncertainty (0: Low, 0.5: Moderate, 1: High), age (standardised), gender (0:530

male, 1: female, NA: others or unspecified), and two-way interactions between these fixed ef-531

fects. We assumed that the variance of the individual parameter values might be contingent upon532

task uncertainty because we had found in the computational model-fitting result that the fitted533

global variance parameters (i.e. ��∗0 , �� and ��) were larger in more uncertain conditions (Sup-534

plementary Table 2).535

3.7 Statistical analysis536

We used a hierarchical Bayesian method (HBM) to estimate the free parameters of our sta-537

tistical models, including both the phenomenological regression model and the computational538

learning-and-decision-making model. The HBM allows us to estimate individual differences,539

while ensures these individual variations are bounded by the group-level global parameters. The540

HBM was performed under Stan 2.16.2 (http://mc-stan.org) in R 3.4.1 (https://www.541

r-project.org) software. The models contained at least 4 parallel chains and we confirmed542

convergence of theMCMC using both the Gelman-Rubin statistics and the effective sample sizes.543

Full details of the model fitting procedure and prior assumptions are shown in the appendix.544

3.7.1 Parameter recovery test545

To check the validity of our model-fitting method, we conducted a ‘parameter recovery test’546

so as to examine how well our model fitting procedure had been able to reveal true individual547

parameter values. To do this, we generated synthetic data by running a simulation with the548

empirically fitted global parameter values, and then re-fitted the model with this synthetic data549
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using the same procedure. The parameter recovery test showed that the all true global parameter550

values were fallen into the 95% Bayesian credible interval (Supplementary Figure 7), and at least551

93% of the true individual parameter values were correctly recovered (i.e. 96% of �i, 93% of �∗i,0,552

95% of �i, 97% of �∗i,0, 96% of �i and 97% of �i values were fallen into the 95% Bayesian CI.553

Supplementary Figure 7).554

3.7.2 Categorisation of individual learning strategies555

Based on the 50% CI of the individual conformity exponent parameter values �i, we divided556

the participants into the following three different social learning strategies. If her/his 50% CI557

of �i fell above zero (�lower > 0), below zero (�upper < 0) or including zero (�lower ≤ 0 ≤558

�upper), she/he was categorised as a ‘positive frequency-dependent copier’, a ‘negative frequency-559

dependent copier’, or a ‘random choice individual’, respectively. We used the 50% Bayesian CI560

to conduct this categorisation instead of using the more conservative 95% CI because the latter561

would cause much higher rates of ‘false negatives’, by which an individual who applied either a562

positive frequency-dependent copying or a negative-frequency dependent copying strategy was563

falsely labelled as an asocial random choice individual (Supplementary Figure 7). Four hundred564

agents out of 572 (≈ 70%) were falsely categorised as a random choice learner in the recovery565

test when we used the 95% criterion (Supplementary Figure 7). On the other hand, the 50%566

CI criterion seemed to be much better in terms of the false negative rate which was only 18.5%567

(i.e. 106 agents), although it might be slightly worse in terms of ‘false positives’: Thirty-seven568

agents (6.5%) were falsely labelled as either a positive frequency-dependent copier or a negative-569

frequency dependent copier by the 50% CI, whereas the false positive rate of the 95% CI was570
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only 0.2% (Supplementary Figure 7). To balance the risk of false positives and false negatives,571

we decided to use the 50% CI which seemed to have more strategy detecting power.572

3.7.3 The post-hoc model simulation573

So as to evaluate how accurately our model can generate observed decision pattern in our task574

setting, we ran a series of individual-based model simulation using the fitted individual param-575

eter values (i.e. means of the individual posterior distributions) for each group size for each576

uncertainty condition. At the first step of the simulation, we assigned a set of fitted parameters577

of a randomly-chosen experimental subject from the same group size and the same uncertain578

condition to an simulated agent, until the number of agents reaches the simulated group size. We579

allowed duplicate choice of experimental subject in this parameter assignment. At the second580

step, we let this synthetic group of agents play the bandit task for 90 rounds. We repeated these581

steps 10,000 times for each group size, task uncertainty.582

3.8 Data availability583

Both experimental and simulation data are available on an online repository (https://github.584

com/WataruToyokawa/ToyokawaWhalenLaland2018).585

3.9 Code availability586

The browser based online task was built by Node.js (https://nodejs.org/en/) and socket.io587

(https://socket.io), and the code are available on a GitHub repository (https://github.588

com/WataruToyokawa/MultiPlayerThreeArmedBanditGame). Analyses were conducted in589
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R (https://www.r-project.org) and simulations of individual based models were conducted590

inMathematica (https://www.wolfram.com), both are available on an online repository (https:591

//github.com/WataruToyokawa/ToyokawaWhalenLaland2018).592
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Table 1: The mean and the 95% Bayesian credible intervals of the posterior for the group size effect at the

phenomenological logistic model

Low Uncertainty Moderate Uncertainty High Uncertainty

!1 0.08 [-0.15, 0.33] 0.10 [-0.06, 0.26] 0.07 [0.00, 0.15]

!2 0.67 [0.44, 0.91] -0.26 [-0.44, -0.11] -0.10 [-0.17, -0.02]

Note: All R̂ values are 1.0 and the effective sample sizes are larger than 837.

Table 2: The mean and the 95% Bayesian credible intervals of the posterior global means for the parameter values.

The number of participants (N) for each experimental condition are also shown.

Groups Solitary individuals

Uncertainty: Low Moderate High Low Moderate High

��∗ (learning rate) 0.99 0.90 0.61 0.85 -0.17 0.46

[0.34, 1.73] [0.43, 1.44] [0.21, 1.03] [-0.07, 1.95] [-1.27, 0.89] [-0.39, 1.36]

��∗0 (inv. temp.) 1.84 1.68 1.38 1.10 1.44 0.85

[1.15, 2.70] [1.25, 2.18] [1.16, 1.62] [0.69, 1.54] [0.80, 2.07] [0.46, 1.22]

�� (inv. temp.) 3.70 3.01 2.97 2.39 2.81 2.27

[1.98, 5.71] [1.88, 4.27] [2.37, 3.60] [1.46, 3.53] [1.64, 4.07] [1.40, 3.31]

��∗0 (soc. wight) -1.55 -2.37 -2.16 – – –

[-2.71, -0.71] [-4.12, -1.01] [-2.81, -1.63] – – –

�� (soc. wight) -1.39 -1.55 -1.87 – – –

[-2.66, -0.03] [-4.29, 0.91] [-3.04, -0.81] – – –

�� (conformity coeff.) 1.65 3.00 2.67 – – –

[0.83, 2.82] [1.57, 4.85] [1.80, 3.73] – – –

N 77 98 398 36 34 56
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