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ABSTRACT 
Emerging RNA-based approaches to disease detection and gene therapy require RNA sequences that fold into 

specific base-pairing patterns, but computational algorithms generally remain inadequate for these secondary 

structure design tasks. The Eterna project has crowdsourced RNA design to human video game players in the form 

of puzzles that reach extraordinary difficulty. Here, we present an eternamoves-large repository consisting of 1.8 

million of player moves on 12 of the most-played Eterna puzzles as well as an eternamoves-select repository of 

30,477 moves from the top 72 players on a select set of more advanced puzzles.  On eternamoves-select, a 

multilayer convolutional neural network (CNN) EternaBrain achieves test accuracies of 51% and 34% in base 

prediction and location prediction, respectively, suggesting that top players’ moves are partially stereotyped. We 

then show that while this CNN’s move predictions are not enough to solve numerous new puzzles, inclusion of six 

additional strategies compiled by human players solves 61 out of 100 independent puzzles in the Eterna100 

benchmark. This EternaBrain-SAP performance is better than previously published methods and in the middle of the 

performance range of newer algorithms developed by Eterna participants and other groups. Our study provides 

useful lessons for efforts to achieve human-competitive performance with automated RNA design algorithms. 
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Introduction 
Due to its versatility and important roles throughout biology, there is strong interest in designing RNA-guided 

machines for disease detection, virus defense, and gene therapy, e.g., for gene silencing and CRISPR/Cas9 gene 

editing (1, 2). Much of RNA’s functionality is dependent on well-defined structures, and so these and future RNA 

technologies require computational methods to effectively design sequences that fold into a target structure or set of 

structures suited to a desired task. The simplest problem involves designing RNA sequences that energetically favor 

one specific secondary structure – a target pattern of Watson-Crick base pairs – over alternative secondary 

structures. Even this most basic problem is computationally difficult (3). While exact solutions can be determined 

through exhaustive calculation (4), such computational enumeration generally takes an impractically long time for 

solve complex target structures.  

   Numerous groups have developed RNA secondary structure design algorithms, including MODENA (5), 

RNAinverse (6), INFO-RNA (7), RNA-SSD (8), and NUPACK (9). In the original studies presenting these 

methods, tests typically involved simple structures that do not capture the symmetries, duplex lengths, and sizes 

needed for biotechnology applications (10). The incompleteness of these prior methods and tests became clear with 

the release of the Eterna game (11) in 2011, which crowdsources RNA design in the form of puzzles through an 

internet-scale videogame (Figure 1A-C). Eterna players learn the basics of RNA design through examples that are 

initially tested  in silico through a computational model of secondary structure folding. Advanced players can submit 

their RNA designs in lab challenges and receive wet-lab feedback on how their molecules fold during in vitro 

experiments performed on a weekly time scale. These efforts expose the ‘reality gap’ in RNA design – the mismatch 

between current computational folding models and experiment. In preparation for these experimental challenges, 

players also challenge fellow players through in silico puzzles that require learning or developing sophisticated 

puzzle-solving strategies; these separate ‘games within the game’ are useful for guiding the development of 

computational RNA design methods (10). Since Eterna’s inception, the community has grown to over 250,000 

registered players as of 2019, with over 17,000 player-created puzzles. This community has been successful in 

designing RNAs that consistently outperform RNA design algorithms in both in silico and in vitro tests (10).  

   Since Eterna’s inception, players have discovered classes of RNA secondary structures for which prior algorithms 

cannot find sequence solutions even in silico, i.e., when folded with computational energy models that can be 

rapidly evaluated (10). However, under the same computational energy models, solutions to these design problems 

can be discovered by experienced human players. Thus, there remains a gap between algorithms and humans even 

for the purely computational problem of in silico design. Fortunately, Eterna has produced rich resources that might 
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allow for this gap to be closed. First, in 2016, several players curated a benchmark of 100 problems of increasing 

difficulty, termed the ‘Eterna100’ (10). By offering a wider spectrum of difficulty than prior benchmark sets based 

on inferred structures of random or biological RNAs (5–9), these secondary structures allow stringent tests of 

advances in computational design methods while still guaranteeing that solutions can be found. Second, player-

created tutorial puzzles have ‘canonized’ new strategies for in silico RNA design. In 2016, Eterna developers 

installed these puzzles as the standard progression of problems for new players. At the same time, Eterna players 

have agreed to share the sequences of moves that lead to successful solutions to scientific research, resulting in a 

data repository including nearly 2 million player moves (Figure 1D). 

   The availability of such a large collection of move sets as well as canonical player strategies suggests new 

approaches to solving the RNA secondary structure design problem. While previous RNA design algorithms have 

used hierarchical decomposition of target structures, genetic algorithms, and probabilistic sampling of sequences 

(5,7,8), a recent generation of classification, translation, and game-playing algorithms make powerful use of 

statistical pattern recognition through multi-layer artificial neural networks (12). One striking example is Google 

DeepMind’s AlphaGo (13), which outcompeted expert human players in the complex game of Go. This approach 

was inspired by the discovery that expert player moves in the game Go were sufficiently stereotyped that they could 

be predicted with better than 50% accuracy by a convolutional neural network (CNN), despite the large space of 

possible moves in this game (up to 19 x 19=361 board positions for pieces, giving a baseline random guess accuracy 

of less than 0.5%) (13). AlphaGo and its successor AlphaGo Zero have further improved their performance using 

reinforcement learning (14). While reinforcement learning has shown promise for RNA design, it is not yet human 

competitive (15, 16). This observation suggests that there remain lessons to be learned from human moves and 

strategies. Nevertheless, it remains unclear whether single base changes during human RNA design are sufficiently 

stereotyped as to inform neural network or other machine learning methods – strategies that involve back-and-forth 

flipping of base changes, sets of multiple sequence moves, or sequence explorations outside the game browser may 

be important for the success of the best Eterna players.  

   To test whether new strategies for automated RNA design might be gleaned from successful single base moves, 

we present a data set of 1.8 million moves on Eterna’s most played puzzles, called eternamoves-large, appropriately 

cleaned and labeled for machine learning applications. We conduct tests of CNNs to predict these moves given the 

game state, and report generally poor results. However, we do find that a set of 30,477 moves made by the most 

experienced players on more difficult puzzles (eternamoves-select) are sufficiently stereotyped to allow training of 

an automated neural network EternaBrain move predictor with accuracy well above random baseline. We then 

challenge the resulting predictor to go beyond simply predicting individual moves and to instead perform a series of 

moves to solve novel RNA secondary structure design problems from scratch (as evaluated by in silico folding 

models). We find generally modest performance from this CNN-only approach, with results poorer than previously 

published algorithms. We then collate several of the players’ ‘hand-crafted’ strategies and pipeline a single-action-

playout (SAP) of these strategies to the EternaBrain neural network approach. We show that the resulting 

EternaBrain-SAP algorithm (Figure 1E) achieves excellent performance on the Eterna100 benchmark by completing 

61 of 100 puzzles, exceeding the performance of methods published prior to our work. At the same time, 

EternaBrain-SAP performs similarly or poorer than newer methods developed concomitantly by us and other 

groups. In the discussion, we compare EternaBrain-SAP’s performance on the Eterna100 with these more recently-

reported methods, including SIMARD (17), SentRNA (18), NEMO (19), antaRNA (20), MCTS-RNA (21), and the 

reinforcement learning methods of Eastman et al. (15) and LEARNA (16), drawing lessons for future efforts in 

automated RNA design. Additionally, we highlight the likelihood of future progress as other methods (4, 22) and 

newer computational energy functions (23) are developed and tested on the same benchmark as well as on biological 

RNA structures. 

  
Results 
Initial Training on 1.8 Million Moves 
We tested several different neural network architectures and training sets for EternaBrain. We chose to use 

convolutional neural network (CNN) architectures, because of their success in other areas of game playing and 

machine learning (13,14) and also because of their expected ability to capture patterns visually recognized by 
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humans during actual Eterna gameplay. A CNN (24) is a specific type of neural network that hierarchically builds 

up complex features from simpler features that neighbor each other. CNNs consist of convolutional and pooling 

layers which retrieve subsections of the input features and make their own larger-scale features. A CNN’s features 

and relationships are randomly initialized and then iteratively trained on large input datasets (training sets) and 

assessed for their predictive power when applied to previously unseen datasets (test sets). A CNN is a natural choice 

for tackling this problem because it mimics how human players approach Eterna puzzles; that is, by learning 

features of the data from spatial information such as those seen in the puzzle interface and in solution browsers. 

   We first trained the model on a large data set of 1.8 million moves spanning 12 representative puzzles from the 

Eterna progression (Supplemental Figure S1), which we call the eternamoves-large data set. The information in 

player move set data includes nucleotide sequence, RNA secondary structure (in ‘dot-bracket’ notation widely used 

in the RNA literature (25)), and predicted minimum Gibbs free energy of folding. These data on the game state are 

passed as input features to the CNN (Table 1). The location of the player’s chosen nucleotide change and the 

nucleotide identity itself were passed as labels to the CNN – they are the output to be predicted (Table 1).  We chose 

to train one ‘base predictor’ CNN (BP-CNN) to predict the identity of the base change (e.g. A, U, C, or G) made by 

a player provided the location of the change; as well as a separate ‘location predictor’ CNN (LP-CNN) to predict the 

location of the change. For the BP-CNN, we did not require that the neural network change the base nor that it 

maintain Watson-Crick pairing at nucleotides that were supposed to be paired in the target structure. Doing so 

provided a means to assess if the neural network could independently derive these fundamental move requirements. 

For cross-validation, we randomly split the data into training and test sets (see Methods). Training took three days 

using 4 NVidia Titan X GPUs. 

   Random guessing of moves would give accuracies of 0.33 for the BP-CNN (if the base is forced to change from its 

starting identity to one of the three other bases) and 0.019 for the LP-CNN (based on the average inverse length of 

the puzzles). Our best training attempts achieved move accuracies for the BP-CNN and LP-CNN of 0.50 and 0.10, 

respectively on the training dataset- both higher than random guessing. However, when applied to the test dataset, 

the BP-CNN and LP-CNN achieved move accuracies of 0.34 and 0.021, respectively, which are not significantly 

better than random guessing. Furthermore, we achieved poor results in subsequent tests of this model applied to full 

puzzle playouts. In these playouts, we had the CNN predict both the identity and location of the move starting from 

its initial sequence. Then, we updated the puzzle state according to ViennaRNA energy calculations and repeated 

this process. The model was unable to solve the easiest puzzle on the Eterna100 -  Simple Hairpin -  even with 

modifications to allow stochastic choice of moves after ranking by the CNN (see Methods).  

   The low test accuracies and problems in an actual puzzle playout suggested that the CNNs might be overfitting 

their parameters to the training data and not generalizing well to Eterna puzzles that were outside the dataset. To 

counteract this overfitting, we had the networks randomly exclude randomly chosen nodes in each of their layers 

(dropout) and thus reduce the chance of overfitting. However, increasing this dropout rate only marginal 

improvements in test accuracy marginally, suggesting that there was high variance in the training data (26). This 

could result if, players were using a highly heterogeneous set of strategies or simply clicking randomly without a 

clear strategy. Other parameter changes to the network (e.g.., use of a single CNN to predict base and location; 

change in the type of neural network; number of layers; activation functions; see Supplemental Table S2) also did 

not significantly improve test accuracy. These results suggested that moves made by players across this entire set are 

not sufficiently similar to allow their automation, at least with the convolutional neural network architectures tested. 

One possible explanation is that players may solve these early puzzles through trial-and-error and, therefore, most of 

the moves do not convey useful strategies. 

  

Training on Selected Subsets of Players and Puzzles 
We hypothesized that training on a select number of advanced Eterna players would minimize the variance in the 

dataset. To select these ‘expert’ Eterna players, we identified players who had solved at least 3000 Eterna puzzles. 

The resulting dataset contained moves from 72 players (Figure 1D; Supplemental Table S3). In addition, instead of 

using the 12 introductory simple puzzles used for eternamoves-large data set described above, we chose to collate 

moves from 78 puzzles compiled during a revision of the game’s main puzzle progression (Supplemental Figure 

S2). These puzzles were selected because they introduced key strategies used by Eterna players to solve many of the 
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RNA design challenges on Eterna. The resulting dataset, dubbed eternamoves-select, was comprised of 30,447 

moves. In addition to narrowing the training data to expert players and specialized puzzles, we added a more explicit 

representation of RNA secondary structure by introducing pairmaps. Rather than merely providing dot-bracket 

notation to the CNN, a structure pairmap uses indices of a list to explicitly show which bases are paired to other 

bases. The format of the pairmap is shown in Table 1. 

         Combining eternamoves-select and introducing pairmaps increased the predictive power of our CNNs. The 

final move accuracies for cross-validation were 0.51 for the BP-CNN and 0.34 for the LP-CNN (Supplemental 

Figures 3A and 3B; Table 2) when applied to the test dataset of eternamoves-select. These move accuracies were 

higher than the expected random baselines for these puzzles of 0.33 and 0.031, respectively. We expected that the 

model’s predictive powers would negatively correlate with the puzzle length, and this trend was indeed apparent. 

For example, the LP-CNN accuracy dropped from 0.43 to 0.28 when tested on puzzles with lengths of up to 50 

nucleotides (nts), compared to puzzles with lengths from 101 to 150 nts; Table 3). The BP-CNN accuracy reduced 

from 0.57 to 0.47 with the same increase in puzzle length (Table 3). We also expected that the model would have 

higher prediction accuracy at nucleotides that involved paired regions of the target structure. In those regions, the 

model can correct ‘mismatches’ – nucleotides that should be paired but are not A-U, G-C, or G-U – and such moves 

would provide obvious location and base choices. Surprisingly, our model exhibited slightly better performance in 

both base and location prediction in unpaired rather than in paired regions of the puzzle (0.62 vs. 0.49, base; 0.38 vs. 

0.33, location; Table 3).  

         The improved CNN accuracies using eternamoves-select compared to eternamoves-large suggests that 

moves from experienced players and on specially designed problems were sufficiently stereotyped so as to allow for 

CNN prediction. To further explore whether these improvements could be generalized across different puzzles or 

between different expert players, we split eternamoves-select into training and test sets in different ways (see Table 

2). Rather than allowing moves in the training and test sets to be drawn from the same puzzles (as above), we trained 

our CNNs on 15,265 moves from 39 of the 78 puzzles in our training set. The predictive accuracies on the 15,182 

moves from the remaining 39 puzzles were 0.26 and 0.023 (BP-CNN and LP-CNN, respectively). These numbers 

were lower than for our initial CNN tests on eternamoves-select, in which the training and test set drew moves from 

the same puzzles. Indeed, the BP-CNN accuracy dropped below the random baseline value of 0.33 when the puzzles 

in the training and test set were separated. These observations indicate that the CNN predictions depend on the 

overlap between puzzles seen in training and testing. We next split the eternamoves-select dataset so that the moves 

in the training set derived from half of the expert players. The test accuracies of our models applied to the dataset of 

moves from the remaining half of expert players were 0.38 and 0.11. These accuracies remained above random 

baselines (0.33 and 0.031, respectively) and suggests that, while expert players vary in their puzzle solving styles, 

there are some commonalities that can be learned by the CNNs. Last, we trained our models on just 587 moves of a 

single expert player and tested its performance on the remaining 29,877 moves in the eternamoves-select dataset. 

The resulting test accuracies were 0.27 (BP-CNN) and 0.011 (LP-CNN) - significantly worse than above. However, 

this poor result may be due to the dramatic decrease in training data for the CNN compared to prior comparisons. 

Moving forward, we decided to utilize the CNN trained on our original random split of eternamoves-select across all 

puzzles and expert players, but taking note that its move prediction accuracy would likely depend on similarity of 

any new challenge puzzles to the puzzles in the training set. We named this predictor the EternaBrain CNN. 

  
Playouts on the Eterna100 benchmark 
         After the cross-validation tests above, we set out to solve a complete puzzle with the EternaBrain CNN 

model trained on eternamoves-select and the stochastic playout scheme described above. Encouragingly, the model 

was successfully able to solve several puzzles completely, including the Simple Hairpin puzzle, which the CNN 

trained on eternamoves-large failed to do, as described earlier. However, EternaBrain CNN often failed to solve 

puzzles greater than 40 nucleotides in length. Encouragingly, the EternaBrain CNN was able to solve up to 85 

percent of any given puzzle; that is up to 85 percent of the base pairs from the CNN solution correctly matched up 

with the base pairs of the target secondary structure. Visual inspection of the CNN’s series of moves revealed minor 

but obvious mistakes, such as mismatched nucleotides at pairs of positions that should have been Watson-Crick 

paired in the target structure. In order to prevent some of these mistakes, we followed the CNN with a second stage 
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that we called single action playout (SAP; Figure 1E). SAP uses six canonical strategies that are standard among 

Eterna players and are taught to new players during the game’s main puzzle progression. SAP traversed the puzzle 

to find areas that were not folding correctly, implemented the relevant strategies, and accepted the sequences if they 

made these specific areas of the puzzle fold correctly; Figure 2 and Methods give more detailed descriptions of the 

SAP’s standard Watson-Crick pairing rule, the G-C end pair rule, the G-internal loop and hairpin-loop boosts, the U-

G-U-G super boost, and the flipping pairs strategy. 

 

We called this enhanced pipeline the EternaBrain-SAP method and tested it against the Eterna100 benchmark. These 

100 puzzles span a wide range of different structural motifs but are known to be solvable in the Turner1999 energy 

model, which is widely used in RNA structure prediction software packages including the original RNAinverse and 

NUPACK (6, 9). EternaBrain-SAP was able to solve 61 of the 100 puzzles, surpassing six of the algorithms 

previously benchmarked with the Eterna100 puzzles (Figure 3A). We note, however, that newer design methods 

using complementary algorithmic strategies provide similar or better performance compare to EternaBrain-SAP, and 

these will be discussed below.  

 

Importantly, both the CNN and the SAP stages were necessary for achieving this performance. Using EternaBrain’s 

CNN-based moves alone solves only 20 puzzles on the Eterna100. Using the SAP alone (i.e., hard-coded canonical 

player strategies) solves 50 puzzles on the Eterna100; 11 short of the CNN-SAP combination. However, it is 

important to note that the puzzles become significantly more difficult, as evidenced by a steep decrease in the 

number of players and prior algorithms who have solved them with increasing number (Figure 3A and (10)); and so 

this represents a significant improvement over SAP alone. We confirmed that several choices that we made for the 

CNN architecture and game state representations (Table 1) were important for the success of EternaBrain-SAP. 

Removing the sequence, the pairmap, or the dot-bracket representation as input features or not using dropout also 

decreased performance in Eterna100 playouts (from 61 to 51, 52, 56, and 57 puzzles solved, respectively). A puzzle-

by-puzzle breakdown of the performance of the CNN alone, the SAP alone, and CNN-SAP with these reduced-

input-feature training sets is given in Figure 3B. We also note that while EternaBrain’s CNN-based moves have a 

stochastic component (see Methods), its success on puzzles is consistent across runs using different random seeds 

(Table 4). 

  

Performance on specific features of difficult puzzles 
         The Eterna100 benchmark contains puzzles of increasing difficulty that showcase structural features that 

are difficult for RNA inverse folding algorithms to design. Comparison of EternaBrain-SAP’s performance across 

these different puzzle types clarifies its current abilities and limitations. 

  

Simple Motifs - Stacks, Loops, Hairpins 
The EternaBrain-SAP algorithm was particularly successful at solving puzzles that contained several stacks (i.e., 

RNA stems), loops (i.e., internal loops or two-way junctions), and hairpins (i.e., external loops).  One example of a 

difficult puzzle that EternaBrain’s CNN was able to solve is U. This puzzle contains several short stacks and short 

loops abutted next to each other (Figure 4A), and was not solvable by the SAP alone or by five of the six prior 

design algorithms (Figure 3A). This example suggests that EternaBrain had successfully learned from its training 

data how to strengthen stacks and to stabilize loops. Specifically, EternaBrain’s CNN was able to learn strategies 

like the G-C end pair strategy (which strengthens a base pair stack) and the G-hairpin boost (which stabilizes an 

internal loop); see Figures 2C and 2F.  While these strategies are well known and, indeed, are encoded in the SAP 

(Figure 2), the EternaBrain CNN learned further patterns that were not encoded in the SAP, as is demonstrated by 

the inability of SAP alone to solve the puzzle U (Figure 3B).  

  

Specific Orientation of Base Pairs 
If the puzzle contained motifs whose solutions critically depended on unique sequences, the CNN was inadequate 

and SAP was important for EternaBrain-SAP’s success. An example of such a puzzle was Chicken Tracks which 
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required a very specific orientation of base pairs (Figure 4B). As a result, the SAP was used heavily in solving 

Chicken Tracks. By locating the areas that were not folding correctly and then using the canonical player strategy of 

reorienting base pairs, the SAP was able to find the optimal orientation of the base pairs to correctly solve Chicken 
Tracks. 

  

Repetitive Structures 
Some of EternaBrain-SAP’s successes can be attributed to its ability to solve repetitive structures better than 

previous automated RNA design algorithms. Example puzzles that include many repetitive structures include 

Thunderbolt, Shortie 4, and Shortie 6 (Figures 4C-E). Previous algorithms were able to solve puzzles with several 

stacks, such as Shortie 4 (Figure 4D). However, when the number of stacks increased, e.g., in Shortie 6 (Figure 4E), 

other algorithms struggled. EternaBrain-SAP, however, could solve both Shortie 4 and Shortie 6. Thunderbolt 
involves repeating elements within a large structure (Figure 4C) and also was not solvable by prior algorithms 

(Figure 3A). Given that SAP was able to solve each of these puzzles alone (Figure 3B), the moveset-trained CNN of 

EternaBrain appears to offer little benefit over SAP alone in stabilizing repetitive structures. 

  

EternaBrain-SAP’s failure to solve other puzzles in the benchmark seems, in part, to be a result of the 

incompleteness of the training data for the EternaBrain CNN and of the player strategies in the SAP algorithm. For 

example, Hard Y (Figure 4F), requires uncommon strategies, including a different type of boost (a stabilizer 

mutation at the beginning of a loop) to stabilize a special ‘zigzag’ structural motif which did not appear in the 

training set. The SAP was unable to solve this puzzle since reorienting bases without the required boost did not 

stabilize this zigzag. Training the CNN on larger movesets and incorporating more sophisticated player strategies in 

SAP might resolve these issues and help EternaBrain-SAP complete more complex puzzles. 

  

Discussion 
EternaBrain-SAP attempts to solve the RNA secondary structure design problem by learning from a large 

compilation of human player moves and incorporating a special set of canonical player strategies. We decided to use 

a convolutional neural network (CNN) since it can be trained to extract information from the nearest neighbors of 

elements in the feature space, mimicking how Eterna players look at the local neighborhoods of structures and 

nucleotides to decide their next move. To reduce variance in the training set, we found it important to use movesets 

only from expert players. By reducing the full eternamoves-large moveset (1.8 million moves) to the eternamoves-
select move set (~30,000 moves), we were able to achieve test accuracies after CNN training that were better than 

random guesses. Notably, for the location predictor (LP-CNN), the test accuracy of 0.34 substantially exceeded the 

baseline prediction accuracy for random guessing (0.019). 

 

Despite decreased variance from training on the eterna-select moveset, we found that the resulting EternaBrain 

CNN had difficulty with solving longer puzzles. Indeed, alternative splitting of test and training sets suggested that 

the CNNs’ prediction accuracy largely depends on similarity of puzzles in the training set with the puzzles of any 

new challenges. The inability to extrapolate “out of sample” has been noted to be a limitation of artificial neural 

networks (27). To overcome this limitation, we added a single-action playout (SAP) algorithm based on compiled 

Eterna player strategies to aid the CNN model. We tested this hybrid EternaBrain-SAP algorithm on the Eterna100, 

and found that it could solve 61 of 100 puzzles. On one hand, this performance is better than other algorithms that 

had been tested on the Eterna100 at the time of development (54 of 100 was the previous maximum). On the other 

hand, the EternaBrain-SAP performance is similar to or worse than newer algorithms (SIMARD, sentRNA, the 

reinforcement learning algorithm of Eastman et al., NEMO) that have been developed concomitantly or after 

EternaBrain and whose performance on the Eterna100 has been reported in newer papers or preprints (15–19).  

Furthermore, none of these methods match the level of the top ten Eterna human players, who can solve all 100 

puzzles of the Eterna100 benchmark.  

 

It is instructive to compare EternaBrain-SAP to the newer generation of RNA design algorithms. Like EternaBrain-

SAP, the new methods SentRNA, the Eastman et al. method, and LEARNA use artificial neural networks to distill 
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potentially useful information from gameplay and solve 80, 60, and 65 out of 100 Eterna100 puzzles, respectively 

(15, 16, 18). SentRNA seeks to find solutions to RNA secondary design problems in ‘one shot’ rather than through 

EternaBrain’s iterative moves (18). Furthermore, SentRNA differs from EternaBrain as it is trained on Eterna 

player’s solutions rather than the individual moves that lead to solutions, and it makes use of a three-layer fully-

connected neural network rather than EternaBrain’s deep convolutional neural network. Despite these differences, 

both the SentRNA and our EternaBrain-SAP study find that neural network approaches alone give poor performance 

in test puzzles (in both cases solving fewer than half of the Eterna100 puzzles). The success of both studies required 

pipelining starting solutions from neural network approaches with hand-coded strategies that Eterna players 

collectively learned and ‘canonized’ in tutorial puzzles for new players. The Eastman et al. and LEARNA 

algorithms (15)(16) are reinforcement learning methods which have not leveraged prior human solutions or 

strategies at all; nevertheless, both use additional hand-coded rules to enforce Watson-Crick pairing of nucleotides 

during design and, in the case of LEARNA, an additional refinement step. Furthermore, at least the Eastman et al. 

method does not learn ‘standard’ human strategies like the G-boosts (Figure 2), which might explain weaker 

performance compared to EternaBrain-SAP and SentRNA.  

 

Given these initial results from neural network methods, we propose future updates that may allow automated design 

to reach the level of expert players and to allow for a general strategy that will work on more complex RNA design 

problems including multi-state switch design and 3D structure design. First, EternaBrain-SAP and SentRNA achieve 

success on different problems in the Eterna100. This observation suggests that the two methods could be integrated, 

with each one providing starter solutions for the other. Second, the hand-coded player strategies used in both 

EternaBrain and SentRNA often involve multiple moves. These strategies could possibly be captured by the neural 

networks underlying all four available deep learning approaches if they are trained to make moves based not just on 

its current game state but also including immediately previous moves as input. For example, such training would 

allow EternaBrain-SAP to ensure Watson-Crick compatibility across nucleotides that are paired in the target 

structure, an ‘obvious’ feature that the CNN is not always recognizing and that had to be hard-coded into the 

Eastman et al. method and LEARNA.  

 

Perhaps the largest gain in automated design methods will come not from fine-tuning the neural network 

architectures or training sets, but through adoption or integration of more completely distinct strategies. Methods 

like SIMARD (17, 28), antaRNA (20), and MCTS-RNA (21) achieve performances similar to or slightly better than 

EternaBrain (54 to 67 out of 100) while using quite different but complementary simulated annealing, ant colony 

optimization, and Monte Carlo tree search strategies, respectively. Perhaps most strikingly, one of us (FP) has 

recently reported that a nested Monte Carlo (NEMO) method can solve 98/100 puzzles in the Eterna100 benchmark, 

only missing the last two problems, called Shooting Star and Teslagon (19). While NEMO fills in candidate 

solutions from 5´ to 3´, like SentRNA, other aspects of the method are completely distinct, and NEMO does not use 

a neural network approach. Second, we note that human Eterna players often solve complex RNA design puzzles by 

manually preparing sub-puzzles and using detailed mathematical reasoning to infer solutions. Neither of these steps 

is recorded in the Eterna move sets or has, to our knowledge, been captured in design algorithms to date. Finally, 

other methods like RNAifold (4) and the recently presented RNAstructure Design_preselected routine (22)  have yet 

to be tested on the Eterna100 benchmark; they may show promise on puzzles that are not solvable by other methods. 

 

In addition to their prospects for achieving human-competitive performance on in silico single structure design, we 

speculate that CNN-based move prediction and deep learning frameworks will be useful for design of functional 

RNAs that actually work in vitro or in vivo. The Eterna project is currently soliciting designs for ligand-responsive 

multi-state riboswitches and for redesigning large biological RNAs like the ribosome for in vitro tests. Current 

computational design methods are not able to automatically provide solutions to these problems. When these 

computational methods are ready, datasets involving hundreds of thousands of RNA molecules are accumulating in 

the Eterna project (27) and should provide rich resources for training and prospective tests. 
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Methods 
Code Availability 
         Code for training EternaBrain and solving puzzles with Eterna-SAP is freely available for non-commercial 

use at https://github.com/EteRNAgame/EternaBrain. 

 

Data Encoding 
Through the Eterna puzzle-solving interface (Figure 1A-C), players can mutate an RNA molecule’s base sequence 

by selecting an RNA nucleotide base (A, U, G, or C) and the location on the puzzle where they would like to make 

the change. Players can see the ‘target’ structure – the secondary structure they are trying to achieve – and the 

‘nature-mode’ (or ‘natural’) structure – the secondary structure predicted to be the minimum free energy 

conformation for the current sequence. When the nature-mode and target structures match, the player has solved the 

puzzle. In both target and nature-mode states, players can see the predicted free energy of the molecules (in 

kilocalories per mole). These values are routinely used by players to guide moves that make their RNA structure 

more stable. These energies and structures are calculated using Vienna 1.8.5 (6), which provides the default energy 

model in Eterna; additional tests with newer energy functions are possible in EternaBrain but are not reported here. 

         All information given to Eterna players was encoded before being passed into the CNN (see Table 1). Such 

information included the nucleotide sequence, nature-mode and target structure and pairmaps, nature-mode and 

target energy, and locked bases, as follows. The nucleotide bases were encoded using a standard ‘one-hot’ 

representation over four input layers; A, U, G, C were mapped to [1,0,0,0], [0,1,0,0], [0,0,1,0], and [0,0,0,1], 

respectively. Simultaneous mutations of bases were treated as separate changes, and any copying or resetting of 

bases sequences were encoded as [1,1,1,1] in the otherwise one-hot input for A, U, G, or C.  For encoding the 

‘nature-mode’ structure (minimum free energy structure predicted by Vienna 1.8.5) and target structure, dot-bracket 

notation was converted to one-hot representation, with unpaired bases set to zero and left- and right-paired bases set 

to one in three separate input layers. Another representation of the nature-mode and target structures used is 

structure pairmaps. Each entry in a pairmap, corresponding to a particular location in the sequence, stores the index 

of the base with which it forms a base pair. For example, if the base at location 1 is paired to location 10, then index 

0 in the pairmap would contain the number 9, and index 9 in the pairmap would contain the number 0 (using a list 

starting at index 0). For training, the player’s chosen base and the location of base change were provided as labels 

and a standard soft-max (29) loss function computed agreement of the neural network predictions and the actual 

player moves. An example of the final data encoding is shown in Table 1. 

  
Model Construction and Evaluation 
Two CNNs were built: one for predicting the RNA base, and one for predicting the location of the base change. 

After running several experiments on different CNN architectures, the following architecture was used for each 

CNN: 10 convolutional layers (with convolution size 9 in the dimension that indexes across RNA sequence position, 

stride 2x2, and pooling; the number of neurons in each layer were 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024) 

followed by 4 fully-connected layers (1024, 1024, 2048, 4096), a dropout rate of 0.1, a sigmoid (30) activation 

function, minibatch size of 100 solutions, and Adam (31) optimizer to minimize the error of the neural network. A 

modest hyperparameter search was carried out before settling on this architecture, as described in Supplemental 

Table S2. Construction and training of CNNs were carried out using Google’s TensorFlow (32) machine learning 

framework.  

The models discussed in this work were trained on Nvidia Titan X GPUs available on Stanford’s Sherlock cluster.  

For puzzle playouts, the CNN initially attempted to solve the puzzle by iteratively choosing moves and updating the 

game state. The number of such moves was chosen to be the length of the puzzle multiplied by three. The move 
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choice was stochastic, with probabilities of base and location based on the respective CNN output renormalized to 

1.0.  If this stage was not able to solve the puzzle, the SAP was applied, implementing the player strategies in Figure 

2. The SAP changed specific nucleotides in the puzzle according to the player strategy and compared if the nature-

mode structure of the RNA more closely matched the target structure than if the player strategy had not been 

implemented. If the nature-mode structure more closely matched the target structure, then the resulting nucleotide 

sequence was kept. (For speed, closeness of two secondary structures was defined based on the length of the largest 

matching subsequence of the two secondary structures written in dot-bracket notation, using the SequenceMatcher 

class in Python.) This process was repeated for all of the player strategies. The current implementation of SAP uses 

a few straightforward player strategies, favoring simplicity over computational complexity (see Figure 2). 

During development of the model, we evaluated the CNN using cross-validation, training on 30,000 moves and 

testing on the remaining moves; test moves were pulled randomly from the data set unless noted otherwise (29). 

Playout tests were carried out on the 100 secondary structures of the Eterna100 benchmark (10). To ensure fair 

comparison to prior work (10), we did not include puzzle constraints on, e.g., minimum or maximum number of A-

U pairs, which arise in some of the Eterna100 puzzles when they are played by humans online. 

 

Descriptions of each SAP strategy 
Single-action playout (SAP) consists of the application of six strategies: 

1. The first step of the SAP is to correct incorrect base pairings. The algorithm traverses the entire length of 

the sequence, identifying any mismatches in base pairings. Any incorrect pairings will be mutated to A-U 

or G-C, depending on one of the bases in the mismatch. 

2. Second, the algorithm will identify any base pairs flanking a hairpin loop or an internal loop and change 

that base pair to G-C, since G-C pairs at the end of stacks lower the energy of that subregion. 

3. Third, within any internal loop, the algorithm will change the first base on either side of the loop (see Fig. 

3b). This prevents mismatches with the flanking pairs of the stack. 

4. Fourth, in any internal loop with two bases on either side, a U and a G are placed on both sides. This is a 

strategy (U-G-U-G ‘super-boost’) discovered by Eterna players which drastically lowers the free energy of 

the RNA molecule and takes advantage of a special parameter for tandem G•U’s in current RNA nearest-

neighbor folding models. 

5. Fifth, the SAP places a guanine at the beginning of any hairpin loop to lower the overall energy of the 

hairpin, again reflecting a special rule or trend in current RNA nearest-neighbor folding models. 

6. Lastly, if the puzzle is still not folding into the desired shape, the SAP will randomly flip base pairs in 

target helices that are not predicted to fold properly. Eterna players often do this flipping, as an incorrect 

orientation could potentially be the reason why that specific area is not folding correctly. 

See Figure 2 for illustrations of these six strategies. 

 
Puzzle-solving efficiency 
The successful puzzle solution by EternaBrain-SAP would not be useful if it takes more time than experienced 

players to solve puzzles. Supplemental Figure S4 shows player and EternaBrain-SAP times for puzzles of varying 

lengths. On one hand, EternaBrain-SAP generally takes more moves (approximately 2-fold) than top Eterna players 

to solve most puzzles, across all puzzle lengths. However, this disadvantage is ameliorated by the speed with which 

EternaBrain-SAP selects its moves: on a single 2.5 GHz dual-core Intel i5 CPU, the automated method takes less 

total time than top players across puzzles of varying lengths. We took random samples of 50 puzzles that both 

EternaBrain-SAP and players solved in order to see if there was a statistically significant difference in completion 

time. A two-sample t-test gave a p-value of 0.020, indicating that EternaBrain-SAP is significantly faster than 

players in solving Eterna puzzles despite no specific optimization for speed at this stage. 

 

Ethical Approval and Informed Consent 
We compiled data from historical logs of moves that Eterna players made while solving puzzles through 2016-2017, 

with informed consent obtained through an online user agreement. The data contain each location and nucleotide 
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change a player made as they solve an Eterna puzzle. The data contain only move sets for successfully solved 

puzzles. 
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Tables 

Table 1. Input features used for training and testing EternaBrain convolutional neural network. 

Description Example Encoded example 

Base Sequence CCAGAAAAAAAAACUGG [[0, 0, 0, 1], [0, 0, 0, 1], [1, 0, 

0, 0], [0, 0, 1, 0], [1, 0, 0, 0], 

[1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 

0, 0], [1, 0, 0, 0], [1, 0, 0, 0], 

[1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 

0, 0], [0, 0, 0, 1], [0, 1, 0, 0], 

[0, 0, 1, 0], [0, 0, 1, 0]] 

Predicted (‘Nature Mode’) 

Structure in dot-bracket 

notation 

((((.........)))) (dot-bracket) 

 

2,2,2,2,1,1,1,1,1,1,1,1,1,1,3,3,

3,3 

Target Structure in dot-

bracket notation 

(((((.......))))) (dot-bracket) 2,2,2,2,2,1,1,1,1,1,1,1,1,3,3,3,

3,3 

Predicted Structure Energy -2.2 kcal/mol -2.2 

Target Energy 4.9 kcal/mol 4.9 
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Predicted Structure in 

pairmap notation* 

((((.........)))) (pairmap) 16,15,14,13,-1,-1,-1,-1,-1,-1,-

1,-1,-1,3,2,1,0 

Target Structure in pairmap 

notation* 

(((((.......))))) (pairmap) 16,15,14,13,12,-1,-1,-1,-1,-1,-

1,-1,4,3,2,1,0 

Locked bases xooooooooooooooox 2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

2 

* Additional features used for training on eternamoves-select and not eternamoves-large data set. 
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Table 2. EternaBrain CNN accuracies on eternamoves-select with different splits of training and 

test sets. 

Model Training Accuracy Test Accuracy 

EternaBrain - base 0.71 0.51 

EternaBrain - location 0.31 0.34 

Half experts - base 0.66 0.38 

Half experts - location 0.30 0.11 

Half puzzles - base 0.70 0.27 

Half puzzles - location 0.33 0.02 

One expert - base 0.79 0.25 

One expert - location 0.5 0.01 
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Table 3. EternaBrain CNN accuracies on eternamoves-select, grouped by length of puzzle and 

paired/unpaired status of nucleotide at which move was applied.  

Length of 
Puzzles 

Number of 

Moves 

Location 

Accuracy 

Location 

Accuracy (%) 

Base 

Accuracy 

Base 

Accuracy (%) 

1-50 1034 398 38% 537 52% 

51-100 771 232 30% 385 50% 

101-150 1329 346 26% 624 47% 

151-400 313 32 10% 141 42% 

All 3447 1008 29% 1687 49% 

Paired 

1-50 687 257 37% 337 49% 

51-100 674 201 29% 324 48% 

101-150 1206 320 27% 557 46% 

151-400 264 23 8% 114 43% 

All 2831 801 28% 1332 47% 

Unpaired 

1-50 348 141 40% 200 57% 

51-100 96 30 31% 61 63% 

101-150 122 26 21% 67 55% 

151-400 50 9 18% 27 54% 

All 616 206 33% 355 58% 
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Table 4. EternaBrain-SAP performance on Eterna100 upon five additional playouts on the 61 

puzzles it solved in its first run. 

 

Puzzle Number 
of Times 
Solved 
out of 5 

Puzzle Number 
of Times 
Solved 
out of 5 

Simple_hairpin 5 medallion 4 

Arabidopsis_Thaliana_6_RNA_-

_Difficulty_Level_0 

5 [RNA]_Repetitious_Sequences_8

_10 

5 

Prion_Pseudoknot_-

_Difficulty_Level_0 

5 Documenting_repetitious_behavi

or 

5 

Human_integrated_adenovirus_-

_Level_0 

4 7_multiloop 5 

The_Gammaretrovirus_Signal_-

_Diffuculty_Level_0 

5 Kyurem_7 0 

Saccharomyces_Cerevisiae_-

_Difficulty_Level_0 

5 JF1 5 

The_fractal 5 multilooping_fun 0 

G-C_Placement 5 Multiloop... 3 

The_Sun 5 hard_Y 0 

Frog_Foot 5 Mat_-_Elements_&_Sections 0 

InfoRNA_test_16 5 Chicken_feet 0 

Mat_–_Martian_2 5 Bug_18 0 

square 5 Fractal_star_x5 5 
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Six_legd_turtle_2 5 Crop_Circle_2 0 

Small_and_Easy_6 0 Branching_Loop 0 

Fractile 5 Bug_38 0 

Six_legd_turtle_2 5 Simple_Single_Bond 0 

snoRNA_SNORD64 5 Taraxacumr_officinale 5 

Chalk_Outline 4 Headless_Bug_on_Windshield 0 

InfoRNA_bulge_test_9 4 Pokeball 1 

Tilted_Russian_Cross 5 Variation_of_a_crop_circle 3 

This_is_ACTUALLY_Small_An

d_Easy_6 

5 Loop_next_to_a_Multiloop 0 

Shortie_4 5 Snowflake_4 0 

Shape_Test 3 Mat_-_Cuboid 3 

The_Minitsry 5 Misfolded_Aptamer_6 2 

stickshift_ 5 Snowflake_3 0 

U 4 Hard_Y_and_a_bit_more 0 

Still_Life_(Sunflower_In_A_Vas

e) 

5 Mat_-_Lot_2-2_B 0 

Quasispecies_2-

2_Loop_Challenge 

4 Shapes_and_Energy 0 

Corner_bulge_training_ 5 Spiral_of_5s 0 
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Spiral 5 Campfire 0 

InfoRNA_bulge_test 5 Anemone 3 

Worm_1 4 Fractal_3 5 

just_down_to_1_bulge 3 Kyurem_5 0 

Iron_Cross 5 Snowflake_Necklace_(_or_v2.0_) 0 

loops_and_stems 5 Methaqualone_C16H14N2O_Stru

ctural_Representation 

0 

Water_Strider 5 Cats_Toy_2 0 

The_turtle(s)_move(s) 5 Zigzag_Semicircle 0 

Adenine 5 Short_string_4 0 

Tripod_5 4 Gladius 0 

Shortie_6 5 Thunderbolt 4 

Runner_ 5 Mutated_chicken_feet 0 

Recoil 5 Chicken_Tracks 2 

[CloudBeta]_An_Arm_and_a_Le

g_1.0_ 

5 Looking_Back_Again 0 

[CloudBeta]_5_Adjacent_Stack_

Multi-Branch_Loop 

5 Multilooping_6 0 

Triple_Y 0 Cesspool 0 

Misfolded_Aptamer 4 Hoglafractal 0 
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Flower_power 0 Bullseye 0 

Kudzu 0 Shooting_Star 0 

1,2,3and4bulges 0 Teslagon 0 
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Figure Legends 

Figure 1. Eterna and EternaBrain. (A-C) Puzzle-solving interface presented to human players 

of Eterna including the state of the puzzle (whether it is solved or not) in the top left corner 

(red/green outline), the puzzle itself (in the middle), and the toolbar (bottom) with which the 

players can mutate the RNA sequence to make it fold into the desired state; yellow, blue, red, 

and green symbols represent A, U, G, and C nucleotides. (A) The desired target structure for the 

RNA molecule, as indicated by the bullseye in the bottom left (orange highlight). (B) Nature 

mode, as indicated by the leaf in the bottom left (orange highlight), gives the predicted minimum 

free energy structure for the current sequence. Since the bases in the top right should be paired 

with each other (orange circle), this puzzle is not yet folding correctly; this status is shown by the 

red indicator in the top left corner. (C) The solved puzzle. The nature-mode structure matches the 

target structure, and the indicator in the top left corner turns green, meaning the puzzle has been 

solved. (D) (left) Numerous players of contributed Eterna solutions. For preparing the 

eternamoves-select  data set, we selected any user who had solved more than 3000 distinct 

puzzles, which left us with 72 players. (right) In EternaBrain, we tested whether information on 

players’ moves could be used to train a convolutional neural network.  (E) For solving new 

puzzles, the final EternaBrain-SAP framework first uses the EternaBrain convolutional neural 

net model to predict sequence changes (‘moves’) for new RNA puzzles. In a second stage, the 

Single Action Playout (SAP), six additional hand-coded strategies are applied to complete the 

solution.  

 

Figure 2. The 6 strategies included in the SAP. (A) The original state of the puzzle before 

SAP. This represents a puzzle initiated with an arbitrary sequence of nucleotides; panel displays 

the target structure, where mismatched nucleotides (C-A) are highlighted. (B) The first step of 

the SAP is to correct mismatched pairs. Here, the cytosine nucleotides are switched to uracil to 

pair with adenine. (C) Changing end pairs to G-C. Changing base pairs that are at the edges of 

stems and flank loops to G-C pairs lowers the free energy of the molecule. (D) G-internal loop 

boost. The first nucleotide in an internal loop on either side is switched to a guanine. (E) U-G-U-

G super boost. In an internal loop with 2 unpaired bases on either side, the 2 bases are changed to 

uracil and guanine, in that order, on either side. (F) G-hairpin boost. The first nucleotide in each 

strand of a hairpin loop is changed to a guanine. (G) Reorienting base pairs. Target base pairs 

that are not predicted to be folded correctly are ‘flipped’ to lower the energy of the structure. 

Here, alternating the A-U pairs lowers the energy of the stack. The 5’ end of each puzzle is at the 

top left, with the puzzle drawn counter-clockwise from that point. 

 
Figure 3. EternaBrain Performance. (A) Performance of EternaBrain and 6 previously 

published algorithms on Eterna100 benchmark. EternaBrain solves 61/100, followed by 

MODENA (54/100), INFO-RNA (50/100), NUPACK (48/100), DSS-Opt (47/100), RNAinverse 

(28/100), and RNA-SSD (27/100). (B) Performance of Alternative Model Constructions. The 

CNN alone could solve only 20/100, and the SAP alone could solve 50/100. Removing various 

input features passed into the CNN resulted in drops in performance, confirming the importance 

of these features.  
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Figure 4. Example EternaBrain-SAP solutions to Eterna100 puzzles (A) U solution 

highlights the fact that the EternaBrain CNN alone can solve puzzles with short stems. (B) 

Chicken Tracks solution: EternaBrain-SAP can solve puzzles with three stems intersecting in one 

internal loop. (C) Thunderbolt solution demonstrates that EternaBrain-SAP can solve large 

puzzles (400 nucleotides long) and solve loops and stems in combination. (D) Shortie 4 solution 

shows EternaBrain-SAP can solve puzzles with multiple short stems (2 nucleotides long). (E) 

Shortie 6 is quite similar to Shortie 4, but with the same motif (short stems) repeated. The other 

algorithms mentioned could not solve Shortie 6 because of the repeated motifs. (F) Hard Y - 

target structure (left) vs nature-mode (right) structure. EternaBrain-SAP could not solve Hard Y 

because it required use of a little-used strategy to solve a motif called a zigzag. Since the strategy 

is not often used by players, the EternaBrain CNN did not learn the strategy and the strategy was 

not included in the SAP.  In each panel, the 5’ end of each puzzle is at the top left, with the 

puzzle drawn counter-clockwise from that point. 

 

Supplemental Figure S1. The twelve puzzles used in the eternamoves-large dataset. Most 

bases are adenine to represent the initial state of the puzzle before any mutations are made. Some 

bases that are not A represent “locked” bases which cannot be mutated.  The 5’ end of each 

puzzle is at the top left, with the puzzle drawn counter-clockwise from that point. 

 
Supplemental Figure S2. The 78 puzzles used in the eternamoves-select dataset. Some puzzle 

structures are repeated because the locked bases (bases which cannot be mutated) are different 

for the two puzzles.  The 5’ end of each puzzle is at the top left, with the puzzle drawn counter-

clockwise from that point. 

 
Supplemental Figure S3. Training the EternaBrain convolutional neural network on 
eternamoves-select. (A) Cross-validation accuracy of location predictor per epoch of training. 

(B) Cross-validation accuracy of base predictor per epoch of training. An epoch of training is one 

complete pass of backpropagation, retraining, and receiving feedback of performance over all 

30,447 solutions (305 mini-batches of 100 solutions each). 

 

Supplemental Figure S4. Time and number of moves of EternaBrain-SAP compared to 
Eterna human players. (A) Median time and (B) number of moves needed to solve Eterna100 

puzzles. Puzzles that were only solvable by Eterna human players are not shown.  
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