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ABSTRACT 

Haplotype-resolved genome assemblies are important for understanding how combinations of 

variants impact phenotypes. These assemblies can be created in various ways, such as use of 

tissues that contain single-haplotype (haploid) genomes, or by co-sequencing of parental 

genomes, but these approaches can be impractical in many situations. We present FALCON-

Phase, which integrates long-read sequencing data and ultra-long-range Hi-C chromatin 

interaction data of a diploid individual to create high-quality, phased diploid genome 

assemblies.  The method was evaluated by application to three datasets, including human, cattle, 

and zebra finch, for which high-quality, fully haplotype resolved assemblies were available for 

benchmarking.  Phasing algorithm accuracy was affected by heterozygosity of the individual 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 19, 2019. ; https://doi.org/10.1101/327064doi: bioRxiv preprint 

https://doi.org/10.1101/327064
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2

sequenced, with higher accuracy for cattle and zebra finch (>97%) compared to human (82%). In 

addition, scaffolding with the same Hi-C chromatin contact data resulted in phased chromosome-

scale scaffolds. 

 

INTRODUCTION 

A high-quality reference genome is an indispensable resource for basic and applied research in 

biology, genomics, agriculture, medicine, and many other fields1–3. Technological innovations in 

DNA sequencing, long-range genotyping, and assembly algorithms have led to rapidly declining 

costs of sequencing and computation for genome assembly projects4. As researchers are now 

able to pursue genome projects for outbred, non-model, diploid and polyploid organisms, a major 

challenge in de novo assembly is accurate haplotype resolution. Most genome assemblers 

“collapse" multiple haplotypes into a single consensus sequence to generate a pseudo haploid 

reference. Unfortunately, this process results in mosaic haplotypes with erroneously associated 

variants not present in either haplotype and concomitant effects on biological inference5–7. 

 Three approaches to haplotype resolution in long-read diploid genome assembly have 

been described. The most recently reported, trio binning, depends on short-read data of the 

parents to identify parent-specific k-mers, which are then used to separate long reads from the 

offspring prior to assembly into maternal and paternal bins8. These parent-specific bins are then 

assembled into two haploid references, thus entirely avoiding the added complexity of diploid 

assembly. This method provides extremely accurate phased assemblies representing each 

parental contribution, but requires that samples of the parents are available, which may not 

always be the case for samples of interest.  A second approach phases reads by mapping to an 

existing reference genome to infer haplotypes, followed by long-read partitioning and assembly9–
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12. Read-based phasing methods require that a reference assembly is available, and depend on 

single nucleotide variant (SNV) calling that has associated error. The third approach is to 

separate haplotypes during the genome assembly process as implemented by FALCON-Unzip 

for long reads13 and Supernova for short reads14. FALCON-Unzip outputs two types of genomic 

contigs: primary contigs, which are highly contiguous pseudo-haplotypes containing both phased 

and unphased haplotypes, and haplotigs, which are shorter phased contigs that represent the 

alternate alleles in heterozygous regions of the primary contig. The length of the phase blocks 

(haplotig plus homologous primary contig region, see Fig. 1) produced by FALCON-Unzip are 

limited by the distribution of read length, depth of coverage, and the degree and distribution of 

heterozygosity in the diploid genome. Regions of low heterozygosity are collapsed into non-

haplotype-resolved sequence because they contain insufficient information for read phasing.  

 To eliminate the haplotype switch errors in FALCON-Unzip primary contigs, we 

developed FALCON-Phase. It addresses the problem of phase switching between FALCON-

Unzip phase blocks by integrating ultra-long-range genotype (>1Mb) information from Hi-C 

read pairs15. Unlike read-based phasing methods, FALCON-Phase does not require an existing 

reference genome or SNV calling, but instead relies on the haplotype-specific mapping pattern of 

informative Hi-C read pairs between long-read generated contigs of the same individual9,12,16. In 

contrast to trio binning, FALCON-Phase is based entirely on sequence of the individual being 

assembled, and does not require parental samples or sequence. 

 

RESULTS 

FALCON-Unzip Assembly and Processing 
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We generated contig draft de novo assemblies for three vertebrate species (human, zebra finch, 

and cattle) using FALCON-Unzip (see Table S1 for raw assembly statistics, Table S2 for data 

availability). We curated the initial assemblies to break chimeric contigs manually (see methods) 

and used purge haplotigs17 to remove duplicated haplotypes from the primary contig set. This 

ensured that the starting primary assembly was haploid and that alternate haplotig sequences 

were each associated with a primary contig. The primary assemblies ranged from ~1-3Gb in size 

(contig N50 length of ~4-30 Mb) with 84-88 % of the genomes haplotype-resolved. Average 

haplotig length, which is equivalent to average phase block size, ranged from 188-452 kb (Table 

1). We then applied FALCON-Phase to these assemblies, which first defines phase blocks by 

aligning the alternate haplotigs to their associated primary contigs, then uses mapping density of 

Hi-C read pairs to bin haplotype sequences that are on the same chromosome, and finally 

expands the homozygous sequences into both pseudo-haplotypes (Figure 1). Users can specify 

“pseudo haplotype” or “unzip” output formats, the former having the same “collapsed” sequence 

in both pseudo-haplotypes, the latter matching the FALCON-Unzip assembly format. 

 FALCON-Phase aligns Hi-C read pairs to both the collapsed regions and phase blocks 

using bwa18. We found that most reads (56-88%) mapping to the assembly did not contain 

haplotype-specific variants, and therefore had low or no phasing information (Table S3). By 

requiring both Hi-C read pairs to have a map quality greater than 10, we obtain a haplotype-

specific set of Hi-C reads. In the cattle assembly, for example, 16.3% of the Hi-C read pairs pass 

this filtering (64.5 M / 395 M), resulting in 23.8 Hi-C read pairs per kilobase (kb) across the 

genome (Table S3). A matrix is then generated from the counts of retained Hi-C read pairs 

mapping between phase blocks. 
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Contig-Phasing Performance 

 We found that phasing performance was impacted by the level of heterozygosity (Table 

2). The zebra finch assembly has the highest heterozygosity (~1.6%; Table 1) and 98.3% of the 

phase blocks were properly phased (Table 2); the cattle sample has a lower heterozygosity 

(~0.9%), with a slightly lower 97.3% of the phase blocks properly phased; human has a ~ 4 to 9-

fold lower rate of heterozygosity (~0.2%) than the other two species, and FALCON-Phase 

achieved only 81.8% accuracy. These findings suggest that lower rates of heterozygosity, where 

there are fewer informative Hi-C reads after map-quality filtering, interferes with the ability to 

phase. Consistent with this idea, we observed the fewest Hi-C links between phase blocks in 

human after filtering (Table 1; Figure S1). A potential alternative explanation is that the choice 

of restriction enzyme in the Hi-C library construction affects genome coverage and, therefore, 

ability to phase. This is consistent with the data in that the human Hi-C library was constructed 

with a single enzyme having a six-base recognition sequence (HindIII), the cattle library was 

constructed with a single enzyme but four-base recognition sequence (Sau3AI), and the zebra 

finch library was constructed using multiple enzymes. There is an ongoing effort to resolve 

which Hi-C library preparation is best for human; simulation studies were inconclusive. 

Using the phase assignment for the pair of haplotypes in each phase block, we generated 

two pseudo-haplotypes, phase0 and phase1. These pseudo-haplotypes are similar to the primary 

contigs of FALCON-Unzip except that the phase blocks should originate from the same parent 

rather than consisting of a mix of maternal and paternal haplotypes. We assessed the overall 

phase accuracy of the primary contigs and haplotigs from FALCON-Unzip and the resulting 

pseudo-haplotypes after FALCON-Phase by counting parental k-mers identified in Illumina data 

from the parents. This stringent measure penalizes every k-mer that is contained within a phasing 
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switching error. For all three genomes, the FALCON-Unzip haplotigs already had phasing 

accuracy greater than 95% (Table 2, see also19) whereas the primary contig phasing accuracy 

ranged from 71% for zebra finch and cattle to 61% for human. After applying FALCON-Phase, 

the resulting pseudo-haplotypes had an increase in the proportion of markers from one parent: 

correct phasing in the zebra finch and cattle increased to 91% and 96%, respectively, and in 

human, to 81.8% (Figure 2, Table 2). While each pseudo-haplotype contig contained a majority 

of markers from one parent, the set of phase0 or phase1 contigs are a mix of maternal and 

paternal pseudo-haplotypes (Figure 2d-f). As a ceiling control, k-mer analysis of trio binned 

Canu assemblies have >99% phasing accuracy for these genomes. We also evaluated the phase 

accuracy for a supernova assembly of the human sample and determined it to be 74% for both 

pseudo-haplotypes (Figure S2). 

 

Scaffold Phasing 

Contigs from phase0 pseudo-haplotypes were scaffolded into chromosome-scale sequences using 

Proximo Hi-C (Phase Genomics, Table S5). A second round of phasing was performed on the 

scaffolds using FALCON-Phase and performance was evaluated using parental k-mer counts in 

the unphased versus phased scaffolds (Table 2). For cattle and zebra finch, overall parental 

scaffold phasing accuracy was 92.4% and 88.4%, respectively, and in the human, 73.9% of their 

markers were from one parent after the second round of phasing. Thus, FALCON-Phase is the 

only method which generates chromosome-scale phased assemblies from a diploid genome 

without requiring parental information. Additional information is necessary to compile a 

maternal or paternal set of scaffolds however, as the phase0 and phase1 sets contain a mix of the 

parental sequences. 
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DISCUSSION  

The ultimate goal of genome assembly is to faithfully represent each chromosome in the 

organism from telomere-to-telomere. To do so, assembly methods must account for sequence 

similarity between homologous maternal and paternal chromosomes, in order to prevent 

collapsed haplotypes, which may result in incomplete or erroneous representations of the 

underlying biological sequence7,8. The FALCON-Unzip genome assembler is able to identify 

heterozygous regions of a genome as bubbles in assembly graphs, and “unzip” those bubbles 

further by phasing and reassembling reads using single nucleotide variants13. However, 

FALCON-Unzip cannot phase entire primary contigs. To address this limitation, we designed 

FALCON-Phase, which uses Hi-C data to extend the phase blocks to the contig and scaffold 

scales. Here, we have demonstrated that FALCON-Phase improves accuracy for heterozygous 

diploid genome assemblies, without parental or population sequence data. 

FALCON-Phase, in conjunction with FALCON-Unzip, is thus an attractive method for 

generating high quality reference genomes of samples with moderate to high heterozygosity for 

which parents are not available. This approach may be useful for large-scale genome initiatives 

which source samples of diverse origins, including invertebrate disease vectors, agricultural 

pests, or other wild-caught individuals. The method utilizes two technologies common in 

generating highly contiguous genome assemblies: PacBio continuous long reads (CLR) and Hi-

C. While Hi-C has recently been used for scaffolding20,21, we find that the same data can also be 

used for contig or scaffold phasing. The accuracy of phasing increases with higher 

heterozygosity; the human sample had the lowest heterozygosity, and consequently fewer 

haplotype-informative Hi-C links. However, the comparatively low heterozygosity levels 
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encountered in human are notably rare among animals, in particular wild populations. FALCON-

Phase is thus expected to be valuable for population and conservation genomics22,23. 

 FALCON-Phase relies on a diploid assembly that is curated as a haploid set of primary 

contigs plus alternate haplotigs that are each assigned to a primary contig. Any primary contig is 

treated as if it were diploid and will be duplicated in the pseudo-haplotype output. Contigs from 

hemizygous regions of the genome like the sex chromosomes or mitochondrial sequences should 

not have phase-switch errors and may be removed prior to running FALCON-Phase. Similarly, 

we recommend removing duplicated haplotypes in the primary assembly manually or with 

automated tools such as purge haplotigs17. Lastly, additional curation to remove chimeric contigs 

that join unlinked loci is recommended prior to application of our method21. While curation is 

optional, it is recommended as FALCON-Phase does not quality control the input assembly. 

 The phasing algorithm at the core of FALCON-Phase could be adapted to utilize other 

long-range contact data types. The input matrix is simply a count of contacts between all pairs of 

sequences in an assembly. Instead of Hi-C data, BAC-end sequences, read clouds, or optical 

maps could be transformed into the required input for FALCON-Phase. Hi-C was chosen over 

the other technologies because it provides ultra-range contact information (>1Mb) which enables 

chromosome-scale phase blocks. Similarly, the input sequences could consist of phase blocks 

derived from methods other than a FALCON-Unzip assembly, such as phase blocks generated 

through resequencing, variant calling, or pseudo-haplotypes generated from other long-read 

combinations24. The simple, yet novel, concept of skirting variant calling reduces the number of 

steps and overall runtime of phasing pseudo-diploid assemblies. For these reasons, we believe 

FALCON-Phase will be an important algorithmic contribution to the goal of diploid genome 

assembly. 
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MATERIAL AND METHODS 

FALCON-Phase has three stages: 1) processing FALCON-Unzip contigs and Hi-C data; 2) 

application of the phasing algorithm; and 3) emission of phased pseudo-haplotypes (Fig. 1). We 

implemented FALCON-Phase using the Snakemake language to provide flexibility and pipeline 

robustness25. The pipeline can be run interactively, on a single computer, or submitted to a 

cluster job scheduler. The code is open source under a Clear BSD plus attribution license and is 

available through github (https://github.com/phasegenomics/FALCON-Phase). 

 

FALCON-Phase Method 

Identification of Phase Blocks 

In stage one, the FALCON-Unzip assembly is processed to identify phase blocks: regions of the 

genome that have been “unzipped” into a maternal and paternal pair of haplotypes. FALCON-

Unzip generates contiguous primary contigs representing pseudo-haplotypes and shorter phased 

alternate haplotigs. A haplotig placement file is generated in the pairwise alignment format26 that 

specifies the alignment location of each haplotig on the primary contig (Fig. 1). Briefly, 

haplotigs are aligned, filtered, and processed with three utilities of the mummer v4 package: 

nucmer, delta-filter and show-coords27. Sub-alignments for each haplotig are chained in one 

dimension to find the optimal start and end of the placement using the coords2hp.py script. 

Finally, non-unique haplotig mappings and those fully contained by other haplotigs are removed 

with filt_hp.py. 

 The haplotig placement file is used to generate three “minced" FASTA files (Fig. 1), 

“A_haplotigs.fasta", ”B_haplotigs.fasta", and “collapsed_haplotypes.fasta". The “A" haplotigs 
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are the original FALCON-Unzip haplotigs (red in Fig. 1), the “B" haplotigs are the 

corresponding homologous region of the primary contigs (the alternate haplotype, blue in Fig. 1, 

part 3-4), and the “collapsed" haplotypes are the unphased or collapsed regions of the assembly 

(grey in Fig. 1). The pairing of the A and B minced haplotigs in the phase blocks and their order 

along the primary contig is summarized in an index file, “ov_index.txt", generated by 

primary_contig_index.pl. 

 

Hi-C read mapping 

The Hi-C reads are mapped to the minced contigs using bwa-mem, with the Hi-C option (-5) 

enabled18. The mapped reads are streamed to samtools, removing unmapped, secondary, and 

supplementary alignments (samtools -F 2316) 28. This operation ensures that each mate-pair only 

contains two alignment records. In the last step of read processing, a map quality score filter of 

Q10 (for both reads) is applied, removing reads without haplotype-specific sequence. 

Additionally, we set an edit distance from the reference of less than 5 for both reads. Both more 

stringent (60) and relaxed (0) map quality filtering resulted in lower phasing accuracy. 

 

Contact matrix 

The Hi-C mate-pair counts between minced contigs are enumerated into a contact matrix, M. 

Each element, Mi,j, in the matrix is later normalized by the number of restriction enzyme sites, z,  

in both the ith and jth minced contigs as shown in Equation 1. The raw count matrix is encoded 

into a binary matrix format. 

 

Equation 1. 
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Phasing procedure 

We designed an algorithm to extend phasing between FALCON-Unzip phase blocks based on 

Hi-C read pair mapping. The algorithm searches for the optimum set of phase block 

configurations along a primary contig using a stochastic model. The algorithm is given a list, C, 

of tuples for the phase blocks and their sequential ordering along each primary contig. During 

initialization, each member of the phase block, except the first, is randomly assigned one of the 

two possible phase configurations for a diploid organism ∈({[0,1],[1,0]}). The phase assignment 

is stored in array T where 0 corresponds to phase configuration [0,1]. The first phase block along 

the primary contig is always assigned to the phase configuration [0,1] as its orientation is 

arbitrary. By fixing the first phase block the search the results are comparable across iterations.  

Phase blocks are only randomly initialized once before the search begins. The algorithm sweeps 

along the phase blocks of each primary contig, assigning a phase for the blocks, conditioned on 

the phase assignment of all previous phase blocks and the Hi-C links between them. The 

phaseFreq function (Equation 2) calculates the frequency of Hi-C links from the current region, 

i, to all past regions, j, that have the same phase, i.e. Ti = Tj = 1 = [1,0]. 

 

Equation 2. 

�	
��
�����, �, ��, �� �  ∑ ���, �� � ���, �����
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The phaseFreq function takes the index of the current phase block, i, the phase assignment of all 

regions associated with a given primary contig, array T, the normalized Hi-C count matrix, ��, 

and the C array of the phase block tuples. The gamma function (Equation 3) determines if two 

phase blocks have the same phase assignment, T, and if so returns 1. The alpha function 

(Equation 4) gives the normalized cis counts of Hi-C links between a pair of phase blocks 

whereas the beta function (Equation 5) returns both the cis and trans counts which is a 

normalizing constant. 

 

Equation 3. 

���, �� �  �1, ���� � ����
0, ���� ! ����" 

 

Equation 4. 

�#�, �, ��, �$ �  ������, 0�, ���, 1�� �  ������, 1�, ���, 0�� 
 

Equation 5. 

�#�, �, ��, �$ � ��%���, 0�, ���, 0�& � ��%���, 1�, ���, 1�& � ��%���, 0�, ���, 1�& � ������, 1�, ���, 0�� 
 

The process of phase assignment across a primary contig is iterated for a burn-in period followed 

by a scoring period (See Algorithm 1). The only difference between the two stages is that the 

scoring stage enumerates the number of iterations that each member of the phase block spends in 

phase1 [1,0]. We found by ignoring several million iterative sweeps over a primary contig, the 

algorithm tends to be in a more favorable search space. The final phase assignment is the 

configuration in which each member of a phase block spent the most iterations. In practice, 50 - 
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100 M iterations with 10 M burn-in period generated consistent results. The limiting 

computational resource is memory as  is not sparse. 

 

Emission of phased contigs 

Once the phase assignments of haplotype pairs in the phase blocks are determined, the minced 

fasta sequences are joined into two full-length pseudo-haplotypes (phase0 and phase1) per 

primary contig (Fig. 1). The order of minced sequences (phase blocks plus collapsed regions) is 
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determined by the haplotig placement file and the phase assignment is determined by the phasing 

algorithm. An alternate output similar to the “FALCON-Unzip” format of primary contigs and 

haplotigs is also available as a user-specified option. 

 

Scaffolding and Scaffold-Phasing 

We scaffolded the contigs from FALCON-Phase using default Proximo20,29 settings (Phase 

Genomics, WA). Briefly, reads were aligned to phase0 pseudo-haplotypes using bwa-mem30(v. 

0.7.15-r1144-dirty) with the -5SP and -t 8 options. SAMBLASTER31 (commit 

37142b37e4f0026e1b83ca3f1545d1807ef77617) was used to flag PCR duplicates, which were 

later excluded from analysis. Alignments were then filtered with samtools (v1.5, with htslib 1.5) 

using the -F 2304 filtering flag to remove non-primary and supplementary alignments, as well as 

read pairs in which one or more mates were unmapped. Phase Genomics' Proximo Hi-C genome 

scaffolding platform (commit 145c01be162be85c060c567d576bb4786496c032) was used to 

create chromosome-scale scaffolds from the draft assembly as previously described 29. As in the 

LACHESIS method 20, this process computes a contact frequency matrix from the aligned Hi-C 

read pairs, normalized by the number of restriction sites on each contig, and constructs scaffolds 

in such a way as to optimize expected contact frequency and other statistical patterns in Hi-C 

data. Juicebox v1.8.8 was used to correct scaffolding errors32,33. After scaffolding, we applied the 

phasing algorithm a second time, using as input the pairing of the phase0 and phase1 pseudo-

haplotypes and their order along the chromosomes as determined by scaffolding. 

 

Method Evaluation 

Datasets 
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We evaluated FALCON-Phase on three vertebrate species with different levels of 

heterozygosity: Puerto Rican human female, HG00733 (low), cattle (Bos taurus indicus x Bos 

taurus taurus, moderate), and zebra finch female (Taeniopygia guttata, high). For each genome, 

we had high coverage PacBio data for de novo genome assembly, Hi-C data for phasing and 

scaffolding, paired-end Illumina data from the parents, and trio binned Canu assemblies (Supp 

Table S2). The female zebra finch data was generated as part of the Vertebrate Genomes Project 

(Rhie et al in preparation). 

 

Heterozygosity estimation 

Heterozygosity was estimated two ways. First, from k-mers (k-length sequence) in Illumina 

whole genome sequencing reads (Tables S1 and S2). Fastq files were converted to fasta files, 

then the canonical k-mers were collected using meryl in canu1.78 to include all the high 

frequency k-mers using the following code. 

meryl -B -C -s $name.fa -m $k_size -o $name.$k 
meryl -Dh -s $name.$k > $name.$k.hist 
 

Given the k-mer histogram, Genomescope34 was used to estimate the level of heterozygosity. 

k=21 was used for human HG00733 and the cow, and k=31 was used for the zebra finch. A 

higher k-mer size was used for zebra finch for more accurate estimates of heterozygosity due to 

its higher level of polymorphism. The k-mer size was also used for other samples in the 

Vertebrate Genomes Project, from which this sample was selected. 
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Second, with mummer v 3.2.335, trio binned parental Canu assemblies were aligned with nucmer 

(nucmer –l 100 -c 500 -maxmatch mom.fasta dad.fasta) and heterozygosity was computed as 1 - 

average identify from 1 to 1 alignments output by dnadiff using default parameters. 

 

De novo genome assembly 

As a precursor to FALCON-Phase, we performed de novo genome assembly with FALCON-

Unzip13 using v 0.0.2 (bioconda) for zebra finch and cattle, and a binary build from August 13, 

2018 for human. 

 

Human parameters: (length_cutoff = 5000; length_cutoff_pr = 10000; pa_daligner_option = -k18 
-e0.75 -l1200 -h256 -w8 -s100; ovlp_daligner_option = -k24 -e.92 -l1800 -h600 -s100; 
pa_HPCdaligner_option = -v -B128 -M24; ovlp_HPCdaligner_option = -v -B128 -M24; 
pa_HPCTANmask_option = -k18 -h480 -w8 -e.8 -s100; pa_HPCREPmask_option = -k18 -h480 
-w8 -e.8 -s100; pa_DBsplit_option = -x500 -s400; ovlp_DBsplit_option = -s400; 
falcon_sense_option = --output-multi --min-idt 0.70 --min-cov 4 --max-n-read 200 --n-core 8; 
falcon_sense_skip_contained = False; overlap_filtering_setting = --max-diff 60 --max-cov 60 --
min-cov 1 --n-core 12). 
 
Bull parameters: (length_cutoff = 14850; length_cutoff_pr = 12000; pa_daligner_option = -e0.76 
-l1200 -k18 -h480 -w8 -s100; ovlp_daligner_option = -k24 -h480 -e.95 -l1800 -s100; 
pa_HPCdaligner_option = -v -B128 -M24; ovlp_HPCdaligner_option = -v -B128 -M24; 
pa_HPCTANmask_option = -k18 -h480 -w8 -e.8 -s100; pa_HPCREPmask_option = -k18 -h480 
-w8 -e.8 -s100; pa_DBsplit_option = -x500 -s400; ovlp_DBsplit_option = -s400; 
falcon_sense_option = --output_multi --min_idt 0.70 --min_cov 4 --max_n_read 200 --n_core 
24; overlap_filtering_setting = --max_diff 120 --max_cov 120 --min_cov 4 --n_core 24) 
 
Zebra finch parameters: (length_cutoff = 13653; length_cutoff_pr = 5000; pa_daligner_option = 
-e0.76 -l2000 -k18 -h70 -w8 -s100; ovlp_daligner_option = -k24 -h1024 -e.95 -l1800 -s100; 
pa_HPCdaligner_option = -v -B128 -M24; ovlp_HPCdaligner_option = -v -B128 -M24; 
pa_HPCTANmask_option = -k18 -h480 -w8 -e.8 -s100; pa_HPCREPmask_option = -k18 -h480 
-w8 -e.8 -s100; pa_DBsplit_option = -x500 -s400; ovlp_DBsplit_option = -s400; 
falcon_sense_option = --output-multi --min-idt 0.70 --min-cov 2 --max-n-read 400 --n-core 24; 
overlap_filtering_setting = --max-diff 100 --max-cov 150 --min-cov 2 --n-core 24) 
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We identified and corrected chimeric contigs between non-adjacent genomic regions in the 

human and cattle assemblies using Juice Box Assembly Tools33 and D-GENIES36. We 

interrogated the contradance of the Hi-C data with the PGA scaffolds visually in JBAT. Off-

diagonal signals in the heatmap are indicative of assembly/scaffolding errors. Human and cow 

contigs and scaffolds with discordant Hi-C signals we aligned, using minimap2 with the -x asm5 

setting, to the human or cow reference genomes (Table S2). If the contig/scaffold in question 

mapped chimerically (inter- or intrachromosomally) to the each species genome they were 

flagged. We manually broke these contigs between phase blocks and re-associated the haplotigs 

to the two new contigs.  

 

To remove duplicated haplotypes in the primary contigs from the zebra finch FALCON-Unzip 

assembly, as suggested for highly heterozygous genomes from the Vertebrate Genomes Project 

(Rhie et al in preparation), we ran purge haplotigs17 on zebra finch using default settings and 

coverage estimates from PacBio subreads mapped to the primary contigs17. We recategorized 

67.1 Mb of primary contigs as haplotigs (N = 632) and 25.4 Mb of repetitive sequences (N = 

329) was discarded. 

 
 
Evaluation of Phasing 

Phase assignment was evaluated by minimap226 alignments of the sequences in each phase block 

to the trio binned parental Canu assemblies using the -x asm5 setting. We determined the parent 

assignment with the higher pairwise identity of the longest alignment and required that the 

parental assignment of the two sequences in each phase block be concordant. The proportion of 

scorable length that was correctly assigned to phase was determined for each primary contig and 
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then a weighted average was computed where the weights are the primary contig length (Table 

1). By mapping each haplotig to its associated primary contig, we defined 5,273 phase blocks 

(haplotig plus homologous region in primary contig) in the starting FALCON-Unzip cattle 

assembly. 98.2% could be unambiguously assigned to a parent by FALCON-Phase; for zebra 

finch, 96% of the length of the 4,772 phase blocks were assigned to each parent. For human, 

91.1% of the 7,774 phase blocks were assigned to each parent. In all species, the unassigned 

phase blocks were on average shorter than the assigned blocks (Table S4). 

 

In addition, parent-specific k-mers were counted in the pseudo-haplotypes before and after contig 

phasing, before and after scaffold phasing, and in trio binned Canu assemblies. Parental k-mers 

were identified using Illumina data from the parents as described previously8 using k=21. 

Parental k-mers were counted in the assemblies using the “simple-dump” utility from canu v 1.7. 

The proportion of “correct” parental k-mers was used as an overall measure of contig or scaffold 

phasing, and was plotted for each contig or scaffold in Figure 2. 
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TABLES 

Table 1. Summary statistics of inputs: starting genome assemblies and Hi-C data 

Sample Zebra Finch Cattle Human 
Heterozygosity (%) 1.57 – 1.72 0.65 - 0.93 0.17 – 0.21 
Primary Assembly Length (Gb) 1.05 2.71 2.89 
Primary Contig N50 (Mb) 3.48 31.4 26.3 
Mean Phase Block Length (Mb) 0.188 0.452 0.312 
Proportion of Genome Phased (%) 87.6 87.7 84.0 
Average number of Hi-C links 
between phase blocks on the same 
primary contig (pre/post) filtering 

92.5 / 31.5 20.39 / 4.79 44.79 / 2.42 

 

Table 2. Phasing accuracy 

Sample Zebra Finch Cattle Human 
FALCON-Phase Accuracy* (%) 98.3 97.3 81.8 
FALCON-Unzip Primary Contig Accuracy (%) 70.8 71.0 61.0 
FALCON-Unzip Haplotig Accuracy (%) 94.9 98.7 96.2 
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FALCON-Phase Pseudo-haplotype Accuracy (%) 91.2 96.0 80.3 
Unphased Scaffold Accuracy (%) 64.1 77.8 62.9 
FALCON-Phase Scaffold Accuracy (%) 88.4 92.4 73.9 
Trio binned Canu Contig Accuracy (%) 99.4 99.4 99.5 
* Based on alignment of phase blocks to trio binned Canu parental assemblies. Other measures 
are based on parental k-mer counting. 
 
Table S1. FALCON-Unzip assembly stats 

Sample Zebra Finch Cattle Human 
PacBio Data (Coverage) 83.5Gb (70X) 275 Gb (100X) 263 Gb (90X) 
Primary Contig N 1,941 1,427 865 
Primary Contig L (Gb) 1.15 2.71 2.89 
Primary Contig N50 (Mb) 2.93 31.4 27.8 
Haplotig N 4,657 5,879 7,863 
Haplotig L (Gb) 0.856 2.45 2.43 
Haplotig N50 (Mb) 0.344 2.48 0.567 
 

Table S2. Data summary and availability (Genome Ark, NCBI and ENA archives) 

Sample Zebra finch Cattle Human 
PacBio Coverage 73 X 101 X 91 X 
PacBio Data Access https://vgp.github.io/ 

genomeark/Taeniop
ygia_guttata/ 

PRJNA432857 SRR7615963 

Tri Binned Parental 
Canu Assemblies 

https://vgp.github.io/ 
genomeark/Taeniop
ygia_guttata/ 

GCA_003369685.2, 
GCA_003369695.2 

https://obj.umiacs.umd
.edu/marbl_publicatio
ns/triobinning/h_sapie
ns_HG00733_dad.fast
a 
https://obj.umiacs.umd
.edu/marbl_publicatio
ns/triobinning/h_sapie
ns_HG00733_mom.fa
sta 
 

HiC Data 319M 2X150bp 203M 2X80bp 504M 2X100bp 
HiC Data Access VGP PRJNA432857 

 
ERR1225141-
ERR1225146 

Short Read Data https://vgp.github.io/ 
genomeark/Taeniop
ygia_guttata/ 

757M 2X150bp PRJNA177403 
 

Short Data Access VGP 10X PRJNA432857 
 

PRJNA177403 
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Maternal Short Read 
Data 

https://vgp.github.io/ 
genomeark/Taeniop
ygia_guttata/ 

537M 2X150bp 
 

710M 2X76-101bp 

Maternal Short Read 
Data Access 

VGP PRJNA432857 PRJNA42573 
 

Paternal Short Read 
Data 

https://vgp.github.io/ 
genomeark/Taeniop
ygia_guttata/ 

498M 2X150bp 668M 2X76-101bp 

Paternal Short Read 
Data Access 

VGP PRJNA432857 
 

PRJNA42573 
 

 

Table S3. Hi-C mate pair mapping statistics 

Sample Zebra Finch Cattle Human 
Total Read Pairs 625 M 395 M 1006 M 
Filtered Pairs (% of total reads) 275 M (44.1%) 64.5M (16.3%) 128 M (12.7%) 
Map Distance > 10Kbp 74.4% 82.2% 71.2% 
Map Distance > 50Kbp 59.1% 70.6% 50.4% 
Map Distance > 100Kbp 2.85% 22.4% 3.51% 
 

Table S4. Summary statistics of parental assignment of haplotypes in phase blocks 

Sample Zebra finch Cow Human 
No. of Haplotypes in Phase Blocks 9544 10546 15548 
Length of Phase Blocks (Mb) 1783 4762 4859 
Mean Length of Phase Blocks (kb) 187 452 312 
No. Assigned 8396 8860 11864 
Length of Assigned (Mb) 1711 4674 4428 
Mean Length of Assigned (kb) 204 528 373 
No. Unassigned 1148 1686 3684 
Length of Unassigned (Mb) 71.9 88.3 431 
Mean Length of Unassigned (kb) 62.6 52.4 117 
 

Table S5. Scaffold Statistics  

 Zebra finch Cattle Human 
N Scaffolds 30 31 23 
Total Scaffold Length (Gb) 1.06 2.64 2.86 
N Contigs Scaffolded 797 1040 514 
N Unscaffolded Contigs 160 650 351 
Unscaffolded Contigs Length (Mb) 7.44 95.1 38.0 
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FIGURES 

 

Figure 1. Overview of FALCON-Phase method. 1. FALCON-Unzip assembly consists of long 

primary contigs (blue) and shorter alternate haplotigs (red). The region where a haplotig overlaps 

a primary contig is a “phase block” and is referred to as being “unzipped" because two 

haplotypes are resolved. Regions of the primary contig without associated haplotigs are referred 

to as “collapsed" because the haplotypes have low or no heterozygosity. 2. A haplotig placement 

file specifies primary contig coordinates where the haplotigs align. 3. This placement file is used 

to “mince" the primary contigs at the haplotig alignment start and end coordinates. Mincing 

defines the "phase blocks" (A-B haplotype pairs, blue and red) and collapsed haplotypes (grey). 

4. Hi-C pairs are mapped to the minced contigs and alignments are filtered. 5. Phase blocks are 

assigned to state 0 or 1 using the phasing algorithm. 6. The output of FALCON-Phase is two full 

length parental pseudo-haplotypes for phase 0 and 1. These sequences are of similar length to the 

original FALCON-Unzip primary contig and the unzipped haplotypes are in phase with each 

other. 
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Figure 2. Parental k-mer counts for contigs and scaffolds before and after phasing. Markers 

from mother are on the X axis, father on the Y-axis. Contig or scaffold size are indicated by size 
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of the data point. Tested species are arranged in order of decreasing heterozygosity (zebra finch: 

A,D,G,J; cattle: B,E,H,K; human: C,F,I,L) A-C. Unphased FALCON-Unzip contigs. Primary 

contigs (blue) are large but contain a mixture of markers from mother and father. Haplotigs 

contain less of a mixture of parental markers, but are smaller. D-F Contigs after phasing. Phase0 

and Phase1 contigs are of similar length to the FALCON-Unzip primary contigs and have less 

mixing of parental markers within contigs. G-I, Unphased scaffolds, phase0 contigs only. J-L, 

Phased scaffolds contain less mixing of markers than unphased scaffolds. As with the contigs, 

the phase0 and phase1 scaffolds sets contain maternal and paternal haplotypes. 

 

 

Figure S1. Hi-C links between phase blocks within primary contigs. Each violin plot shows 

the log10 distribution of Hi-C links between phase blocks before and after map quality filtering. 

These counts are restricted to links within primary contigs. Zero counts are not shown. The shape 
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of this distribution is affected by an interaction between the length of long-range Hi-C contacts 

and the heterozygosity. 

 

Figure S2. Parental k-mer counts for HG00733 supernova contigs (GCA_002022865.1). 

Markers from mother are on the X axis, father on the Y-axis. Contig or scaffold size are 

indicated by size of the data point. 
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