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Abstract 

Endosymbionts are wide-spread among insects and can play an essential role in host 

ecology. The common green lacewing (Chrysoperla carnea s. str.) is a neuropteran 

insect species which is widely used as a biological pest control. We screened for 

endosymbionts in natural and laboratory populations of the green lacewing using 

diagnostic PCR amplicons. We found the endosymbiont Rickettsia to be very common 

in all screened populations, whereas a so far uncharacterized Sodalis strain was solely 

found in laboratory populations. The new Sodalis strain was characterized using a 

whole genome shotgun approach. Its draft genome revealed an approximate genome 

size of 4.3 Mbp and the presence of 5213 coding sequences. Phylogenomic analyses 

indicated that this bacterium is the sister taxon of S. praecaptivus. In an experimental 

approach, we found a negative impact of Sodalis on the reproduction success of the 

green lacewing. Co-infections with Rickettsia and Sodalis caused an even higher 

decrease of reproductive success than single Sodalis infections. In contrast, no 

significant fitness differences were found in Rickettsia infected green lacewings 

compared to uninfected lacewings. The Rickettsia/Sodalis/Ch. carnea system presents a 

promising model to study evolutionary endosymbiont–host interactions in Neuroptera 

and endosymbiont-endosymbiont interactions in general. The economic and ecological 

importance of green lacewings in biological pest control warrants a more profound 

understanding of its biology, which might be strongly influenced by symbionts.        

 

 

 

 

Keywords: biological pest control, co-infection, endosymbiont, Neuroptera, 

Rickettsiales, symbiosis. 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 21, 2018. ; https://doi.org/10.1101/327130doi: bioRxiv preprint 

https://doi.org/10.1101/327130
http://creativecommons.org/licenses/by-nc/4.0/


3 

 

Introduction 

 

With about 6000 species Neuroptera represent a rather small group of insects [1]. One 

well-known representative of the Neuroptera is the common green lacewing 

Chrysoperla carnea. Originally assumed to represent a single species [2], Ch. carnea s. 

lat. was shown to be a species complex, which are morphologically difficult to 

distinguish [3]. The adults of these species feed on honey dew and pollen while the 

larvae are predators of a broad range of insects, e.g. aphids, mealy bugs and other soft-

bodied species [4,5] Fittingly, lacewing larvae are efficient biological pest control 

agents in the field, greenhouses and orchards [6,7]. Biological pest control has received 

much attention through increasing insecticide resistance of several pests and legislations 

that aim to reduce usage of synthetic chemical pesticides. Green lacewing larvae 

possess a high resistance against many widely used pesticides and because of their 

usefulness in pest control, lacewings are mass-reared and marketed commercially [7,8].   

Endosymbionts are wide-spread among insects and can play an essential role in host 

ecology.  Obligate endosymbionts are essential for their insect hosts to survive, e.g. by 

providing essential nutrients [9,10]. Facultative associates are not essential for their 

host, but impact host fitness through various induced interactions, e.g. reproductive 

manipulation and color modifications [11,12] One of the most common endosymbionts 

in insects is Rickettsia sp. (α-Proteobacteria) with an estimated occurrence in one 

quarter of all terrestrial arthropod species [13]. Rickettsia sp. infects vertebrates, 

arthropods and plants [14,15]. Several lineages occur in vertebrates, e.g. as human 

pathogens, and are transmitted by arthropods [14]. However, the majority of lineages 

are exclusively found in arthropods [16]. Some of them are able to manipulate host 

reproduction by causing male killing in ladybird beetles (Coccinellidae) and jewel 

beetles (Buprestidae), or parthenogenesis in eulophid wasps [17-20]. Rickettisa sp. is 

abundant in natural and laboratory insect populations, establishes itself rapidly in 

populations, and remains stable at high frequencies [21,22]. 

Endosymbionts in Neuroptera have so far been largely neglected. Two recent studies 

have described male-killing Spiroplasma in the green lacewing Mallada desjardinsi 

[23,24]. Rickettsia infections were first described in randomly sampled arthropod host 

screens that included Neuroptera [16,25]. Recently, a Neuroptera-specific Rickettsia 

screening showed that approximately 40% of the tested Neuroptera species were 
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infected, including Ch. carnea s. str. [26] which was infected by strains of the R. bellii 

clade, commonly found in arthropods [16,26]. While screening Ch. carnea s. str. for 

endosymbionts, we also found infections with Sodalis sp., a facultative endosymbiont 

belonging to the γ-proteobacteria [27]. Sodalis was first identified in tsetse flies and 

later detected in different insect groups such as weevils, stinkbugs, louse flies and lice 

[28-32]. The prevalence of Sodalis infections can vary greatly [33]. The reported host-

Sodalis endosymbiont interactions are highly diverse, ranging from facultative to 

obligate [34]. They are able to increase trypanosome infections in tsetse flies 

(Glossinidae), participate in the cuticle synthesis of weevils and modify host phenotypes 

[35,31]. Even more complex, a low prevalence of Sodalis in weevils produces a host 

killing phenotype, whereas a high prevalence leads to a persistent and beneficial 

infection in the hosts [36].    

Based on the successful application of green lacewings as biocontrol, they are 

commercially mass-reared. However, it is still unclear how these endosymbionts are 

distributed on species and population levels and which role they play in those hosts. In 

the present study, we screened several natural populations of Ch. carnea s. str. for 

Rickettsia and Sodalis infections. Given their effective application as biological pest 

control, Ch. carnea is commercially available. We therefore also tested if infection 

patterns in natural and laboratory populations are similar. By doing so, we discovered 

that the commercial lines also contained a Sodalis species. To characterize the Sodalis 

symbiont in Ch. carnea s. str., we assembled a draft genome from Illumina short reads 

for subsequent phylogenomic analysis. Moreover, host-endosymbiont interactions were 

investigated by generating Ch. carnea str. lines that carried Rickettsia or Sodalis, or 

both, as well as endosymbiont-free lines. Based on these cultures, we examined the rate 

of vertical transmission of the symbionts and their potential impact on host 

reproduction. We demonstrate that the Ch. carnea str./Rickettsia/Sodalis system 

represents a promising model for the evolution of insect-endosymbiont interactions in 

general. 

 

Material and methods 

Population level endosymbiont screening in natural and laboratory Ch. carnea s. 

str. 
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To compare the occurrence of endosymbionts under natural conditions to those from 

commercially reared laboratory populations, we obtained Ch. carnea s. str. individuals 

from three different companies (N=64 in total) and sampled eight natural populations 

(N=84 in total). The supplying companies were Sautter & Stepper GmbH (Ammerbuch-

Altingen, Germany, 26 larvae), Biobest (Westerlo, Belgium, 18 larvae) and Katz 

Biotech AG (Baruth/Mark, Germany, 20 larvae). Additional adult lacewings were 

collected from various locations in Germany and Austria between 2010 and 2015 (Table 

S1). DNA was extracted from whole insects using the NucleoSpin Tissue Kit 

(MARCHERY-NAGEL, Düren, Germany). To identify a Rickettsia and/or Sodalis 

infections, a PCR screening with species-specific 16S rRNA primer and PCR programs 

was performed (Table S2). Amplicons were counted as positive evidence for Rickettsia 

or Sodalis infection. To exclude false negatives, the PCR product was diluted to 1:10, 

1:100, and 1:1000. These dilutions were subjected to PCR again. When no bands were 

visible for any of the PCRs, the sample was counted as not infected. 

Molecular characterization of endosymbionts 

Rickettsia endosymbionts of the investigated green lacewings were already 

phylogenetically characterized in Gerth et al. [26]. For the Sodalis endosymbiont, we 

used a whole genome shotgun approach to generate a draft genome for phylogenomic 

analyses. For this purpose, a double-indexed Illumina library from Sodalis infected 

second instar green lacewing larvae DNA was constructed as detailed in Meyer and 

Kircher [37] and Kircher et al. [38]. The insect sample was obtained from the company 

Sautter and Stepper GmbH (Ammerbuch-Altingen, Germany). The library was 

sequenced as 140-bp paired-end run on an Illumina HighSeq 2500 (Illumina, San 

Diego, CA) at the Max Planck Institute for Evolutionary Anthropology (Leipzig, 

Germaany). Base calling was performed with freeIbis [39], adapters were trimmed and 

reads with more than five bases below a quality threshold of 15 were discarded. A 

preliminary meta-assembly was created using IDBA-UD [40], with k-mers 21–81 in 

steps of ten. Assembled contigs were blasted with BLASTN against NCBI GenBank. 

All recovered Sodalis contigs were used as reference for subsequent mapping using 

NextGenMap 0.4.12 [41] to retrieve all putative Sodalis reads. The coverage of all 

Sodalis contigs was evaluated with qualimap 2.2.1 [42] and retrieved reads were newly 

assembled with SPAdes 3.1.1 [43], an assembler optimized for bacterial and archaeal 

genomes, to generate a Sodalis draft genome. Raw reads and assembly have been 
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submitted to NCBI Genbank under the accessions TO BE ADDED. 

For phylogenomic analysis, genome assemblies of representative Sodalis lineages were 

downloaded from NCBI (Candidatus Sodalis sp. Socistrobi (GCA_900143145); S. 

glossinidius (GCA_000010085); Sodalis symbiont of Philaenus spumarius 

(GCA_000647915); S. pierantonius (GCA_000647915); S. praecaptivus 

(GCA_000517425); Sodalis symbiont of Proechinophthirus fluctus (GCA_001602625); 

Sodalis sp. TME1 (GCA_001879235)), as well as five selected outgroups (Eschericha 

coli K12 (NC_000913); Pectobacterium carotovorum (NC_012917); Photorhabdus 

luminescens (NC_005126); Serratia marcescens (NZ_HG326223); Yersinia pestis 

(NC_00314)). Outgroups were selected according to the phylogeny of 

Gammaproteobacteria by Williams et al. [27]. Gene calling of all genomes was 

performed using GeneMark version 2.5 [44]. Single copy genes for phylogenetic 

analysis were retrieved with Orthofinder [45]. Nucleotide and protein alignments for all 

orthogroups were conducted using MAFFT [46]. Orthogroup alignments that showed 

evidence of recombination according to the test of Bruen et al. [47] were excluded from 

further analyses. All remaining protein- as well as nucleotide alignments were 

concatenated into a supermatrix, resulting into two datasets (available on github XXX). 

For phylogenetic analyses, the best model for each ortholog partition, as well as the best 

partition scheme was inferred using IQ-TREE version 1.4.2 [48]. Finally, a Maximum 

likelihood analyses was conducted for both datasets (proteins and nucleotides) with the 

same program. Branch support was estimated by using 1000 ultrafast bootstrap 

replicates [49].  

 

Endosymbiont host interaction 

Ch. carnea s. str. develops via three larval instars and a pupal period. Total 

developmental time from egg to adult was approximately 70 days under our laboratory 

conditions. Cultivation and all experiments were carried out at 22°C ± 5°C, a 

photoperiod of 16:8 (light:dark) and 65% ± 5% relative humidity. The cultivation of Ch. 

carnea for the purpose of our experiments started with the second instar larvae obtained 

from the company Sautter & Stepper GmbH (Ammerbuch-Altingen, Germany). All 

larvae were reared individually in small round plastic containers (3 cm diameter) and 

fed with dead moth eggs (Sitotroga sp., Katz Biotech, Baruth/Mark, Germany) twice 
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per week. To exclude contaminations from the diet, Sitotroga eggs were PCR screened 

for Rickettsia and Sodalis infections, which were not detectable in the diet. Adult 

lacewings were fed with a mixture of honey, water, yeast extract, and sucrose (1:1:1:1) 

every other day. Adults aged 7 days were then mated by putting 2-4 females and 2-4 

males in one cage (38x38x60 cm, total 4 cages). After 5 days females were separated 

into a plastic container (~ 38 cm
2
), covered with a fine cotton mesh to encourage 

oviposition and fed every other day with the food mixture described above. The mesh 

containing eggs was changed every 5 days and stored in a small petri dish (6x1.5 cm). 

These dishes were checked daily and hatched larvae were collected and reared 

separately to reduce the rates of cannibalism. After eggs were collected, all mothers 

were screened via PCR for the presence of Sodalis and Rickettsia as described above. 

This allowed us to rear lines of lacewings that were either 1) symbiont free, 2) infected 

with Rickettsia only, 3) infected with Sodalis only or 4) infected with both Rickettsia 

and Sodalis. All experiments aimed at comparing these four groups were performed 

with F2 adults, i.e. after two generations of cultivation in the laboratory.  

First, to determine the vertical transmission rate for the endosymbionts Rickettsia and 

Sodalis in Ch. carnea s. str., 18 Ch. carnea s. str. females were investigated (3 with 

Rickettsia only, 2 with Sodalis only, 13 with Rickettsia and Sodalis. For this purpose, all 

females were mated with Rickettsia and y Sodalis infected males and reared as 

described above. After 16 days females were removed and screened for Rickettsia and 

Sodalis symbionts as described above. The offspring of those females were collected 

every day and allowed to develop for 28 days (until stage 2) before being collected and 

PCR screened for the symbionts. The rate of vertical transmission was determined by 

calculating number of infected offspring/number of total offspring tested per female.  

Second, to test if the symbionts impact reproductive success, 36 female lacewings were 

investigated (9 with Rickettsia only, 8 with Sodalis only, 12 with Rickettsia and Sodalis, 

7 without symbionts). Rickettsia, Sodalis, and Rickettsia and Sodalis infected females 

were mated with males of the same infection status. Only in combined endosymbiont 

pairs, 4 males were only infested with Sodalis. Females without symbionts were mated 

with Rickettsia or Rickettsia and Sodalis infected males. After a mating period of five 

days, adults were separated as described above, and females were placed individually in 

round plastic containers. We counted the number of eggs per female every five days for 

45 days and transferred all eggs from one female into a small petri dish. After 45 days, 
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the mothers were screened for symbionts by PCR. Beginning from the first collection of 

eggs, the hatched larvae were counted visually every day until all eggs were empty or 

dried out. All larvae were then reared separately. The number of pupae and emerged 

adults were counted visually every day as well. Finally, using a general linear model 

with a quasi-Poisson distribution in R [50], we compared the reproductive success for 

the categories ‘number of eggs’, ‘larvae’, ‘pupae’ and ‘emerged adults’ for the four 

investigated groups.  

Third, to determine, if symbiont titer correlates with reproductive success, we used 

quantitative real-time PCR (qPCR).  To this end, we collected 29 adult females (9 with 

Rickettsia only, 10 with Sodalis only, 10 with Rickettsia and Sodalis). All of them were 

unmated and of equal age (14 days). Genomic DNA was extracted as described above. 

A 222bp fragment of gltA and 182bp fragment of groEL was amplified from Rickettsia 

and Sodalis, respectively. Specific primers for these fragments were designed using 

Prime3 (Table S2, [51]) and their efficiency ensured by creating standard curves. As 

reference gene to normalize between samples, we amplified a fragment of the single 

copy nuclear gene actin, using primers from Liu et al. [52].  

All reactions were run on a PikoReal Real-time PCR System (Thermo Fisher Scientific, 

Waltham, USA). A 10µl reaction mixture contained SYPR® Green qPCR master mix 

(2X, Thermo Fisher Scientific, Waltham, USA), 2.5µmol of forward and reverse primer 

and 10µg DNA. The qPCR program was set as follows: initial incubation at 95°C for 1 

min, followed by 40 cycles at 95°C for 15s, 55°C for 15s, and 72°C for 45s. 

Differences between groups were determined using an one-way ANOVA with Tukey 

post-hoc test in R [50]. For statistical analysis, the relative copy number of all genes 

was normalized by using a log10 transformation (Table S4). 

 

Results 

Endosymbiont screening on population levels in natural and laboratory Ch. carnea 

s. str. 

To compare distribution patterns of endosymbionts in Ch. carnea s. str. in natural and 

laboratory populations, we screened 148 individuals representing eight natural and three 

commercially propagated populations. Rickettsia infections were found in all natural 
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populations and in total 64% of Ch. carnea s. str. individuals were infected (33% to 

92% individuals per population infected, Fig. 1). In commercial laboratory populations 

Rickettsia was found in 66% of all screened individuals (25% to 94%). The 

endosymbiont Sodalis was found in 83% (70% to 94%) of all screened individuals in 

laboratory populations often in combination with Rickettsia infections (59%, Fig.1). 

However, Sodalis was not detectable in natural populations.  

 

 

Fig. 1 Distribution of Rickettsia and Sodalis symbionts in Chrysoperla carnea s. str. in 

natural populations (Saxony and Bavaria, Germany, map: circle) and commercial reared 

populations (map: rhombus). Dark grey: Rickettsia infected (R), light grey: Sodalis 

infected (S), black: Rickettsia and Sodalis infected (RS), white: uninfected (N). Letters 

in the map highlight founding/rearing places. A: Trages, B: Neudorf, C: Dahlen, D: 

Püchau, E: Rankweil, F: Schönberg, G: Wippenhausen, H: Kranzberg, I: Biobest, J: 

Katz Biotech, K: Sautter & Stepper 

 

Molecular phylogenetic characterization of endosymbionts 

A previous phylogenetic analysis demonstrated that the Rickettsia strain infecting Ch. 

carnea belongs to the Rickettsia bellii clade [26]. For the Sodalis strain in Ch. carnea, 

4,289,304 reads could be used to assemble a draft genome, which was represented by 

558 contigs with an N50 of 20,104 and a coverage of ~67x. Based on this draft, the 

genome of the Sodalis endosymbiont is around 4.3 Mbp in size and 5213 coding 

sequences were identified. 

For the phylogenomic analyses, 435 single copy orthologs present in all terminals of our 
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dataset were identified. After removing all ortholog alignments which showed 

significant signs of recombination, 399 orthologs remained for the final analyses. The 

concatenated supermatrix consisted of 144,746 amino acid positions. Partitioned 

Maximum Likelihood analysis recovered a monophyletic group of Sodalis strains with a 

bootstrap support of 100% (Fig. 2). Among Sodalis, two reciprocal monophyletic 

groups were found, both maximally supported. The Ch. carnea infecting strain was 

found as sister taxon of Sodalis praecaptivus, in a group that further on contained 

Sodalis pierantonius, Sodalis sp. TME1 and Sodalis endosymbiont of 

Proechinophthirus fluctus.  

 

 

Fig. 2 Phylogenomic analyses of 399 proteins alignments single copy orthologs of 

Sodalis strains using Maximum Likelihood as implemented in IQ-TREE. Best models 

for each gene partition, as well as the best partitions scheme were estimated using IQ-

TREE. Bootstrap support from 1000 ultrafast replicates is given at the nodes.  

 

Endosymbiont host interaction 

The rate of vertical transmission estimated from the number of infected offspring 

divided by the number of total offspring was very high for Sodalis (96.3% in single and 

co-infected lacewings). Rickettsia was transmitted at a slightly lower rate (89.0% in 

single and co-infections, Table 1). In general, the vertical transmission rates were 

slightly higher in the case of single infections when compared with double infections 

(93% vs. 87% for Rickettsia and 100% vs. 96% for Sodalis). Reproductive success 

differed considerably between groups. We found that the presence of Sodalis reduced 

reproductive output in comparison to uninfected lacewings (Fig. 3, Table 2). The same 

was true for co-infected lacewings, which showed the lowest reproductive success. No 

significant differences in performance were found in Rickettsia infected Ch. carnea 
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compared to uninfected lacewings. In general, the number of hatched larvae was rather 

low, which might indicate sub-optimal rearing conditions and an effect of this on our 

results cannot be ruled out (Fig.3, Table S3).  

Finally, by using qPCR we found that Rickettsia titers were almost uniform across life 

stages and independent of co-infecting Sodalis (Fig. 4). Sodalis titers did not 

significantly differ between single and co-infected adults. However, Sodalis titers were 

significantly reduced in co-infected larvae in comparison to adults (Fig. 4, Table 3). 

Nevertheless, the highest Sodalis titer was observed in adults infected with Rickettsia. 

This line (infested with Rickettsia and Sodalis) showed the lowest number of laid eggs 

(Fig. 3). Lacewings with single Sodalis infections showed a lower Sodalis titers and a 

higher reproductive success than co-infected lacewings.  

 

Discussion 

Population level endosymbiont screening in natural and laboratory Ch. carnea 

We found two endosymbionts to be common in Ch. carnea s. str.: Rickettsia and 

Sodalis. In the case of Sodalis sp. it is the first record for Neuroptera. However, the 

most common endosymbiont was Rickettsia, which occurred in all tested natural and 

laboratory population and in all life stages. Our screening of Rickettsia infections 

revealed infection rates ranging from 25% to 94% in both investigated population types 

(laboratory and natural). Rickettsia is a common endosymbiont in arthropods, estimated 

to be distributed in a quarter of all arthropod species [13]. The infection rate is highly 

variable in the insect species that were investigated so far. Wild whitefly (Bemisia 

tabaci, Hemimptera: Aleyrodidae) populations showed a Rickettsia infection frequency 

ranging from 22% to 100%, Buprestidae (Coleoptera) 46.3% and the mirid bug species 

Nesidiocoris tenuis (Heteroptera: Miridae) 93% to 100% [53,18,54]. The infection rate 

we found in lacewings are thus in line with studies mentioned above.  

While screening green lacewings for endosymbionts using a metagenomic approach, we 

also detected Sodalis, a well-known gammaproteobacterial endosymbiont of tsetse flies 

[55], but also detected in other insects, such as stinkbugs, spittle bugs, bird lice, 

hippoboscid flies, weevils, psyllids or scale insects. [33,32,56]. Interestingly, we 

detected Sodalis in high frequency in Ch. carnea s. str. individuals from all studied 

laboratory populations, but never in natural populations (Fig. 1). A difference in the 
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presence of Sodalis in commercially available specimens versus naturally collected 

specimens was also noticed by Saeed and White in bees [57]. They detected Sodalis in 

only 3 out of 100 individual bees captured in the wild, but in 10 out of 85 individuals 

when sampling commercially reared. However, differences in endosymbiont infection 

rate between natural and laboratory populations seem to be host species dependent. 

Whereas Wolbachia infection rates were similar in natural and laboratory vinegar flies 

Drosophila melanogaster (Diptera) populations [58], in tsetse flies, the same Wolbachia 

endosymbiont showed a highly fluctuating infection rate in natural populations and a 

100% infection rate in laboratory populations for one tsetse fly species. Another tsetse 

fly species showed a higher infection rate in laboratory than natural populations [59]. 

The complete absence of Sodalis in natural Ch. carnea s. str. populations may be caused 

by differences in potential selection pressures between laboratory and natural 

populations, e.g., fluctuating environmental conditions, natural enemies and competition 

for nutrition with other arthropods. Conceivably, these additional sources of stress are 

more relaxed or missing under laboratory conditions, which may be favorable for 

Sodalis. In line with this, our data suggest that Sodalis cause fitness costs for Ch. carnea 

s. str., and it could be assumed that this so far uncharacterized impact to be less severe 

in the laboratory. Based on the fitness costs, Sodalis may be faster eliminated in natural 

populations than in laboratory populations, where inbreeding and stable conditions may 

enhance the transmission rate of endosymbionts. E.g., a correlation of temperature with 

the rate of transmission has been reported for several bacteria [60,61]. Higher Sodalis 

infection frequency was detected in weevils living at localities of higher temperature 

than of lower temperature [62]. Also a lower mortality in the presence of Sodalis in 

laboratory cultures or reinfections from the environment are conceivable. However, 

given the current state of knowledge it can only be speculated why Sodalis is only 

present in laboratory populations of the green lacewings. 

 

Molecular phylogenetic characterization of endosymbionts 

Endosymbionts show a broad range of interactions with their hosts, including obligate 

or facultative mutualism or parasitism [63]. To understand more about the impact of the 

endosymbionts Rickettsia and Sodalis on their Ch. carnea host, both endosymbionts 

were characterized genetically. Rickettsia occurs in many diverse arthropod orders and 
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it is subdivided into 13 lineages [16]. We found the same strain (R. bellii group) in the 

here investigated green lacewings as Gerth et al. [26] already reported for different 

populations the same species. Interestingly, diverse Rickettsia lineages infect 

Neuroptera and they are distributed in species-specific manner [26]. 

To characterize the Sodalis endosymbiont, we used a phylogenomic approach. This 

analysis showed that this strain is closely related with Sodalis praecaptivus [64]. 

Several other close relatives of this species have already been identified in different 

insect hosts [65,66]. Whereas basically all other known Sodalis strains have been 

described as primary or secondary endosymbionts of insects, S. praecaptivus was 

isolated from a human wound which was the result from an accident with a tree branch.  

The S. praecaptivus strain is regarded as a free-living member of Sodalis and it has been 

shown that its genome is with 5.17 mbp the largest of all so far sequenced Sodalis 

strains. Intriguingly, the genome size of other Sodalis strains seem to correlate with the 

dependency to its host. The Sodalis-like primary endosymbiont of the spittlebug 

Philaenus spumarius has with 1.39 mbp the smallest genome of all known strains 

[56,67]. With 4.3 mbp, the draft genome of the green lacewing Sodalis strain is 

comparable in size to those of Candidatus S. pierantonius (4.5 mbp), a secondary 

endosymbiont of the rice weevil [68], and S. glossinidius (4.2 mbp), a secondary 

endosymbiont of the tsetse fly [69]. It has been hypothesized that Sodalis strains 

adapted independently to an endosymbiotic life-style with different insect hosts, 

resulting in a reduction of genome size and complexity [68,70].  However, a more 

contiguous assembly of the green lacewing Sodalis strain is necessary for a detailed 

analysis of the state of its “genome degeneration”.      

Endosymbiont host interaction 

Based on the high infection rate in several Ch. carnea s. str. populations, the vertical 

transmission rate of both endosymbionts were investigated. Rickettsia and Sodalis 

showed a high rate of vertical transmission (89-96%, Table 1). The Rickettsia 

transmission rate is consistent with an earlier study in whiteflies under laboratory 

conditions [21]. Slightly lower rates were found in studies of tsetse flies (Glossina 

morsitans) for Sodalis, (67-75%, [71,35]). In our study, single infections were 

transmitted at a slightly higher rate than double infections. By sharing the same host, 

endosymbionts have to compete for nutrients and space either by sharing resources or 
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evolving niches, e.g. inhabit special cells or organs [72,73]. This phenomenon was 

found in tsetse flies, where Wolbachia only infects oocytes, Wigglesworthia 

bacteriocytes and milk gland, and Sodalis several organs [74].   

Negative fitness impacts are a prevalent phenomenon associated with endosymbionts 

[12]. We therefore investigated if Rickettsia and/or Sodalis impact host reproductive 

success in Ch. carnea. In the present study we found no significant impact for single 

Rickettsia infections on the reproductive success of its host (Fig. 3). However, a trend 

towards an increase in the number of laid eggs is visible when compared to uninfected 

lacewings. Rickettsia manipulate other insects in a negative or positive way. It has a 

negative impact in aphids on body weight, fecundity and longevity [75,76] and a 

positive impact in whiteflies and leeches on body size, number of offspring, 

development and survival rate [77,21]. In the present study Sodalis seems to have a 

detrimental effect on number of viable offspring in Ch. carnea. This impact on 

fecundity and pupal emergence rate was not found in tsetse flies. In those hosts, Sodalis 

establishes trypanosome infections and longevity [78,35,79]. The impact of Sodalis on 

other insects is less well understood. However, the low larval hatching rate in our study 

indicates sub-optimal rearing conditions and an effect of this on our results cannot be 

ruled out. 

 

Fig. 3 Number of laid eggs, viable larvae, pupae and adults of Chrysoperla carnea s. 
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str. of lines differing in levels of endosymbiont infections. White: non-infected, dark 

grey: Rickettsia, light grey: Sodalis or black: co-infected with Rickettsia and Sodalis. 

 

The co-occurrence of Rickettsia and Sodalis found in Ch. carnea s. str. was also 

reported from weevils and lice [62,80]. In our study, co-infections showed a detrimental 

effect on the reproductive success, partially stronger than in single Sodalis infections. 

To test if there is a connection between endosymbiont density and reproductive success, 

Rickettsia and Sodalis titers were measured in single and co-infected lines. Rickettsia 

showed constant titers independent of the infection type (single- or co-infected, Fig. 4). 

Based on similar density in larval and adult lacewings, we presume a constant Rickettsia 

infection density across life stages. Interestingly, single Sodalis infections showed a 

tendency to lower densities than co-infections (Fig. 4).  Sodalis densities in adult 

lacewings correlated negatively with the number of laid eggs. Co-infected lacewings 

showed the highest Sodalis titer and laid the least eggs. We suggest that Sodalis is 

causing a fitness disadvantage of adult lacewing host and this negative effect on 

reproductive success increases with a higher Sodalis density. It is conceivable that 

endosymbionts compete for resources and space by sharing the same host in co-

infections [72,73]. However, Sodalis infections were not found in all host life cycle 

stages in other insects. For example in cereal weevils (Sitophilus, Coleoptera) the 

endosymbiont is involved in the cuticle synthesis in young adults, while afterwards the 

endosymbiont is eliminated [31]. In contrast, we found that co-infected larvae showed a 

significantly lower Sodalis density compared to adults. One hypothesis is that in Ch. 

carnea s. str.  Sodalis mainly occur in reproductive organs such as ovaries and gonads, 

as also reported for stinkbugs [29]. In Ch. carnea s. str. larvae the Sodalis density can 

be reduced due to the fact that these organs are not developed until this stage.  However, 

this preliminary result needs further investigation, especially regarding the relevance of 

the symbionts and their function in several life circle stages.   
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Fig. 4 Copy number of Rickettsia specific gltA (left) and Sodalis specific groEL genes 

(right) in Rickettsia or Sodalis single or co-infected Chrysoperla carnea s. str. a: adult; 

l: larvae; S: Sodalis infection only; R: Rickettsia infection only; RS: co-infection with 

Rickettsia and Sodalis. 

 

This work is a first step in studying the distribution and fitness impact of endosymbionts 

in the common green lacewing Ch. carnea s. str., a species frequently used in biological 

pest control. The negative fitness effect found in this study may have an important 

impact on commercial rearing and it should be explored if treating Ch. carnea s. str. 

with antibiotics may improve the rearing success and efficiency. However, Ch. carnea 

s. str. is not dissociable from its microbiome and may be strongly influenced by its 

symbionts and symbiont-symbiont-interactions, especially symbiont-symbiont 

interaction are rarely understood.  
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Tables 

Table 1 Vertical transmission of single and co-infections of Rickettsia and Sodalis in 

Chrysoperla carnea s. str. 

 Rickettsia Sodalis 

Total number of females 16 15 

Single infected females 3 2 

Co-infected females 13 13 

Total number of infected offspring 130 103 

Number of single infected offspring 43 16 

Number of co-infected offspring 87 87 

Number of uninfected offspring 16 4 

Total Transmission rate [%] 89.04 96.26 

Transmission rate in the presence of other 

endosymbionts [%] 

87.38 96.12 

Transmission rate without other 

endosymbionts [%] 

93.02 100 

 

Table 2 Statistical comparison of laid eggs, viable larvae, number of pupae and 

emerged adults of Chrysoperla carnea s.str. lines of different endosymbiont infections, 

using a general linear model with a quasi-Poisson distribution. N: no endosymbiont, R: 

Rickettsia, S: Sodalis, RS: Rickettsia and Sodalis infected.  

 

  R-N RS-N S-N 

Eggs t value 

p value 

1.583 

0.123 

-1.955 

0.059 

-0.703 

0.487 

 Null deviance: 2258.9 on 35 d.f. 

Residual deviance: 1553.7 on 32 d.f. 

Larvae t value 

p value 

0.665 

0.512 

-2.291 

0.029 (*) 

-1.680 

0.103 

 Null deviance: 1335.8 on 35 d.f. 

Residual deviance: 988 on 32 d.f. 

Pupae t value 

p value 

 

-0.010 

0.992 

-2.947 

0.006 (**) 

-1.790 

0.083 

 Null deviance: 443.23 on 35 d.f. 

Residual deviance: 319.03 on 32 d.f. 
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Adults t value 

p value 

-0.408 

0.686 

-3.234 

0.003 (**) 

-2.069 

0.047 (*) 

 Null deviance: 378.46 on 35 d.f. 

Residual deviance: 265.13 on 32 d.f. 

 

Table 3 Comparison of copy number of Rickettsia, Sodalis and co-infected Chrysoperla 

carnea s. str. using a one-way ANOVA and Tukey post-hoc test. a: adult; l: larvae; S: 

Sodalis infection only; R: Rickettsia infection only; RS: co-infection with Rickettsia and 

Sodalis. 

  Rickettsia Sodalis 

ANOVA  F(2/26) =1.19 F(2/25) = 64.62 

  p=0.5235 p< 0.001 *** 

Tukey aS-aRS - p=0.1578 

 lRS-aRS - p< 0.001 *** 

 lRS-aS - p< 0.001 *** 
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