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Abstract

We study a self-organising neural network model of how visual representations in the
primate dorsal visual pathway are transformed from an eye-centred to head-centred
frame of reference. The model has previously been shown to robustly develop
head-centred output neurons with a standard trace learning rule [1], but only under
limited conditions. Specifically it fails when incorporating visual input neurons with
monotonic gain modulation by eye-position. Since eye-centred neurons with monotonic
gain modulation are so common in the dorsal visual pathway, it is an important
challenge to show how efferent synaptic connections from these neurons may
self-organise to produce head-centred responses in a subpopulation of postsynaptic
neurons. We show for the first time how a variety of modified, yet still biologically
plausible, versions of the standard trace learning rule enable the model to perform a
coordinate transformation from eye-centred to head-centred reference frames when the
visual input neurons have monotonic gain modulation by eye-position.

Author summary

Coordinate transformations are an essential aspect of behaviour. For instance, sensory
information encoded in the coordinates of the retina needs to be transformed to relevant
coordinates for planning and movement. Particularly, head-centred coordinates are
essential for accurate motor behaviours and required to compute more complex
coordinate transformations for sensorimotor integration [2]. Head-centred coordinates
are obtained by combining information about the the retinal location of visual stimuli
and the position of the eye. Previous work did not address the influence of different
forms of gain modulation by eye position, albeit a variety of forms being widely
reported for several cortical areas. Here we show how a biologically plausible model that
successfully self-organised head-centred responses [1, 3] fails when the visual input units
have a commonly observed form of eye-position gain modulation, i.e. monotonic
modulation. Our work makes an important contribution to understanding how
head-centred responses may develop in the brain through an unsupervised process of
visually-guided learning using a set of more sophisticated, and yet still biologically
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plausible, learning rules when visual precursor neurons have monotonic eye-position
gain modulation. Furthermore, our findings may be applied to a range of other
coordinate transformations with sensorimotor integration of monotonically encoded
motor variables [4, 5].

Introduction 1

Within the primate dorsal visual pathway, neurons encode the locations of visual 2

objects in different body-centred frames of reference. For example, neurons at an early 3

stage of processing encode the locations of objects within an eye-centred reference 4

frame, while neurons in later stages may encode the positions of objects with respect to 5

the head or hand which is more relevant for guiding motor actions. A key question is 6

how the visual system learns to perform such coordinate transformations between 7

different body-centered reference frames. The neural mechanisms supporting this form 8

of transformation, critical for visually guided motor function, have long been studied in 9

primates. A neural phenomenon which is thought to play a key role in coordinate 10

transformations in the dorsal visual pathway is gain modulation. This refers to the 11

modulatory effect that a particular bodily state or posture, like eye or head position, 12

has on the firing rate of some visual neurons responding in a given reference frame. 13

Gain modulation of neuronal firing responses has been discovered in multiple stages of 14

the primate dorsal visual pathway. 15

Parietal area 7a [6, 7], LIP [8] and PO [9] have visual neurons modulated by the 16

position of the eye in the orbit. This form of gain modulation is thought to be involved 17

in supporting the development of head-centred visual representations, which were later 18

identified in the same areas [10–12]. The parietal reach region (PRR) has hand-centred 19

visual neurons with eye-position gain modulation [5], which are thought to be involved 20

in guiding reaching to target locations. In certain regions such as parietal area 7a and 21

LIP, the gain modulation is usually a monotonic function of the relevant bodily posture, 22

such as eye or head position. For example, eye-position modulation often takes the form 23

of a linear or saturating function of eye-position, which multiplicatively modulates the 24

underlying Gaussian retinotopic receptive field of a visually responsive neuron [6]. 25

While in other areas, such as V6A, there can be a higher proportion of retinotopic 26

visual neurons with peaked eye-position gain fields [13]. 27

Contemporary understanding of the potential role of such gain modulation in 28

coordinate transformation has been informed by the highly influential coordinate 29

transformation model of [14], reviewed below (section Previous Neural Network Models). 30

The majority of models studying coordinate transformation since that time [4, 5, 15–17] 31

have been heavily inspired by this early work. These models set up the synaptic weight 32

matrix by some form of supervised, error correction, learning algorithm which cannot be 33

implemented in the cortex [18]. Such algorithms provide no biologically plausible 34

learning hypothesis, and also produce circuits which violate Dale’s law, the widely 35

accepted neuroanatomical fact that a given presynaptic neuron cannot be both 36

excitatory and inhibitory across its efferent synapses [19]. 37

Our laboratory has developed a biologically plausible neural network model that 38

self-organises its synaptic connectivity during visual experience such that the model 39

learns to transform eye-centred visual representations to head-centred 40

representations [1, 3]. The model can achieve this using purely associative local synaptic 41

learning rules with no supervisory training signal - i.e. unsupervised learning. The 42

model is able to self-organise its synaptic connectivity by exploiting the natural eye and 43

head movements of primates. However, a limitation of previous studies with this model 44

has been their reliance on incorporating retinotopic visual input neurons with responses 45

that are modulated by only peaked eye-position gain fields. This is not biologically 46
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realistic because many retinotopic visual neurons in the monkey brain are found to have 47

monotonic eye-position gain fields. In the new simulations presented below, we first 48

show that the incorporation of retinotopic visual input neurons with monotonic gain 49

fields leads to a failure of the model to develop head-centred output neurons. We then 50

show how model performance can be substantially improved by employing a range of 51

more sophisticated, yet still biologically plausible, learning rules. 52

Next we present a review of relevant physiological and behavioural data along with a 53

discussion of some previous computational models in order to provide the context for 54

the new simulation results discussed in this paper. 55

Physiology 56

Eye-Position gain modulation of retinotopic visual neurons in parietal 57

cortex 58

Computer simulations carried out within our laboratory have demonstrated that an 59

important precursor to the emergence of head-centred visual neurons in the parietal 60

cortex is likely to be the presence of retinotopic visual neurons with responses that are 61

gain modulated by the position of the eye in the orbit [1, 3]. A number of experimental 62

studies have previously confirmed the existence of such retinotopic visual neurons with 63

eye-position gain fields in the monkey brain. 64

The work by [6] was the earliest demonstration of the influence of the position of the 65

eye in the orbit on the responses of retinotopic light sensitive neurons in area 7a of the 66

monkey parietal cortex. The authors studied the responses of light sensitive neurons 67

using both an attentive task and an inattentive task. In both tasks, the position of the 68

head was kept fixed while the animal was able to move its eyes. During the attentive 69

task the monkey had a peripheral stimulus flashed in a particular eye-centred location 70

whilst maintaining fixation at some gaze angle. Conversely, during the inattentive task 71

targets were flashed on random locations of the screen whilst the monkey freely oriented 72

its gaze. The authors reported that the position of the eyes in the socket affected the 73

responses of neurons in area 7a of the inferior parietal lobule during both attentive 74

fixation and under the inattentive condition. Although it was also found that the 75

responses of a much larger proportion of neurons were modulated by eye position during 76

the attentive task than the inattentive task. The first task, the attentive task, revealed 77

that 61% of neurons had their responses to visual stimuli significantly changed by the 78

eye position. The neuronal responses could be more than three times stronger when the 79

eye position shifted by 20◦ towards the preferred direction (optimal eye position). The 80

second task, the inattentive task, revealed that a significantly smaller proportion of 81

examined neurons (10%) had their responses to visual stimuli significantly changed by 82

the eye position. The precise interaction between the visual signal encoding the 83

retinotopic location of the target and the eye position signal was later characterized 84

by [7]. These effects were also observed in the lateral intraparietal area (LIP) by [8]. 85

This later work described such gain modulated responses as a multiplicative interaction 86

between a Gaussian retinotopic receptive field and a monotonic (planar) eye position 87

modulation component. 88

The presence of more peaked eye position gain modulation has been observed in the 89

parietal occipital area (PO) by [9] and [13]. In the more recent of these two studies, [13] 90

designed an experimental task to investigate the proportion of retinotopic visual neurons 91

in area V6A of the primate brain that are modulated by eye position with either peaked 92

(non-monotonic) or planar (monotonic) gain fields. During the experimental task the 93

monkey had 9 equally spaced fixation locations organised as a 3× 3 grid, with the 94

visual stimulus always presented at the fixation point. These authors found that 95

approximately 56% of recorded neurons had their responses modulated by the position 96
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of the eye. Furthermore, 27% of the neurons with responses that were modulated by eye 97

position had planar gain fields, whilst the remaining 73% had peaked gain fields. The 98

authors also explored the influence of each type of gain modulation on a traditional 99

neural network model of sensorimotor transformation proposed by [20]. Their main 100

motivation was to understand the implications of the functional form of gain fields, i.e. 101

peaked (non-monotonic) vs planar (monotonic), for sensorimotor transformations in 102

reaching tasks. In particular, they investigated how the functional form of the gain 103

fields affected the performance of the model proposed by [20] to transform eye-centred 104

visual representations into head-centred representations. The authors found that the 105

incorporation of planar rather than peaked eye-position gain fields led to reduced model 106

performance, with the population of output neurons providing a less accurate 107

representation of the location of the visual stimulus with respect to the head. 108

Head-centred neural responses 109

A number of experimental studies have found visual neurons in the monkey brain that 110

encode the locations of visual stimuli with respect to the head, i.e. within a head-centred 111

frame of reference. The model simulations that we present below in section Results seek 112

to explain how such head-centred neurons may develop in the brain. 113

[11] was the first experimental study to provide evidence of head-centred visual 114

representations in the preoptic area (PO) of the macaque brain. A head-centred 115

representation of visual space is assumed to be important for visually guided reaching 116

and perceptual stability. In fact, [21] had previously predicted the existence of 117

head-centred visual neurons in PO due to the presence of retinotpic visual neurons with 118

eye-position gain modulation in areas 7a [7], LIP [8] and V3A [21], which are a key 119

precursor to the development of head-centred visual representations [1, 3]. In the 120

experimental study of [11], a head-restrained monkey performed a series of fixations to 121

different locations on a screen whilst a visual target was presented in various other 122

screen locations for each fixation. This allowed the authors to assess how individual 123

neuron’s activity depended on either the eye-centred or head-centred location of the 124

visual target. It was reported that the receptive fields of 11% of recorded neurons were 125

not completely eye-centred, with six of these neurons presenting clear head-centred 126

receptive fields. The authors concluded that previous claim by [8] that there was no 127

explicit head-centred neuronal representation of visual space was incorrect. 128

Furthermore, head-centred neurons were suggested to originate from pooling the output 129

of preceding eye-position gain-modulated retinotopic visual neurons. 130

The work of [10] was motivated by the behavioural requirement for the brain to be 131

able to integrate visual and auditory signals, such as the sight of moving lips and the 132

corresponding speech sound, within a common body-centred frame of reference. The 133

authors’ investigation of the reference frames used to encode visual and auditory 134

responses in area LIP revealed the first head-centred visual representations in this area. 135

This contradicted the suggestion made by [8] that head-centred responses would not 136

exist in area LIP. The proportion of neurons sensitive to visual target locations was 137

72%, whilst 51.4% of neurons were sensitive to auditory target locations. Moreover, 5% 138

to 43% of neurons were simultaneously responsive to both visual and auditory target 139

locations, depending on how responsiveness was defined. For visual neurons, 33% had 140

eye-centred responses and 18% had head-centred responses. Regarding auditory 141

neurons, 10% had eye-centred responses while 23% had head-centred responses. Neither 142

the remaining 49% of visual neurons nor the remaining 67% of auditory neurons could 143

have their responses classified as eye-centred or head-centred. In summary, it was found 144

that both auditory and visual neurons had responses compatible with either eye-centred 145

or head-centred frames of reference, although most neurons had complex responses that 146

could not be classified into either of these categories. This was the first time that 147
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head-centred neuronal responses were indentified in area LIP. 148

Previous Neural Network Models 149

[14] developed an early influemtial model that learned to transform an input 150

representation consisting of the position of the eye in the socket and the retinotopic 151

position of the visual target to an output representation consisting of the position of the 152

visual target with respect to the head. Specifically, two-dimensional representations of 153

the eye-position e and of the retinal location of the visual target r were used as input 154

for the neural network model. The target output used to guide the error-based update 155

of the synaptic weights during training was the head-centred location h of the visual 156

target represented by r + e. The model thus utilised a supervised, multi-layer 157

backpropagation of error network architecture, in which the output layer of the network 158

was provided with an explicit training signal representing the current head-centred 159

location of the visual target. Such a network architecture is not biologically plausible for 160

a couple of reasons. Firstly, it is not clear where such a training signal representing the 161

current head-centred location of the visual target might originate from in the brain. 162

Secondly, a multi-layer backropagation network architecture requires that the afferent 163

weights to the hidden layer be updated using an error signal based on the efferent 164

synaptic weights from these hidden neurons to the output layer scaled by the 165

corresponding errors in the output layer. Such a network architecture in itself is not 166

biologically plausible. Nevertheless, [14] found that training such a network to 167

transform independent eye position and retinal target position signals to head-centred 168

coordinates led to hidden units in the intermediate layer developing retinocentric 169

receptive fields with planar eye-position gain fields, very similar to those found in the 170

posterior parietal cortex by [6]. 171

A number of later models that simulate the development of head-centred visual 172

neurons have also relied on some form of error correction learning. For example, the 173

model described by [15] relied on a form of supervised global error correction learning 174

that utilised an error term which is unlikely to be present in the cortex. The model of 175

sensorimotor transformation by [16] also used a supervised error correction learning rule 176

to modify the synaptic connectivity within the network. So, although supervised error 177

correction learning does not appear to offer a biologically plausible way of modelling the 178

development of head-centred visual neurons in the brain, it has nevertheless remained a 179

popular approach. 180

In contrast to the above error correction network models, [20] developed a model 181

that utilised associative learning. These authors investigated how retinotopic visual 182

representations could be transformed into head-centred representations that are relevant 183

to reaching tasks. It was hypothesised that the observation of our own motor 184

movements during a reaching task would be used to develop a map between the 185

eye-centred visual representation of the target and the head-centred motor 186

representation of the movement required to reach the target. In other words, the input 187

layer of the neural network model represented the visual signals generated by observing 188

the reaching movements, whilst the output layer represented the corresponding motor 189

movements that were performed. As with [14], the input representation consisted of the 190

position of the eye in the socket and the retinotopic position of the visual target, while 191

the output representation consisted of the head-centred target position. Hebbian 192

learning was then used during training to successfully associate each eye-centred visual 193

input representation of the target to the corresponding head-centred output motor 194

representation. In contrast to [14], the model developed by [20] did not use a 195

backpropagation of error network architecture or any other form of error correction. 196

Instead, they used a more biologically plausible associative learning rule to modify the 197

synaptic connectivity within their model. However, the model was still trained in a 198
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supervised manner. That is, the network still made use of an explicit training signal in 199

the output layer representing the head-centred location of the visual target in order to 200

guide learning without an adequate explanation of where such a signal might originate 201

from in the brain. 202

[22] proposed a hierarchical neural network model of coordinate transformation that 203

used associative learning to set up the synaptic connectivity but did not require a 204

biologically implausible supervisory training signal as used by [20]. The model 205

developed by [22] had the following two main processing stages. The first processing 206

stage used signals representing the retinotopic location of the visual target and signals 207

representing the position of the eye to learn head-centred visual representations. The 208

second processing stage used head position signals coupled with the head-centred visual 209

representations developed by the first processing stage to learn body-centred visual 210

representations. Training consisted of continously shifting a visual target presented to 211

the network whilst randomly varying the position of the eyes and the head. Both 212

processing stages used competitive learning with an associative learning rule to 213

self-organise conjunctive representations of its respective inputs, and then used 214

competitive learning with a form of temporally associative learning rule to bind 215

representations that occurred close together in time. Learning in the second processing 216

stage only started after the first processing stage had finished learning head-centred 217

representations. This allowed each processing stage of the model to self-organise either 218

head-centred or body-centred representations. Most importantly, in contrast to the 219

models developed by [14] and [20], learning in [22] did not require the use of a 220

biologically implausible supervisory training signal to guide learning of the coordinate 221

transformations. However, the model of [22] did not investigate how the functional form 222

of eye position gain modulation, i.e. monotonic vs peaked, may affect the development 223

of head-centred visual representations. This is the focus of the current work presented 224

below. 225

Our approach: A Biologically Plausible Unsupervised 226

Self-organising Neural Network Model of Coordinate 227

Transformation 228

Our laboratory has previously published a biologically plausible neural network model 229

of the visually-guided development of head-centred visual neurons, which relies on 230

associative learning rules and does not require a supervisory training signal to guide 231

learning [1, 3]. Instead, our model utlises an unsupervised form of competitive learning 232

that exploits the natural statistics of how primates move their eyes and head as they 233

shift their gaze around their visual environment. Specifically, the model employs a form 234

of trace learning, which encourgages neurons in higher network layers to bind together 235

input patterns that tend to occur close together in time. If a primate tends to move its 236

eyes more frequently than adjusting the position of its head, then retinal images that 237

occur close together in time will tend to correspond to different positions of the eyes but 238

the same position of the head. In this case, trace learning will encourage neurons in 239

higher layers to learn to respond to the position of a visual target in the same 240

head-centred location across different retinal positions. Such neurons will have thus 241

learned to represent the position of visual targets within a head-centred reference frame. 242

The inputs to the model are eye-centred visual neurons that represent the locations of 243

visual targets on the retina, but which have responses that are also gain modulated by 244

the position of the eyes in the socket. In this paper, we investigate how the learning 245

process depends on the functional form of this gain modulation by eye-position. Two 246

forms of eye-position gain modulation are explored: monotonic gain modulation, which 247

is dominant in most primate parietal areas (LIP, 7a, PRR), and peaked gain modulation 248
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which is primarily found in area PO. 249

In the simulations described below in section Results, the model is found to robustly 250

develop head-centred output neurons with a standard trace learning rule when 251

incorporating visual input neurons with peaked eye-position gain modulation [1], but not 252

with monotonic eye-position gain modulation. Moreover, even if the model has its 253

synaptic connectivity perfectly prewired to perform a coordinate transformation from 254

eye-centred input neurons with monotonic gain modulation to head-centred output 255

neurons, subsequently introducing plasticity into the synaptic connections with the 256

standard trace learning rule quickly degrades the synaptic connectivity and eventually 257

leads to elimination of the head-centred output responses. Since eye-centred visual 258

neurons with monotonic eye-position gain modulation are so common in the dorsal 259

visual pathway [7, 23,24], it is an important challenge to show how efferent synaptic 260

connections from these neurons may self-organise to produce head-centred visual 261

responses in a subpopulation of postsynaptic receiving neurons. A subsequent analysis 262

of the nature of the failure of the self-organisation of the synaptic connectivities led us 263

to explore the performance of the model with a variety of modified, yet still biologically 264

plausible, more powerful versions of the standard trace learning rule. The choice of the 265

modified versions of the trace learning rule used in this paper was motivated by the 266

superior performance of these learning rules reported by [25]. Here we show for the first 267

time how these modified learning rules enable the model to learn to perform a 268

coordinate transformation from eye-centred to head-centred reference frames even when 269

the visual input neurons have monotonic gain modulation by eye-position. 270

Materials and methods 271

The Self-organisation of the Synaptic Connectivity within the 272

Neural Network Model 273

The model uses four core components to self-organise head-centred visual 274

representations through a biologically plausible process of visually guided learning. The 275

first component is a population of input neurons that encode both the position of the 276

eyes in the orbit and the retinotopic location of visual targets. Such retinotopic visual 277

neurons with eye-position gain modulation have been identified in multiple primate 278

cortical areas [7–9,23,24]. The second component is a population of output neurons 279

that compete with each other through mutual inhibitory interactions, which is a 280

standard feature of cortical architecture [18]. The third component is a local synaptic 281

trace learning rule to update the feedforward synaptic connections between the input 282

and output neurons. The trace learning rule is a local associative learning rule that 283

incorporates an exponentially decaying temporal trace of past neuronal activity, and it 284

has been widely used in the context of developing invariant visual object 285

recognition [26,27]. The trace learning rule has the effect of encouraging individual 286

postsynaptic neurons to learn to respond to subsets of input patterns that tend to occur 287

close together in time. Finally, the fourth component comes under the assumption that 288

visual stimuli are relatively static in a world reference frame during natural self-motion. 289

This assumption is justified by experimental findings in which primates adjust their 290

gaze more often by moving their eyes rather than the head itself [28]. This behavioural 291

strategy to adjust gaze is preferable because it reduces the frequency of making more 292

energetically costly and slow head movements. In fact, it has been found that during 293

exploration of natural environments with free head, eye and body movements, at any 294

time when there is movement, isolated head and isolated eye movements occurred 13.3% 295

and 33.1% of the time respectively, whilst a mixture of movements was observed in the 296

remaining time. That is, during natural movement there are periods when the eyes are 297

May 15, 2018 7/39

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 21, 2018. ; https://doi.org/10.1101/327288doi: bioRxiv preprint 

https://doi.org/10.1101/327288
http://creativecommons.org/licenses/by/4.0/


moving whilst the head remains stationary with respect to the visual environment and 298

visual objects also remain stationary within the environment. 299

These four model components allow the model to self-organise its synaptic 300

connectivity during visually guided training in the following way. If the eyes move 301

around a scene containing a stationary visual target while the head also remains 302

stationary, then the visual system will receive a sequence of input patterns with the 303

visual target in different retinal locations but the same head-centred location. That is, 304

the visual target remains stationary in the head-centred space, but changes its position 305

in the eye-centred space. The sequence of eye-positions and resulting retinal locations of 306

the visual target are represented by retinotopic visual input neurons with responses that 307

are gain modulated by eye-position. The synaptic trace learning rule is able to bind 308

subsets of input patterns corresponding to a visual target in the same head-centred 309

location, albeit with the visual target situated in different eye-centred locations, onto 310

the same output neurons. This is because input patterns corresponding to a visual 311

target situated in the same head-centred location tend to occur close together in time 312

due to the statistics of natural eye and head movements, in which the eyes tend to 313

saccade about a static visual scene while the head remains stationary. Moreover, the 314

naturally rapid movements of the eyes may expose the visual system to many such input 315

pattern sequences, where each such sequence has the visual target situated in the same 316

head-centered location but different randomised subsets of retinal locations. This 317

process will ensure that all possible input patterns corresponding to the same 318

head-centred location but different retinal locations are eventually brought into 319

temporal proximity with each other as training progresses. Hence, all input patterns 320

corresponding to the same head-centred location but different retinal locations would 321

tend to occur clustered together in time. This process continues with the visual target 322

seen in a different position within the head-centred space every time the position of the 323

head is shifted. That is, the natural head movements that occur between sequences of 324

rapid eye movements would shift the location of the visual target to new head-centred 325

locations. In this manner, the learning process is repeated with the visual target 326

presented in many different head-centred locations. New subsets of output cells would 327

learn to respond to the visual target in each different head-centred location due to the 328

competitive interactions between the output cells. Consequently, the output layer would 329

eventually develop neurons that cover the entire space of head-centred target locations. 330

The Architecture of the Self-Organising Neural Network Model 331

The neural network architecture of the model is shown in Fig 1. The network consists of 332

the following two layers of neurons. The first layer is a population of input neurons that 333

simultaneously encode the eye-position of the agent and the retinal location of the 334

visual target. These visual input neurons are modelled as retinotopic neurons with 335

eye-position gain modulation. The eye and retinal position spaces, representing the 336

range of eye-positions in orbit and retinal target locations, covered [−30◦, 30◦] and 337

[−90◦, 90◦], respectively. Feedforward synaptic connections project from neurons in the 338

input layer to neurons in the second layer. 339

Fig 1. Architecture of the neural network model. The competitive output layer
on the right receives afferent synaptic connections from neurons in the input layer on
the left. A trace learning rule is used to modify the strengths of the feedforward
synaptic connections from the input layer to the output layer during learning.

The second layer is a population of N output neurons that compete to represent 340

patterns in the input layer [18]. Neurons in the second layer, the output layer, all receive 341

the same number of afferent connections from neurons in the input layer, that is φ 342
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percent of the input population, but each output neuron receives connections from its 343

own randomly assigned subset of the input neurons. Neither the output layer nor the 344

input layer is topographically organised. 345

The strengths of the feedforward synaptic connections from the input layer to the 346

output layer are initialised to random weights in the interval [0, 1] at the start of each 347

simulation. The synaptic weight vector of each output neuron is then renormalised as is 348

typical in competitive networks [18]. 349

The Visually-Guided Training of the Network 350

The neural network is trained on input patterns that simultaneously encode both the 351

position of the eyes in orbit and the retinotopic position of the visual target. The 352

position of the eyes is kept within [−24◦, 24◦], whilst the retinal locations of visual 353

targets are kept within the interval [−63◦, 63◦]. Keeping the position of the eyes and the 354

retinal locations of visual targets within these respective intervals reduces edge effects 355

due to clipping of the input representations. 356

Similarly, all M evenly spaced head-centred locations chosen for each experiment are 357

confined within [−63◦, 63◦] to ensure that visual targets always remain in view as the 358

eyes move. Each training epoch consists of M periods, where each period individually 359

corresponds to one of the M chosen head-centred locations. During training, for each 360

period a visual target is fixed in a given head-centred location whilst the eyes perform a 361

series of saccades to P different and uniformly sampled eye-positions within [−24◦, 24◦]. 362

The saccades between successive eye-positions are performed at a constant velocity of 363

400◦/s. The duration of each fixation is set to 300ms. 364

Thus, the training process consisted of presenting to the network sequences of 365

combined visual and eye-position input signals, which represent the visual target in 366

fixed head-centred locations, whilst the eyes randomly shifted to different positions in 367

the orbit. 368

Testing the Network 369

The responses of the output units for all combinations of T head-centred visual target 370

locations and E eye fixation positions are recorded after training to test the model. In 371

order to test the ability of the trained model to generalise to new input patterns, the 372

model is tested with a set of novel combinations of eye-position and visual target 373

location not encountered during training. Specifically, the following E = 4 eye-positions 374

are used during testing: −18◦,−6◦, 6◦ and 18◦. For each of these eye-positions, the 375

visual target is shifted in increments of 2◦ every 330ms to the next one of the T = 80 376

head-centred target locations within [−79◦, 79◦]. The firing rates of all output neurons 377

are saved at the end of each fixation period to analyse the receptive field properties of 378

the neurons, including the receptive field size, receptive field location and reference 379

frame of response. 380

The Neuronal and Synaptic Dynamics of the Model 381

Input Layer 382

The firing rates of neurons in the input layer were modelled by a response function that 383

encodes the retinotopic location of a visual target, where the responses were modulated 384

by the position of the eyes in the orbit. The response function of each input neuron j 385

maps the current retinal location r of the visual target and the eye-position e onto the 386

neuron’s instantaneous firing rate vIj . The instantaneous firing rate values are defined 387

within the range [0, 1]. We investigated the performance of the model when the response 388
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functions of the input neurons were modulated by two different functional forms of eye 389

positon gain field as described next. 390

The first response function has a peaked eye-position gain field as shown in Fig 2A. 391

This form of eye-position modulation has been reported in cortical area PO by [9]. The 392

full response function is described by 393

vIj = exp

(
−‖e− βj‖

2

2ρ2

)
× exp

(
−‖r − αj‖

2

2σ2

)
(1)

Fig 2. Examples of the two alternative response functions used to compute
the firing rates of input neurons. For each type of response function, we plot the
responses of an individual input neuron as a function of eye-position and retinal
location of a visual target. A: Example of a peaked response function, in which the
firing rate is modulated by a peaked eye-position gain field as described by Eq 1. B:
Example of a monotonic response function that is modulated by a sigmoidal
eye-position gain field described by Eq 2.

This response function is formed from a product of two components: the first 394

component represents the eye-position signal, whilst the second component encodes the 395

retinotopic position r of the visual target. In Eq 1, the neuronal response is modulated 396

by a peaked Gaussian function of eye-position. The parameter βj denotes the preferred 397

eye-position for each input neuron j. The width of the corresponding Gaussian 398

eye-position tuning curve is determined by the standard deviation ρ. The preferred 399

retinal location of a target stimulus for each input neuron j is denoted by the parameter 400

αj . The width of the corresponding Gaussian retinal tuning curve is determined by the 401

standard deviation σ. Each input neuron j is set to respond maximally to a unique 402

combination of retinal target location (αj) and eye-position (βj). The entire two 403

dimensional space consisting of possible combinations of eye-position and retinal target 404

location is covered by the population of input neurons in integer steps of 1 degree in 405

each dimension. This results in a total of 201× 61 = 12, 261 neurons in the input layer. 406

The second form of firing rate response function used to model the input neurons 407

incorporates a sigmoid eye-position gain field as shown in Fig 2B. This form of 408

eye-position modulation is monotonic in the eye-position dimension, as has been 409

observed in multiple visual areas [7, 8]. Although the form of the modulation is 410

sigmoidal whilst most empirical work has described it as planar, [16] showed the data is 411

also compatible with a saturating sigmoidal gain formulation. The full response 412

function is described by 413

vIj =
1

1 + exp (κj(e− βj))
× exp

(
−‖r − αj‖

2

2σ2

)
(2)

In Eq 2, the visual receptive field is modulated by a sigmoidal function of 414

eye-position. For each input neuron j, the parameter κj determines the gain direction 415

and saturation rate of the modulation, where κj is −2× the slope of the sigmoid. The 416

inflection point βj determines the eye-position where a firing rate response greater than 417

0.5 begins. The input neurons all have the same absolute saturation rate, that is 418

|κj | = |κm| for all j and m, but one half has a positive gain direction (κj > 0) whilst 419

the other half has a negative gain direction (κj < 0). Each input neuron j is set to 420

respond maximally to a unique combination of retinal target location αj , eye-position 421

βj , and gain direction and saturation rate κj . The population of input neurons evenly 422

covers the entire three dimensional space resulting from such combinations. This results 423

in an input population of 201× 61× 2 = 24, 522 neurons. 424
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Output Layer 425

Three dynamical quantities were defined for each neuron i in the competitive output 426

layer: an internal activation hi(t), a memory trace value qi(t), and an instantaneous 427

firing rate vi(t) [29]. 428

The internal activation is governed by the equation 429

τh
dhi
dt

= −hi +
∑
j

wijv
I
j (3)

where wij denotes the strength of the synapse from the jth input neuron to the ith 430

output neuron and τh is a time constant common for all output neurons. 431

The instantaneous firing rate is given by 432

vIi =
1

1 + exp (−2ϕ(hi − pπ − θ))
(4)

where θ and ϕ denote the sigmoid threshold and slope, respectively. The level of 433

competition between neurons in the output layer, and thereby the proportion of neurons 434

that remained active, is controlled by the parameter pπ. Specifically, the parameter pπ 435

is set to the πth percentile point of the distribution of neuronal activations within the 436

output population. For example, pπ is set to the top tenth percentile activation value 437

when π is set to 90. This way of implementing competition within the competitive 438

output layer has been previously used in competitive neural network models of the 439

primate visual system with trace learning [30]. In the cortex, lateral inhibition is 440

implemented via inhibitory interneurons [29]. The trace value qi(t) is defined in the 441

following section. 442

Modification of Synaptic Weights by Trace Learning 443

Trace learning rules for synaptic modification encourage postsynaptic (output) neurons 444

to bind together subsets of input patterns that tend to occur close together in time by 445

incorporating a temporal trace of recent neuronal activity. The trace value qi(t) for the 446

ith neuron in the output layer is given by 447

τq
dqi
dt

= −qi + vi (5)

where vi is the instantaneous firing rate of the neuron, and τq is a time constant 448

common for all output neurons. 449

In the first part of the paper, during training the strength of the synapse from the 450

jth input neuron to the ith output neuron is governed by the standard trace learning 451

rule previously implemented by [1] 452

dwij
dt

= %qiv
I
j (6)

where % is the learning rate, vIj is the instantaneous firing rate of the jth input neuron 453

and qi is the trace value of the ith output neuron. However, later in this paper we will 454

introduce a number of new, more powerful forms of trace learning, which are in fact 455

needed to produce head-centred output neurons when the input neurons are modulated 456

by a sigmoidal (monotonic) function of eye-position. 457

Finally, after each weight update during training, the length of the weight vector for 458

each output neuron i, that is wi = (wi1, . . . , wiNI
) where there are NI input neurons, is 459

renormalised by setting 460

wi :=
wi

‖wi‖
(7)
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This prevents unbounded growth of the synaptic weights during training [29]. 461

Experimental evidence for renormalisation of synaptic weights in the brain has been 462

reported by [31]. 463

Simulation of the Differential Model 464

The Forward-Euler scheme is used to numerically integrate the coupled differential 465

equations given by Eq 3 and Eq 5-6. The numerical time step ∆t is set to one tenth of 466

the neuronal time constant τh. We checked that the simulation results remained similar 467

if the time step was reduced or the number of training epochs increased. 468

During training and testing, the input patterns encoding the changing eye-position 469

and retinotopic target location are simulated dynamically and sampled at 1kHz. Linear 470

interpolation is used to compute the numerical inputs to the discretised Forward Euler 471

model equations, which require input values at every numerical time step ∆t = τh/10. 472

Analysis of Network Performance 473

In order to analyse whether individual output neurons are predominantly responding in 474

an eye-centred or head-centred frame of reference, we used a method of analysis 475

originally developed by [1]. This analysis is described next with the mathematical 476

details taken from that earlier paper. 477

Let R be a matrix containing the responses of a given neuron during testing, where 478

R[i, j] denotes the firing rate when the model is fixating in the ith eye-position ei and 479

the visual target is in the jth head-centred location tj , as recorded during the testing 480

protocol described above. The vector (R[i, 1], . . . ,R[i, T ]) is referred to as the response 481

vector at the ith eye-position. The number of eye-positions during testing is denoted by 482

E, while the number of head-centred locations for visual targets during testing is 483

denoted by T . The indexing of eye-positions and head-centred target locations are 484

ordered from left (negative) to right (positive), that is e1 ≤ . . . ≤ eE and t1 ≤ . . . ≤ tT . 485

To determine which reference frame an output neuron is responding in during 486

testing, two separate metrics are applied that reflected to what degree the neuronal 487

response is compatible with either an eye-centred or head-centred reference frame, and 488

then the values of these two metrics are compared. 489

The head-centredness metric computed the degree to which the head-centred 490

response vectors of a neuron remained stable across different eye-positions. The 491

head-centredness metric measured the degree of such stability for a given output neuron 492

by averaging correlations between response vectors for different eye-positions, that is 493

Π =
1(
E

2

) ∑
1≤i1<i2≤E

T∑
j=1

(
R[i1, j]−R[i1]

) (
R[i2, j]−R[i2]

)
√√√√ T∑

j=1

(
R[i1, j]−R[i1]

)2 T∑
j=1

(
R[i2, j]−R[i2]

)2 (8)

where 494

R[i] =
1

T

T∑
j=1

R[i, j] (9)

This yielded a metric which is referred to as the head-centredness of the output neuron, 495

and it is bounded between −1 and 1, where a perfect correlation of 1 indicated a 496

perfectly head-centred response. 497

A very similar analysis is done to quantify the compatibility of the responses of the 498

output neuron with an eye-centred frame of reference. That is, a visual neuron is judged 499
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to respond in an eye-centred frame of reference to the extent that its eye-centred 500

response vectors remain stable across different eye-positions. The eye-centred analysis 501

proceeded as follows. To reiterate, each response vector (R[i, 1], . . . ,R[i, T ]) is the 502

result of testing over the same set of head-centred locations, but with the model fixated 503

in a distinct eye-position. Therefore, each response vector also corresponded to a unique 504

range of retinal locations. The intersection of these retinal ranges corresponded to 505

different portions of each response vector, and it is these portions that are subject to 506

correlation analysis. Specifically, fi denotes the first vector position in the ith response 507

vector to be included, and the V − 1 next positions are included as well such that the 508

subvector (R[i, fi], . . . ,R[i, fi + (V − 1)]) is the vector being used for the correlation 509

analysis. The derivation of fi and V are found in the appendix Appendix A. This gave 510

the metric 511

Ω =
1(
E

2

) ∑
1≤i1<i2≤E

V−1∑
j=0

(
R[i1, fi1 + j]−R[i1]

) (
R[i2, fi2 + j]−R[i2]

)
√√√√V−1∑

j=0

(
R[i1, fi1 + j]−R[i1]

)2V−1∑
j=0

(
R[i2, fi2 + j]−R[i2]

)2 (10)

where 512

R[i] =
1

V

V−1∑
j=0

R[i, fi + j] (11)

This is referred to as the eye-centredness of the output neuron, and it is bounded 513

between −1 and 1, where a perfect correlation of 1 indicated a perfectly eye-centred 514

response. Response vectors which had no response for the extracted ranges are excluded 515

from the correlation, and a neuron without a response within this range of retinal 516

locations at any eye-position is excluded from further analysis. 517

A neuron is finally classified as head-centred if Π > 0 and Π > Ω, and classified as 518

eye-centred if Ω > 0 and Ω > Π. If neither of these conditions is met then the neuron 519

remains unclassified. 520

Results 521

Self-organisation with peaked and monotonic gain fields 522

This experiment explores the feasibility of the self-organisation of head-centred receptive 523

fields under the two different forms of eye-position gain modulation. Two models are 524

trained and tested on the same stimuli, where one model has peaked eye-position 525

modulation in the input population as shown in Fig 2A, and the other model has 526

sigmoidal modulation as shown in Fig 2B. The training lasts for 20 epochs. During each 527

training epoch, a visual target is presented for approximately 5s in each of the eight 528

head-centred training locations: −63◦,−45◦,−27◦,−9◦, 9◦, 27◦, 45◦ and 63◦. For each 529

period where the visual target is in a fixed head-centred target location, the eye-position 530

is varied continuously through time as the model makes a series of saccades and 531

fixations. During each such period, the model performs 14 saccades interleaved with 15 532

fixations, where each fixation lasts 300ms. Each saccade is at a constant velocity of 533

400◦/s, and it is directed to a random eye-position within the range [−24◦, 24◦]. Each 534

training epoch thus lasts for approximately 40s, and the entire training of the network 535

is completed after about 800s of simulated time. The model is tested as previously 536

described. The parameters for the two model simulations are given in Table 1. 537

Fig 3 compares the firing rate responses of the output neurons before and after 538

training in the two models with either peaked or sigmoidal gain modulation of the 539

May 15, 2018 13/39

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 21, 2018. ; https://doi.org/10.1101/327288doi: bioRxiv preprint 

https://doi.org/10.1101/327288
http://creativecommons.org/licenses/by/4.0/


Table 1. Simulation parameter of self-organising models with either peaked or
sigmoidal eye-position gain modulation.

Parameter Symbol Value (peaked) Value (sigmoid)

Number of target locations M 8 8
Fixation sequence length P 15 15
Number of training epochs - 20 20
Width of peaked eye-position tuning curve ρ 6◦ -
Width of retinal tuning curve σ 6◦ 6◦

Gain magnitude |κ| - 0.0625
Output neuron population size N 900 900
Input neuron population size NI 12261 24522
Trace time constant τq 400ms 400ms
Activation time constant τh 100ms 100ms
Activation function slope ϕ 4.5 4.5
Activation function threshold θ 0.4 0
Sparseness percentile π 80% 90%
Learning rate % 0.05 0.05
Synaptic connectivity φ 5% 5%

visual input neurons. The responses of an output neuron from the model with peaked 540

eye-position gain modulation before training (Fig 3A) exhibits no consistent structure 541

in head-centred space across the different eye-positions. However, after training 542

(Fig 3B) there is a clear maximal response to the same head-centred location across all 543

eye-positions. Therefore, the self-organisation process has made the response reference 544

frame of this output neuron strongly head-centred. The responses of an output neuron 545

from the model with sigmoidal eye-position gain modulation before training (Fig 3C) 546

also has an erratic and more eye-centred response prior to training due to the randomly 547

assigned synaptic weights. However, unlike the peaked gain modulation model, training 548

has the effect of making the neuron almost perfectly eye-centred. This is clearly seen by 549

the receptive fields shifting in head-centred space in register with the eye-position shifts. 550

Therefore, the self-organisation process has made this output neuron even more 551

compatible with an eye-centred reference frame. The miniature scatter plots show the 552

reference frame values of all neurons in the output layer, where each neuron is plotted 553

as a point corresponding to that neuron’s particular combination of head-centredness 554

and eye-centredness. The miniature scatter plots confirm the same general effects across 555

the entire populations of output neurons. That is, subplot (B) shows that a large 556

proportion of the output neurons in the model with peaked gain modulation have a high 557

head-centredness and low eye-centredness, and thus respond in a head-centred reference 558

frame. While subplot (D) shows that a large proportion of the output neurons in the 559

model with sigmoidal gain modulation have a low head-centredness and high 560

eye-centredness, and thus respond in an eye-centred reference frame. 561

Fig 4 shows the synaptic weight vectors of the same output neurons as those shown 562

in Fig 3. Before training, there is no structure to the potentiated synapses of the output 563

neurons in terms of the preferences of the presynaptic input neurons (Fig 4A and 564

Fig 4C), reflecting the random weighting assigned to an untrained network. After 565

training, the synaptic weight vector of the output neuron from the model with peaked 566

eye-position gain modulation shows a clear diagonal structure (Fig 4B). This synaptic 567

weight profile is consistent with a learned response to a particular location within the 568

head-centred frame of reference, and is thus consistent with the observed head-centred 569

responses of this neuron during testing (Fig 3B). The synaptic weight vector of the 570
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Fig 3. Comparison of model performance with peaked and sigmoidal
(monotonic) gain modulation of visual input neurons. The figure shows the
firing rate responses of output neurons before and after training with the standard trace
rule (6). Specifically, each subplot shows the firing rate responses of a typical output
neuron during testing for four different eye-positions: −18◦,−6◦, 6◦ and 18◦. The top
row shows output neuron #95 from the model with peaked eye-position gain modulation
before training (A) and after training (B). The bottom row shows output neuron #838
from the model with sigmoidal eye-position modulation before training (C) and after
training (D). In each subplot, each curve corresponds to a fixed eye-position while a
visual target is presented across the same range of head-centred locations. It is evident
in subplot (B) that after training the model with peaked gain modulation of the input
neurons, the output neuron responds reasonably consistently when the visual target is
presented within the localised interval of head-centred space [0◦, 16◦] regardless of the
eye-position. The neuron is thus responding in a head-centred reference frame. However,
in contrast, subplot (D) shows that after training the model with sigmoidal (monotonic)
gain modulation, the responses of the output neuron in the head-centred visual space
are much more dependent on the eye-position. Thus, this neuron is not representing the
target position in a head-centred reference frame. The miniature scatter plots show the
reference frame values of all neurons in the output layer, where each neuron is plotted
as a point corresponding to that neuron’s particular combination of head-centredness
(ordinate) and eye-centredness (abscissa). The neuron whose firing rate responses have
been plotted is shown in the scatter plot by a red mark. The miniature scatter plots
confirm the same general effects across the entire populations of output neurons. That
is, subplot (B) shows that a large proportion of the output neurons are clustered in the
top left quadrant of the scatter plot, indicating a high head-centredness (ordinate) and
low eye-centredness (abscissa). These output neurons are thus responding in a
head-centred frame of reference. While subplot (D) shows that a large proportion of
the output neurons are clustered in the bottom right quadrant of the scatter plot,
indicating a low head-centredness (ordinate) and high eye-centredness (abscissa). Thus,
with monotonic gain fields acting on the input neurons, the population of output
neurons have overwhelmingly learned to respond in an eye-centred reference frame.

neuron from the model with sigmoidal (monotonic) gain modulation exhibites an 571

entirely different pattern of potentiation after training. In this case, the strenghtened 572

synapses have an approximately horizontal structure that is concentrated on input 573

neurons corresponding to a small portion of retinal preference space (Fig 4D). As a 574

result, this output neuron has learned an eye-centred response (Fig 3D). 575

Fig 5 shows the reference frame values for all output neurons from both models with 576

either peaked or sigmoidal gain modulation tested before and after training. It is clear 577

that, for the model with peaked eye-position modulation, training has the effect of 578

making the majority of output neurons head-centred, and also with a much larger 579

head-centredness value. Specifically, before training 26% of output neurons are 580

head-centred, and after training 69% are head-centred. Moreover, among the 581

head-centred neurons, the average head-centredness rose from 0.17 before training to 582

0.63 after training. For the model with sigmoidal eye-position modulation, training has 583

the effect of keeping the majority of output neurons eye-centred, and indeed increasing 584

their average eye-centredness from 0.88 to 0.96. 585

In summary, when the visual input neurons have peaked eye positon gain 586

modulation, training the network has the effect of developing head-centred output 587

neurons. However, when the input neurons have sigmoidal (monotonic) gain modulation, 588

the training process makes most output neurons almost perfectly eye-centred. 589

Since a large proportion of visual neurons in the dorsal visual pathway have 590
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Fig 4. Strengths of the afferent synapses from the input population to a
typical output neuron during testing. Results are shown for the model with
peaked eye-position gain modulation before training (A) and after training (B), and
for the model with sigmoidal eye-position modulation before training (C) and after
training (D). The output neurons correspond to those plotted in Fig 3. In each plot,
the afferent synapses have been arranged topographically by the preference of the input
neuron for retinal location αi and eye-position βj . For the model with sigmoidal gain
modulation, there are two input neurons for every combination of retinal preference and
eye-position preference, but with opposite eye-position gain. Consequently, the input
population has been separated by gain direction. The portion of each plot to the left of
the white dashed line corresponds to input neurons with positive gain κj > 0, while the
portion of each plot to the right of the white dashed line corresponds to those input
neurons with negative gain κj < 0. It can be seen from subplot (B) that the output
neuron in the trained network with peaked gain modulation has developed a diagonal
weight structure, which is consistent with a learned response to a particular location
within the head-centred frame of reference. In contrast, subplot (D) shows that the
output neuron in the trained network with sigmoidal (monotonic) gain modulation has
developed a more horizontal weight structure, which is consistent with a learned
response to a specific location within the eye-centred reference frame.

Fig 5. Scatter plot of eye-centredness and head-centredness values of
output neurons from simulations with peaked and monotonic gain
modulation. The scatter plot shows the eye-centredness and head-centredness values
of all output neurons from four separate simulations corresponding to the models with
peaked and sigmoidal (monotonic) gain modulation tested before and after training
with the standard trace rule (Eq 6). Each point in the scatter plot corresponds to an
output neuron from the given simulation, plotted in terms of its eye-centredness
(abscissa) and head-centredness (ordinate). The dashed diagonal line with positive unity
slope separates those neurons which are classified as head-centred (above line) from
those that are classified as eye-centred (below the line). It is evident that after training
most of the output neurons from the network with peaked gain modulation have become
head-centred, while nearly all of the output neurons from the network with monotonic
gain modulation have remained eye-centred.

responses that are modulated by a monotonic function of eye-position, it is important to 591

understand why monotonic gain fields make it more difficult for trace learning to 592

produce head-centred output neurons. In the next section, we investigate this problem 593

by carrying out a covariance analysis on the input patterns themselves. 594

Covariance Analysis of the Effects of Gain Modulation 595

The preceeding model simulations failed to develop head-centred output representations 596

during self-organisation when the input population had sigmoidal eye-position 597

modulation, despite succeeding with peaked eye-position modulation. This raises the 598

question of what the difference is between the two different forms of input encoding 599

from the perspective of competitive learning [18]. It is well known that standard 600

competitive networks develop weight vectors that reflect the covariance between the 601

activities of input neurons. In particular, there is a tendency for output neurons to 602

learn to respond to subsets of input neurons whose activities are highly correlated. 603

Hence inspecting the covariance between input neurons across all input patterns may 604

reveal what structure the weight vectors should converge towards under standard 605

competitive learning conditions with a Hebbian learning rule. 606
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The covariance between input neurons may be computed in the same way for both 607

input neurons with peaked gain described by Eq 1 and input neurons with sigmoidal 608

gain described by Eq 2. In the case of an input neuron with retinal preference α and 609

eye-position preference β, the covariance between it and a second input neuron with 610

corresponding preferences α∗, β∗ is given by 611

covα,β(α∗, β∗) =

∫∫
R×E

(
Rα,β(r, e)−Rα,β

) (
Rα∗,β∗(r, e)−Rα∗,β∗

)
drde (12)

Rα,β(r, e) is the response of a neuron with preferences α, β to a visual target at retinal 612

location r and eye-position e, as given by either Eq 1 or Eq 2. The term Rα,β is the 613

average response of the same neuron across all possible inputs in the R×E space, that is 614

Rα,β =
1

|R× E|

∫∫
R×E

Rα,β(r, e)drde (13)

Fig 6A shows this covariance map for an input neuron with a peaked gain and 615

preferences α = β = 0◦, and Fig 6B shows the covariance map for an input neuron with 616

sigmoidal gain and preferences α = β = 0◦ and κ > 0. 617

Fig 6. Covariance between a given input neuron and the rest of the input
neuron population. Each plot shows the covariance between a given input neuron
and the rest of the input neuron population in the form of a topographic map analogous
to the weight vector maps shown above. Subplots (A) and (B) show results for input
neurons with peaked and monotonic gain, respectively. In both cases the input neuron
has preferences α = β = 0◦, and in the monotonic case the input has positive gain
(κ > 0).

The structure of covariance in the peaked modulation case is functionally identical to 618

the response function of the input neuron, namely a two dimensional Gaussian tuning 619

curve. The form of this covariance function is obvious by considering the correlations 620

between the activities of input neurons with peaked gain. 621

In the sigmoidal (monotonic) modulation case, the situation is more complicated. 622

The strong covariance is localised within the retinal preference dimension, but elongated 623

within the eye-position dimension. This can again be understood by considering the 624

response functions of the input neurons. Firstly, because all input neurons have a sharp, 625

peaked tuning profile in the retinal preference dimension, any two input neurons need to 626

have similar retinal preferences in order to have the possibility of being coactive. This 627

explains the localisation of strong covariance in the retinal preference dimension. 628

Secondly, the elongated form of the covariance function in the eye-position dimension 629

results directly from the sigmoidal gain as follows. In the subpopulation of input 630

neurons with a positive gain direction, similar to the reference input neuron (0◦, 0◦) 631

itself, it is clear that other neurons with a similar retinal preference and with an 632

eye-position preference to the right (i.e. larger than 0◦) cofire more frequently with the 633

reference neuron. This is because a positive gain implies that an input neuron responds 634

to all eye-positions to the left of (i.e. smaller than) the eye-position preference of the 635

neuron. Conversley, a negative gain implies that an input neuron responds to 636

eye-positions to the right of (i.e. greater than) the eye-position preference of the neuron. 637

Hence, in the subpopulation of input neurons with a negative gain direction, it can be 638

seen that neurons with a similar retinal preference and with an eye-position preference 639

to the left of (i.e. smaller than) 0◦ cofire more frequently with the reference neuron. 640

The covariance maps shown in Fig 6A and Fig 6B predict the structure of the weight 641

vectors that we would expect to see develop in a competitive network with a standard 642
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Hebbian learning rule trained over all input patterns with either peaked or sigmoidal 643

gain, respectively. These predictions are tested by running simulations with a Hebbian 644

learning rule with both peaked and sigmoidal gain modulated input neurons. The 645

Hebbian learning rule is implemented in the model by replacing the trace value qi in the 646

standard trace learning rule (Eq 6) by the current firing rate vi of the postsynaptic 647

neuron. For each simulation, there are 200 training patterns corresponding to random 648

locations in the E ×R space. The activation time constant is reduced to τh = 30ms to 649

avoid any trace effect during learning. Fig 7A and Fig 7C show the synaptic weight 650

vectors of two typical output neurons that developed after training with the Hebbian 651

learning rule when the input neurons are modulated by either peaked or monotonic gain, 652

respectively. It is clear that these synaptic weight vectors have a very similar structure 653

to the corresponding covariance maps shown in Fig 6. Thus, with the Hebbian learning 654

rule, the underlying correlations between the activities of the input neurons with either 655

peaked or sigmoidal gain shape the synaptic weight structure that develops during 656

training. Most importantly, with monotonic gain, the synaptic weights are localised 657

within the retinal preference dimension, but elongated within the eye-position preference 658

dimension. This kind of synaptic weight structure leads to eye-centred output responses. 659

Fig 7. Weight vectors of two typical output neurons. The top row shows the
weight vectors of two typical output neurons that develop when the input neurons have
peaked eye-position gain modulation and the network is trained with either the Hebbian
learning rule (A) or the trace learning rule (B). The bottom row shows the weight
vectors of two typical output neurons when the input neurons have monotonic
eye-position gain and the network is trained with either the Hebbian learning rule (C)
or the standard trace learning rule (D).

Next, comparison simulations are run with the trace learning rule. Fig 7B and 660

Fig 7D show the synaptic weight vectors of two typical output neurons that developed 661

after training with the trace learning rule when the input neurons are modulated by 662

either peaked or sigmoidal gain, respectively. Fig 7B shows a diagonal band of 663

potentiated synaptic weights, which correspond to input neurons representing the same 664

head-centred location but with different combinations of retinal location and 665

eye-position. Thus, with peaked gain, the trace learning rule is able to simply bind 666

together clusters of input neurons along a diagonal line in the (retinotopic preference × 667

eye-position preference) input space corresponding to a particular head-centred location. 668

Output neurons will then respond to particular head-centred locations regardless of 669

eye-position or the retinal location of a visual target. However, the situation is quite 670

different with sigmoidal gain modulated input neurons. Fig 7D shows a similar 671

horizontal weight structure to that obtained with the Hebbian learning rule (Fig 7C). 672

In particular, in both of these last two cases, the weight vector is very similar to the 673

covariance structure found among the input neurons with sigmoidal eye-position 674

modulation (Fig 6B). Thus, with sigmoidal gain, even if a trace learning rule is 675

implemented, the output neurons still learn to represent eye-centred rather than 676

head-centred locations. This is because developing head-centred output responses would 677

require the trace learning rule to do more than simply bind input patterns together. 678

With sigmoidal gain, trace learning must also disrupt and break apart output 679

representations corresponding to clusters of highly correlated input neurons, which are 680

localised in the retinotopic preference dimension but elongated in the eye-position 681

preference dimension. However, in practice the standard trace learning rule given by 682

Eq (6) is not strong enough to achieve this. Consequently, with the standard trace 683

learning rule, these elongated clusters of input neurons with correlated activities 684

continue to drive the development of eye-centred output neurons, as observed in the 685

simulations previously reported in this article (section Self-organisation with peaked and 686
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monotonic gain fields). 687

Introducing Plasticity into a Prewired Model 688

The failure of self-organisation to produce head-centred output neurons in a model with 689

sigmoidal (monotonic) eye-position gain modulation suggests the following two 690

important questions. First, does there actually exist a synaptic weight connectivity 691

matrix that would support a mapping to head-centred output representations, even if in 692

practice the self-organisation process using the standard trace learning rule (6) 693

originally implemented by [1] fails to converge on this solution? Secondly, if it is 694

possible to prewire a network with such a synaptic weight structure, then would the 695

head-centred output representations be abolished by subsequently introducing synaptic 696

plasticity either in the form of the standard trace learning rule (6) or normal Hebbian 697

learning (where the trace value qi is replaced by the current firing rate vi)? If so, then 698

this would demonstrate an even deeper problem: the presence of such forms of synaptic 699

plasticity in a network with sigmoidal gain modulation not only fails to drive the 700

development of head-centred output representations, but would also abolish any existing 701

head-centred representations. 702

To address the above two questions, we construct a manually prewired model that is 703

designed to produce head-centred output neurons with input neurons that are 704

modulated by sigmoidal functions of eye-position. The prewired model is constructed as 705

follows. There are 24522 neurons in the input population, each corresponding to a 706

unique combination of retinal-position preference (αi), eye-position preference (βj) and 707

slope (κj). There are 900 neurons in the output population, each given a head-centred 708

receptive field at one among nine head-centred locations, which are −68◦, −51◦, −34◦, 709

−17◦, 0◦, 17◦, 34◦, 51◦ and 68◦. Each neuron in the output population is 710

postsynaptically connected to a randomly assigned subpopulation of the input 711

population. There are only two synaptic weight values across all synapses, simply 712

referred to as elevated and depressed. The strength of a synapse is elevated if the 713

presynaptic input neuron responded maximally to a combination of eye-position and 714

retinal location corresponding to a head-centred location that is closest to the 715

head-centred location assigned to the output neuron. Otherwise the synapse is 716

depressed. Therefore, the output neuron receives strong driving input to the extent that 717

a visual target is near its assigned head-centred location. Specifically, the weight of a 718

synapse with a postsynaptic neuron assigned to head-centred receptive field location h 719

and a presynaptic neuron having retinal-preference α, eye-position preference β and 720

κ > 0 is given by 721

wh,α,β =

{
10 h− β ≤ α ≤ h+W/2 (Elevated)
1 else (Depressed)

(14)

where W = 60◦ is the size of the eye-position dimension. Likewise when κ < 0 the 722

weight is given by 723

wh,α,β =

{
10 h−W/2 ≤ α ≤ h− β (Elevated)
1 else (Depressed)

(15)

Fig 8 shows the structure of the canonical weight vector produced by Eq 14-15. 724

Before testing the network, the synaptic weight vectors of all output neurons underwent 725

the normalization step described by Eq 7. To provide a baseline for comparison, a 726

network with randomly wired synaptic connections is also tested in the same way. The 727

parameters for both models are given in Table 2. 728

Fig 9 shows the eye-centredness and head-centredness values of output neurons in 729

the manually prewired model as well as a randomly wired model for comparison. It is 730
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Fig 8. Synaptic weight structure of a network model that has been
manually prewired in order to produce head-centred output neurons with
input neurons that are modulated by a sigmoidal function of eye-position.
The figure shows the structure of the canonical weight vector resulting from the
prewiring Eq 14 and Eq 15. Each of the two rectangles represents the topographic
organisation of one half of the input population in terms of retinal-preference (αi) and
eye-position preference (βj), with the input neurons in the left rectangle having κ > 0
(positive gain) and the right rectangle having κ < 0 (negative gain). A neuron in the
competitive output population which has been assigned a head-centred receptive field at
location h will have elevated connections from input neurons with preferences located in
the right-angled triangles of the input space, labeled A and B.

Table 2. Simulation parameters of the network model that has been
manually prewired in order to produce head-centred output neurons with
monotonic modulated input neurons.

Parameter Symbol Value

Width of retinal tuning curve σ 6◦

Gain magnitude |κ| 0.0625
Output neuron population size N 900
Input neuron population size NI 24522
Activation time constant τh 100ms
Activation function slope ϕ 4
Activation function threshold θ 0
Sparseness percentile π 90%
Synaptic connectivity φ 8.16%

clear that in the manually prewired model, the majority of output neurons are 731

head-centred. In contrast, there are no head-centred neurons in the randomly wired 732

model. In summary, the results from the manually prewired model demonstrate the 733

existence of a synaptic weight matrix which allows the output neurons to perform the 734

desired coordinate transformation to a head-centred reference frame even when the 735

input neurons are modulated by a sigmoidal function of eye-position. 736

Fig 9. Performance of the prewired network model with monotonic
modulated input neurons. The Figure shows the performance of the network model
that has been manually prewired to produce head-centred output neurons with input
neurons that are modulated by a sigmoidal function of eye-position. The scatter plot
shows the eye-centredness and head-centredness values of all output neurons from the
manually prewired model and a randomly wired model. Same conventions as in Fig 5.
It can be seen that the majority of the output neurons in the manually prewired model
display head-centred responses.

The next question to be explored is, what would be the effect of introducing 737

synaptic plasticity, either in the form of the standard trace learning rule (6) or normal 738

Hebbian learning, into the manually prewired model while it is exposed to the kinds of 739

visual input described above? This experiment would inform whether these forms of 740

plasticity not only failed to drive the development of head-centred output 741

representations during self-organisation, but would even abolish existing head-centred 742

representations. The manually prewired model is therefore subjected to the same visual 743

training stimuli as described above over 10 training epochs. The results presented here 744

are from a simulation using the standard trace learning rule (6). However, although not 745
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shown, further simulations with a Hebbian learning rule without an explicit memory 746

trace gave qualitatively similar results. 747

The impact of introducing synaptic plasticity into the manually prewired modelsas is 748

inspected by plotting key summary statistics as a function of the number of training 749

epochs in Fig 10. There is a catastrophic drop in model performance after only the first 750

epoch of training, where the fraction of head-centred neurons decreased from ∼77% to 751

∼0.3%, and the average head-centredness among head-centred neurons decreased from 752

∼0.7 to ∼0.26. Subsequent training epochs remained around these levels. After epoch 5 753

there is not a single head-centred neuron. 754

Fig 10. The effects of introducing synaptic plasticity into the network that
has been manually prewired to produce head-centred output neurons when
the input neurons that are modulated by a sigmoidal (monotonic) function
of eye-position. The figure shows population analyses of the response properties of
output neurons in the manually prewired model as the synaptic weights are further
modified during ten training epochs with the standard trace learning rule (6). Three
key summary statistics are given. The head-centredness rate (red) is the fraction of
head-centred neurons in the output population. The average head-centredness (green) is
the average head-centredness among head-centred neurons, and becomes undefined if no
head-centred neurons are found to exist. The average eye-centredness (blue) is the
average eye-centredness among all output neurons. The dashed lines show these values
for the manually prewired network before training, while the unbroken lines show the
values through successive training epochs after synaptic plasticity has been introduced.
The error bars are the standard deviations. It can be seen that by the end of the first
training epoch the majority of the output neurons switched from being head-centred to
eye-centred.

In summary, it is found that just a single training epoch switched most of the output 755

neurons from being head-centred to eye-centred. We hypothesised that this is due to the 756

same visually-guided learning dynamics described above in section Self-organisation 757

with peaked and monotonic gain fields and in section Covariance Analysis of the Effects 758

of Gain Modulation, which come into operation when the retinotopic input neurons 759

have monotonic eye-position gain modulation. Thus, even if the synaptic weights are 760

initially manually prewired to effect head-centred output responses, which might be 761

suggested to happen in the brain through genetic specification, the introduction of just 762

a limited amount of synaptic plasticity, either in the form of the standard trace learning 763

rule (6) or normal Hebbian learning, and visually-guided learning led to the output 764

neurons rapidly switching to eye-centred responses. The presence of even modest levels 765

of such synaptic plasticity will quickly overwrite head-centred representations that have 766

been set up through structured (e.g. genetic) prewiring. Thus, since plasticity is 767

ubiquitous in primate cortex, this suggests that any explanation for the development of 768

head-centred visual responses must utilise a more sophisticated visually-guided learning 769

process than demonstrated by [1], who considered only models with input neurons that 770

were modulated by peaked functions of eye-position. Moreover, the loss of head-centred 771

representations in the manually prewired model by introducing synaptic plasticity also 772

represents a major challenge to the plausibility of previously published models, such as 773

that of [20], which rely on an initial period of supervised learning to establish the 774

required synaptic connectivity. The problem here is that when the supervisory training 775

signal is eventually removed, the continued presence of associative plasticity may 776

degrade and eventually abolish the head-centred output representations. 777

In the remainder of the paper we explore a variety of biologically plausible model 778

variations that are aimed at discovering potential mechanisms by which head-centred 779

output neurons may still develop through visually guided learning even when the 780
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network contains input neurons with monotonic modulation by eye-position. We begin 781

by exploring the performance of the model when it incorporates a mixture of input 782

neurons that are modulated by peaked and sigmoidal eye-position gain fields. After this, 783

we explore the operation of the model with a number of more sophisticated, modified 784

synaptic learning rules originally developed by [25] in the context of transform invariant 785

visual object recognition, which maintain biological plausibility by continuing to rely on 786

the locally available activities of the pre- and post-synaptic neurons. The choice of the 787

modified versions of the trace learning rule used in the following sections of this paper is 788

motivated by the superior performance of these learning rules reported by [25]. Finally, 789

we conclude with the investigation of the performance of the model incorporating a 790

mixed population of peaked and monotonic modulated visual input neurons with the 791

synaptic weights also adjusted using a new modified version trace learning rule. 792

Standard Trace Learning Rule with Mixed Peaked and 793

Sigmoidal eye-position Modulation of Input Neurons 794

In this experiment it is investigated how mixing peaked and sigmoidal gain modulation 795

in the input population in varying proportions would influence the development of 796

head-centred output neurons in the self-organising model with the standard trace 797

learning rule (6). This is an important issue since all cortical areas with eye-position 798

gain modulation exhibit a mixture of different forms of modulation [7–9]. A series of 799

simulations are conducted where each neuron in the input population is independently 800

and randomly set to have either a peaked or sigmoidal gain modulation. Specifically, 801

each input neuron is changed from having peaked to sigmoidal modulation with a 802

probability p, called the sigmoid modulation rate, and values of p = 0, 0.1, . . . , 1.0 are 803

explored. 804

The impact of varying the sigmoid modulation rate on the characteristics of the 805

model is inspected by plotting key summary statistics as a function of p in Fig 11. As 806

expected, the head-centredness rate decreased as the sigmoid modulation rate increased, 807

both in the trained and untrained models. However, as long as the sigmoid modulation 808

rate is less than 30%, the trained model had a higher proportion of head-centred output 809

neurons than the untrained model. In particular, for sigmoid modulation rates less than 810

20%, the fraction of head-centred neurons in the trained model did not drop below 811

∼15%, and the average head-centredness among head-centred neurons remained no less 812

than ∼0.58. 813

Fig 11. The effects of incorporating a mixed population of input neurons
with both peaked and monotonic eye-position gain modulation. The plots
show how the performance metrics vary with the monotonic modulation rate, p, which
is the probability of each input neuron having a monotonic eye-position gain
modulation. Results are presented showing the response characteristics of the output
neurons before training (A) and after training (B). Conventions are similar to Fig 10.
It is evident that the head-centredness rate decreased as the sigmoid modulation rate
increased, both in the trained and untrained models. However, as long as the sigmoid
modulation rate is less than 30%, the trained model had a higher proportion of
head-centred output neurons than the untrained model.

In summary, these results showed that when there is a large proportion of input 814

neurons with peaked eye-position gain modulation, say with 0 ≤ p ≤ 0.2, then the 815

self-organising model is still capable of developing a significant proportion, i.e. no less 816

than ∼15%, of head-centred ouput neurons during training. However, as the sigmoid 817

modulation rate increased, the performance of the model deteriorated with far fewer 818

head-centred output neurons present in the trained model. 819
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Given that the model incorporating a mixed population of input neurons failed to 820

develop a significant proportion of head-centred output cells whenever p > 0.2, we next 821

investigated whether the introduction of more powerful, modified synaptic learning rules 822

could produce head-centred output neurons when the entire population of input neurons 823

were again modulated by a sigmoidal function of eye-position. Our choice of the 824

modified versions of the trace learning rule adopted in this paper was motivated by 825

their superior performance reported in previous work [25]. These modified versions of 826

the standard trace learning rule are still biologically plausible in terms of only using 827

locally available signals to update the synaptic weights of connections. Moreover, we 828

expected that the introduction of a delayed trace of synaptic activity and as well as an 829

anti-Hebbian component incorporated in these modified versions of the trace learning 830

rule would provide the model with a way of weakening the observed Hebbian-like 831

training behaviour evidenced, for example, by the comparison of Fig 7D and Fig 7C, 832

and therefore to facilitate the self-organisation of head-centred responses with visual 833

input neurons with monotonic eye-position gain modulation. The absence of these 834

components makes other classic Hebbian-based learning rules (e.g. Oja’s rule [32]) 835

ineffective in this case. 836

Modified Learning Rule: Delayed Postsynaptic Trace with 837

Anti-Hebbian Learning 838

[25] investigated how a set of modified more powerful versions of the trace learning rule 839

can produce improved temporal binding and invariance learning. In particular, the 840

authors showed that the performance of the trace learning rule is substantially improved 841

by incorporating a trace of previous neuronal activity with an explicit time delay. This 842

had the effect of removing the purely Hebbian term of the learning rule [25]. In the next 843

simulations, the learning rules proposed by [25] were adapted to differential 844

formulations for the time-continuous scenario in which the simulations are performed. A 845

Forward Euler scheme was used to numerically integrate the differential equations. In 846

all simulations the numerical time step was kept as one tenth of the neuronal time 847

constant τh. Unless explicitly mentioned, the learning rule was the only change from 848

previous simulations. 849

This section presents simulation results showing the performance of a modified 850

learning rule incorporating a delayed postsynaptic trace with anti-Hebbian learning [33]. 851

We investigate the impact of this learning rule on the self-organisation of the synaptic 852

weights and firing rate responses of the output neurons when all input neurons were 853

modulated by sigmoidal eye-position gain fields. The learning rule was defined by 854

dwij(t)

dt
= α (βqi(t−∆T )− yi(t)) vj(t) (16)

where yi and vj were, respectively, the post and presynaptic firing rate values, α was the 855

learning rate, β was an unconstrained tuning parameter, and qi was the trace value of 856

the output neuron i calculated according to Eq 5 at time (t−∆T )ms. Eq 16 resembles 857

a form of error-correction learning where the delayed-trace term βqi(t−∆T ) is the 858

target for the current postsynaptic firing rate. The learning rule is biologically plausible 859

in that it utilises only the local activities of the pre- and post-synaptic neurons. 860

Expanding Eq 16 will result in 861

dwij(t)

dt
= α (βqi(t−∆T )− yi(t)) vj(t) (17)

where αβqi(t−∆T )vj(t) is the delayed-trace term of the learning rule. This is the term 862

which contains the tuning parameter β. The remaining term −αyi(t)vj(t) is minus the 863
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learning rate α times the product of the post and presynaptic firing rates yi and vj , 864

respectively. This term is referred to as the anti-Hebbian term of the learning rule. 865

The behaviour of the learning rule shown in Eq 16 is governed by scaling the 866

parameter β. Scaling β up could result in the delayed-trace component dominating the 867

learning rule and, therefore, resulting in the same trace-like training behaviour 868

described in previous sections. Similarly, scaling β down could make the anti-Hebbian 869

term dominate the behaviour of the learning rule and consequently lead to a qualitative 870

change in the final outcome of the training. 871

The parameters for the model are given in Table 1. The model was trained 872

according to the description given in section The Visually-Guided Training of the 873

Network. Likewise, in all cases the model was tested on the same visual stimuli. The 874

time delay ∆T used to compute the trace value of each output neuron and the 875

parameter β were both tuned to optimise the performance of the model at developing 876

head-centred output neurons. The time delay ∆T used to compute the trace value of 877

each output neuron i was 50ms. The parameter β was set to 2.2. 878

Fig 12 shows the firing rate responses of output neuron #168 before and after 879

training, with results shown for four different eye-positions. The miniature scatter plots 880

presented within each of the two subplots A and B show the reference frame values of 881

all neurons in the output layer. Neuron #168 is indicated in the scatter plots by a red 882

mark. Fig 12A shows that prior to training the response of output neuron #168 had no 883

consistent structure in head-centred space across different eye-positions. However, 884

Fig 12B shows that after training the output neuron responded maximally to the same 885

head-centred location across all four eye-positions. This neuron has thus learned to 886

respond in a head-centred reference frame. 887

Fig 12. Simulation results showing the firing rate responses of a model
incorporating a population of monotonic modulated input neurons trained
with the modified learning rule 16: Delayed Postsynaptic Trace with
anti-Hebbian Learning. The figure shows the firing rate responses of output neuron
#168 before training (A) and after training (B) during testing for four different
eye-positions: −18◦,−6◦, 6◦ and 18◦. In each subplot, each curve corresponds to a fixed
eye-position while a visual target is presented across the same range of head-centred
locations. The miniature scatter plot shows the reference frame values of all neurons in
the output layer, where each neuron is plotted as a point corresponding to that neuron’s
particular combination of head-centredness (ordinate) and eye-centredness (abscissa).
The neuron whose firing rate responses have been plotted is shown in the scatter plot by
a red mark. After training it is evident that this neuron responds reasonably invariantly
to a visual target presented at the same head-centred location regardless of the
eye-position.

The change in the synaptic weight structure of the same output neuron #168 due to 888

training is shown in Fig 13. Before training started the afferent synaptic weights were 889

randomly assigned (Fig 13A). Fig 13B shows that after training, in contrast to the 890

horizontal structure previously obtained with the standard trace learning rule shown in 891

Fig 7D, the structure obtained with the modified learning rule 16 is similar to the 892

predicted structure shown in Fig 8 for a head-centred neuron. 893

Fig 14 presents a population analysis of the reference frame response characteristics 894

of the output neurons before and after training. In particular, the scatter plot in Fig 14 895

shows that before training nearly all of the output neurons had head-centredness values 896

close to 0 and were classified as eye-centred. However, after training the 897

head-centredness values of many output neurons had dramatically increased, with quite 898

a number of these neurons now classed as head-centred. Comparing the output 899

population analysis of the model trained with the modified learning rule 16 shown in 900
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Fig 13. Simulation results showing the strengths of the afferent synapses of
a model incorporating a population of sigmoidal modulated input neurons
trained with the modified learning rule 16: Delayed Postsynaptic Trace
with anti-Hebbian Learning. The figure shows the strengths of the afferent
synapses from the input population to output neuron #168 for the untrained (A) and
trained (B) model. The output neuron corresponds to the one plotted in Fig 12. In
each plot, the afferent synapses have been arranged topographically by the preference of
the input neuron for retinal location αi and eye-position βj . The portion of each plot to
the left of the white dashed line corresponds to input neurons with positive gain κj > 0,
whilst the portion of each plot to the right of the white dashed line corresponds to those
input neurons with negative gain κj < 0. The synaptic weights for this output neuron
after training (B) have approximately the correct structure for a head-centred neuron
as shown in Fig 8.

Fig 14 with the performance of the model trained with the standard trace learning 901

rule (6) shown in Fig 5 confirms that the new modified learning rule 16 is far more 902

efficacious at driving the development of head-centred output neurons when the input 903

neurons are modulated by a sigmoidal (monotonic) function of eye-position than the 904

standard trace learning rule (6) originally investigated by [1]. 905

Fig 14. Simulation results showing the output reference frame response
characteristics of a model incorporating a population of sigmoidal
modulated input neurons trained with the modified learning rule 16:
Delayed Postsynaptic Trace with anti-Hebbian Learning. The scatter plot
shows the reference frame response characteristics of all output neurons before and after
training. Each neuron is represented as a point corresponding to its combination of
eye-centredness (abscissa) and head-centredness (ordinate) values. Data points for the
untrained model are plotted in blue and data points for the trained model are shown in
red. The dashed diagonal line with positive unity slope separates those neurons which
are classified as head-centred (above the line) from those that are classified as
eye-centred (below the line). It can be seen that many of the output neurons have
developed head-centred output responses after training.

In summary, these results showed that training the model with the modified learning 906

rule 16 refined the response characteristics of many output neurons to be more 907

compatible with a head-centred frame of reference, even when all of the input neurons 908

had monotonic eye-position gain modulation. 909

Modified Learning Rule: Delayed Postsynaptic Firing Rate with 910

Anti-Hebbian Learning 911

This section presents simulation results showing the performance of a learning rule 912

which incorporates a delayed postsynaptic firing rate with anti-Hebbian learning [25]. 913

The same training procedure of previous simulations was used in the simulations 914

presented in this section. The learning rule is defined by 915

dwij(t)

dt
= α (βyi(t−∆T )− yi(t)) vj(t) (18)

where yi was the firing rate of output neuron i. In this case no postsynaptic trace value 916

qi is used to update the synaptic weights. The tuning parameter β works as described 917

in section Modified Learning Rule: Delayed Postsynaptic Trace with Anti-Hebbian 918

Learning for the anti-Hebbian learning rule with delayed trace (Eq 16). The time delay 919

May 15, 2018 25/39

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 21, 2018. ; https://doi.org/10.1101/327288doi: bioRxiv preprint 

https://doi.org/10.1101/327288
http://creativecommons.org/licenses/by/4.0/


∆T in the firing rate of each output neuron and the parameter β were both tuned to 920

optimise the performance of the model in driving the development of head-centred 921

output neurons. The value of the time delay ∆T was set to 500ms and β was set to 2.4. 922

Simulation parameters for the model are shown in Table 1. 923

Fig 15 shows the firing rate responses of output neuron #876 before training 924

(Fig 15A) and after training (Fig 15B). Fig 15B shows that after training output 925

neuron #876 responded to the same head-centred location across different eye-positions. 926

This was not the case for the same output neuron before training (Fig 15A). Thus, it is 927

evident that during training the neuron has learned to respond in a head-centred 928

reference frame. 929

Fig 15. Simulation results showing the firing rate responses of a model
incorporating a population of monotonic modulated input neurons trained
with the modified learning rule 18: Delayed Postsynaptic Firing Rate with
anti-Hebbian Learning. The figure shows the firing rate responses of output neuron
#876 before training (A) and after training (B) during testing for four different
eye-positions: −18◦,−6◦, 6◦ and 18◦. Conventions as for Fig 12. The comparison of
subplot (A) and subplot (B) shows that the output neuron learned to respond to a
specific head-centred location regardless of the eye-position after training.

Fig 16 shows how the synaptic weight structure of the same output neuron #876 930

changed due to training the model with learning rule 18. The final weight structure 931

after training shown in Fig 16B resembles the predicted weight structure shown in Fig 8 932

for head-centred neurons. 933

Fig 16. Simulation results showing the strengths of the afferent synapses of
a model incorporating a population of sigmoidal modulated input neurons
trained with the modified learning rule 18: Delayed Postsynaptic Firing
Rate with anti-Hebbian Learning. The figure shows the strengths of the afferent
synapses from the input population to output neuron #876 for the untrained (A) and
trained (B) model. The output neuron corresponds to the one plotted in Fig 15.
Conventions as for Fig 13. The synaptic weight structure for this output neuron after
training shown in plot (B) has approximately the correct profile for a head-centred
neuron (Fig 8).

Fig 17 shows the eye-centredness and head-centredness values of output neurons in 934

the untrained and in the trained model. It is clear that almost none of the output 935

neurons in the untrained model had values of head-centredness higher than 936

eye-centredness. However, after training the head-centredness values of many output 937

neurons increased substantially, with a number of such neurons now having greater 938

head-centredness than eye-centredness values. Such neurons are, therefore, classified as 939

head-centred neurons (section Analysis of Network Performance). Comparing the 940

output population analysis of the model trained with the modified learning rule 18 941

shown in Fig 17 with the analysis of the model trained with the standard trace learning 942

rule (6) shown in Fig 5 demonstrates that the new modified learning rule 18 is also 943

more efficacious at producing head-centred output neurons when the input neurons are 944

modulated by a sigmoidal function of eye-position than the standard trace learning 945

rule (6) previously implemented by [1]. 946

In summary, these results showed that training the model with the modified learning 947

rule 18 resulted in the development of head-centred output neurons, even when the 948

whole input population had sigmoidal eye-position gain modulation. However, the 949

comparison of Fig 17 and Fig 14 shows that learning rule 16, which incorporated a 950

delayed postsynaptic trace qi(t−∆T ), is in fact more efficacious at driving the 951
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Fig 17. Simulation results showing the output reference frame response
characteristics of a model incorporating a population of sigmoidal
modulated input neurons trained with the modified learning rule 18:
Delayed Postsynaptic Firing Rate with anti-Hebbian Learning. The scatter
plot shows the reference frame response characteristics of all output neurons before and
after training. Conventions as for Fig 14. It is evident that training had the effect of
increasing the head-centredness values of most output neurons. Indeed many more
head-centred output neurons are present in the trained model than in the untrained
model.

development of head-centred output neurons than learning rule 18, which incorporated 952

the delayed firing rate yi(t−∆T ). Thus, the incorporation of the trace value qi(t−∆T ) 953

enhances the ability of the learning rule to perform temporal binding of input patterns 954

corresponding to the same head-centred location. 955

Modified Learning Rule: Current Postsynaptic Trace with 956

Anti-Hebbian Learning 957

This section presents simulation results showing the performance of a modified learning 958

rule which incorporated the current postsynaptic trace with anti-Hebbian learning. 959

Thus, this learning rule does not use an explicit time delay ∆T . The learning rule was 960

given by 961

dwij(t)

dt
= α (βqi(t)− yi(t)) vj(t) (19)

where α was the learning rate, β was the tuning parameter, qi was the trace value of the 962

output neuron i, and yi and vj were the post- and pre-synaptic firing rate values, 963

respectively. What distinguishes the learning rule in Eq 19 from the learning rule in 964

Eq 16 is the use of the trace value calculated at the same time t when the synaptic 965

weight is updated. 966

Table 1 gives the parameters for the model. The value of the tuning parameter β 967

was set to 2.2 for optimal performance. 968

Fig 18 shows the firing rate responses of output neuron #328 for the untrained and 969

trained models. Specifically, Fig 18A shows that prior to training the response of 970

output neuron #328 had no consistent structure in head-centred space across different 971

eye-positions. However, Fig 18B shows that after training the same output neuron 972

reponded maximally to the same head-centred location across all four eye-positions. 973

Thus, after training, neuron #328 responded in a head-centred frame of reference. 974

Fig 18. Simulation results showing the firing rate responses of a model
incorporating a population of monotonic modulated input neurons trained
with the modified learning rule 19: Current Postsynaptic Trace with
anti-Hebbian Learning. The figure shows the firing rate responses of output neuron
#328 before training (A) and after training (B) during testing for four different
eye-positions: −18◦,−6◦, 6◦ and 18◦. Conventions as for Fig 12. The comparison of
subplot (A) and subplot (B) shows that the output neuron learned to respond to a
specific head-centred location regardless of the eye-position after training.

The change in the synaptic weight structure of the same output neuron #328 due to 975

training is shown in Fig 19. Before training the afferent synaptic weights were randomly 976

assigned (Fig 19A). After training, however, the synaptic weight structure of the same 977
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output neuron (Fig 19B) is similar to the predicted weight structure for head-centred 978

neurons shown in Fig 8. 979

Fig 19. Simulation results showing the strengths of the afferent synapses of
a model incorporating a population of sigmoidal modulated input neurons
trained with the modified learning rule 19: Current Postsynaptic Trace
with anti-Hebbian Learning. The figure shows the strengths of the afferent synapses
from the input population to output neuron #328 for the untrained (A) and trained
(B) model. The output neuron corresponds to the one plotted in Fig 18. Conventions
as for Fig 13. The synaptic weight structure for this output neuron after training shown
in plot (B) has the correct kind of profile for a head-centred neuron (Fig 8).

Fig 20 shows the eye-centredness and head-centredness values of output neurons in 980

the untrained and in the trained model. In particular, Fig 20 shows that training had 981

the effect of increasing the head-centredness value for a large proportion of output 982

neurons. Furrthermore, while almost no output neurons were classified as head-centred 983

before training, a significant number of output neurons were classified as head-centred 984

after training. A comparison of the output population analysis of the model trained 985

with the modified learning rule 19 shown in Fig 20 with the performance of the model 986

trained with the standard trace learning rule (6) presented in Fig 5 shows that the 987

modified learning rule 19 is also significantly more capable of producing head-centred 988

output neurons than the standard trace learning rule (6) when all of the input neurons 989

have sigmoidal gain modulation by eye-position. 990

In summary, these results showed that training the model with learning rule 19 991

drives the development of head-centred output neurons even when the whole input 992

population had sigmoidal eye-position gain modulation. The comparison of Fig 20 with 993

Fig 14 shows that learning rule 16, which incorporated a delayed postsynaptic trace 994

qi(t−∆T ), is more effective at producing head-centred output neurons than learning 995

rule 19, which incorporated the current trace qi(t) calculated at the same time t when 996

the weights are updated. 997

Fig 20. Simulation results showing the output reference frame response
characteristics of a model incorporating a population of sigmoidal
modulated input neurons trained with the modified learning rule 19:
Current Postsynaptic Trace with anti-Hebbian Learning. The scatter plot
shows the reference frame response characteristics of all output neurons before and after
training. Conventions as for Fig 14. It can be seen that training increased the
head-centredness values of most output neurons, with quite a number of head-centred
output neurons present in the trained model.

Modified Learning Rule: Delayed Postsynaptic Trace Learning 998

Rule 999

The simulation results presented in section Modified Learning Rule: Delayed 1000

Postsynaptic Trace with Anti-Hebbian Learning, section Modified Learning Rule: 1001

Delayed Postsynaptic Firing Rate with Anti-Hebbian Learning and section Modified 1002

Learning Rule: Current Postsynaptic Trace with Anti-Hebbian Learning showed, 1003

respectively, that training the model with learning rule 16, learning rule 18 and learning 1004

rule 19 successfully self-organised head-centred output responses and increased the 1005

head-centredness value of a large proportion of output neurons when all input neurons 1006

had sigmoidal eye-position gain modulation. Importantly, section Self-organisation with 1007

peaked and monotonic gain fields showed this was not the case for the standard trace 1008
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learning rule (6). Training the model with the standard trace learning rule successfully 1009

self-organised head-centred output neurons when all of the input neurons had peaked 1010

eye-position gain modulation, but failed when the modulation of the input population 1011

was altered from peaked to sigmoidal. Indeed, the simple introduction of a small 1012

proportion (e.g. with p > 0.2) of input neurons with sigmoidal eye-position gain 1013

modulation was enough to undermine the self-organisation of head-centred output 1014

responses (section Standard Trace Learning Rule with Mixed Peaked and Sigmoidal 1015

eye-position Modulation of Input Neurons). 1016

The modified learning rules introduced in section Modified Learning Rule: Delayed 1017

Postsynaptic Trace with Anti-Hebbian Learning, section Modified Learning Rule: 1018

Delayed Postsynaptic Firing Rate with Anti-Hebbian Learning and in section Modified 1019

Learning Rule: Current Postsynaptic Trace with Anti-Hebbian Learning all had an 1020

anti-hebbian term as their common component. Out of these learning rules, the best 1021

performance was observed with learning rule 16, which incorporated a postsynaptic 1022

delayed-trace term. In this case, an interesting question is whether the superior efficacy 1023

of this learning rule in driving the development of head-centred output responses was 1024

primarily due to the anti-hebbian term or the postsynaptic delayed-trace term. In 1025

particular, is an anti-hebbian term actually needed in this learning rule for the 1026

self-organisation of head-centred responses in the presence of input neurons with 1027

sigmoidal eye-position gain modulation, or could head-centred output responses develop 1028

using a learning rule that only incorporated a postsynaptic delayed-trace term? 1029

This section addresses the above questions by investigating the performance of the 1030

model with the following learning rule 1031

dwij(t)

dt
= αqi(t−∆T )vj(t) (20)

where α was the learning rate, qi was the trace value of the output neuron i and vj was 1032

the firing rate of the input neuron j. In Eq 20 the trace value qi is calculated at time 1033

(t−∆T )ms. This learning rule has no anti-hebbian term, and relies purely on the 1034

postsynaptic delayed-trace term qi(t−∆T ) to drive the development of head-centred 1035

output neurons. 1036

The simulation parameters for the model are given in Table 1. The time delay ∆T 1037

used to compute the trace value of each output neuron i was set to 30ms for optimal 1038

learning performance. 1039

Fig 21 shows how training changed the firing rate responses of output neuron #223. 1040

Prior to training the response of output neuron #223 had no consistent structure in 1041

head-centred space across different eye-positions (Fig 21A), whilst after training the 1042

same output neuron responded maximally to the same head-centred location across all 1043

four eye-positions (Fig 21B). Thus, neuron #223 learned to respond in a head-centred 1044

reference frame after training. 1045

Fig 22 shows how the synaptic weight structure of the same output neuron #223 1046

plotted in Fig 21 changed due to training the model with learning rule 20. It is clear 1047

that the final synaptic weight structure after training (Fig 22B) resembles the predicted 1048

weight structure for head-centred neurons (Fig 8), even though this was not the case 1049

before training (Fig 22A). 1050

Fig 23 shows the eye-centredness and head-centredness values of all of the output 1051

neurons in the untrained model and in the trained model. After training, the 1052

head-centredness values of many output neurons had increased substantially. However, 1053

there was only a single output neuron, which was neuron #223, with a greater 1054

head-centredness value than eye-centreredness, and which was consequently classed as 1055

responding in a head-centred reference frame. Therefore, in the simulations presented in 1056

this paper, the anti-hebbian term in learning rules (16), (18) and (19) appears to play 1057
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Fig 21. Simulation results showing the firing rate responses of a model
incorporating a population of monotonic modulated input neurons trained
with the modified learning rule 20: Delayed Postsynaptic Trace Learning
Rule. The figure shows the firing rate responses of output neuron #223 before training
(A) and after training (B) during testing for four different eye-positions: −18◦,−6◦, 6◦

and 18◦. Conventions as for Fig 12. The comparison of subplot (A) and subplot (B)
shows that the output neuron learned to respond to a specific head-centred location
regardless of the eye-position after training. Output neuron #223 is not shown in the
scatter plot of subplot (A) because this neuron did not respond for every eye-position
before training and was therefore excluded from further analysis (section Analysis of
Network Performance). However, subplot (B) shows that the same output neuron
learned to respond to a specific head-centred location regardless of the eye-position after
training.

Fig 22. Simulation results showing the strengths of the afferent synapses of
a model incorporating a population of sigmoidal modulated input neurons
trained with the modified learning rule 20: Delayed Postsynaptic Trace
Learning Rule. The figure shows the strengths of the afferent synapses from the input
population to output neuron #223 for the untrained (A) and trained (B) model. The
output neuron corresponds to the one plotted in Fig 21. Conventions as for Fig 13. The
synaptic weight structure for this output neuron after training shown in plot (B) has
approximately the correct profile for a head-centred neuron (Fig 8).

an important and essential role in producing relatively large numbers of head-centred 1058

output neurons when all of the input neurons have sigmoidal eye-position gain fields. 1059

Fig 23. Simulation results showing the output reference frame response
characteristics of a model incorporating a population of sigmoidal
modulated input neurons trained with the modified learning rule 20:
Delayed Postsynaptic Trace Learning Rule. The scatter plot shows the reference
frame response characteristics of all output neurons before and after training.
Conventions as for Fig 14. It is evident that training had the effect of increasing the
head-centredness values of most output neurons. Although, there is only a single
head-centred output neuron present in the trained model.

Delayed Postsynaptic Trace Learning Rule with Mixed Peaked 1060

and Sigmoidal eye-position Modulation of Input Neurons 1061

In the previous section, it was found that an anti-hebbian term was needed in the 1062

learning rule in order to produce relatively large numbers of head-centred output 1063

neurons if the entire population of input neurons had sigmoidal gain fields. However, 1064

experimental studies have demonstrated that the primate cortex contains a mixed 1065

population of visual neurons with either peaked or monotonic eye-position gain 1066

fields [7–9]. This raises the question of whether learning rule (20), which relies solely on 1067

a postsynaptic delayed-trace term without any anti-hebbian term, could produce a 1068

much larger number of head-centred output neurons if the input population had a 50:50 1069

mix of peaked and sigmoidal eye-position gain fields. 1070

This section presents simulation results with the modified learning rule (20) when 1071

there is a 50:50 mixture of peaked and monotonic gain fields in the visual input 1072

population. Can the model produce a large number of head-centred output neurons 1073

under such conditions without an anti-hebbian term in the learning rule? This is still a 1074
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potentially challenging task for the model because in section Standard Trace Learning 1075

Rule with Mixed Peaked and Sigmoidal eye-position Modulation of Input Neurons it 1076

was shown that the standard trace learning rule (6), which lacks an anti-hebbian term, 1077

failed to produce significant numbers of head-centred output neurons when the 1078

proportion of sigmoidal gain modulated input neurons rose above just 20% of the overall 1079

input population. The model parameters for the simulations presented in this section 1080

are given in Table 1. 1081

Fig 24 shows how training changed the firing rate responses of output neuron #281. 1082

In particular, Fig 24B shows that after training output neuron #281 responded 1083

maximally to the same head-centred location across all four eye-positions, although this 1084

was not the case prior to training (Fig 24A). Hence neuron #281 responded in a 1085

head-centred frame of reference after training. 1086

Fig 24. Simulation results of a model incorporating a mixed population of
peaked and sigmoidal modulated input neurons, with sigmoidal modulation
rate p set to 0.5, trained with the modified learning rule 20: Delayed
Postsynaptic Trace Learning Rule. The figure shows the firing rate responses of
output neuron #281 before training (A) and after training (B) during testing for four
different eye-positions: −18◦,−6◦, 6◦ and 18◦. Conventions as for Fig 12. Plot (B)
shows that the same output neuron learned to respond to a specific head-centred
location regardless of the eye-position after training.

Fig 25 shows how the synaptic weight structure of the same output neuron #281 1087

plotted in Fig 24 changed due to training. Fig 25B shows that after training, the 1088

synaptic weight structure of the output neuron was clearly similar to the predicted 1089

weight structure for head-centred neurons shown in Fig 8. The synaptic weight 1090

structure before training reflected the randomly assigned connection weights (Fig 25A). 1091

Fig 25. Simulation results of a model incorporating a mixed population of
peaked and sigmoidal modulated input neurons, with sigmoidal modulation
rate p set to 0.5, trained with the modified learning rule 20: Delayed
Postsynaptic Trace Learning Rule. The figure shows the strengths of the afferent
synapses from the input population to output neuron #281 for the untrained (A) and
trained (B) model. The output neuron corresponds to the one plotted in Fig 24.
Conventions as for Fig 13. The synaptic weight structure for this output neuron after
training shown in plot (B) has the correct kind of profile for a head-centred neuron
(Fig 8).

Fig 26 shows the eye-centredness and head-centredness values of output neurons in 1092

the untrained and in the trained model. Fig 26 shows that training the model with 1093

learning rule 20, where the input population contained a 50:50 mix of neurons with 1094

peaked or sigmoidal gain modulation, had the effect of increasing the head-centredness 1095

value of most output neurons. Moreover, a large proportion of output neurons in the 1096

trained model are head-centred (i.e. with a head-centredness value greater than 1097

eye-centredness). Indeed, more head-centred output neurons were observed in the 1098

trained model in this section than in any of the trained models presented in previous 1099

section Modified Learning Rule: Delayed Postsynaptic Trace with Anti-Hebbian 1100

Learning, section Modified Learning Rule: Delayed Postsynaptic Firing Rate with 1101

Anti-Hebbian Learning and section Modified Learning Rule: Current Postsynaptic 1102

Trace with Anti-Hebbian Learning. 1103

In summary, these results demonstrated that it was possible for the model to 1104

produce large numbers of head-centred output neurons with a learning rule that relied 1105

purely on a postsynaptic delayed-trace term without any anti-hebbian term if the input 1106
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Fig 26. Simulation results of a model incorporating a mixed population of
peaked and sigmoidal modulated input neurons, with sigmoidal modulation
rate p set to 0.5, trained with the modified learning rule 20: Delayed
Postsynaptic Trace Learning Rule. The scatter plot shows the reference frame
response characteristics of all output neurons before and after training. Conventions as
for Fig 14. It is evident that training had the effect of increasing the head-centredness
values of most output neurons, with many more head-centred output neurons present in
the trained model.

population contained a 50:50 mix of neurons that were modulated by either peaked or 1107

sigmoidal gain fields. Such a mixture of different forms of eye-position gain modulation 1108

is biologically compatible with experimental findings [7, 8]. 1109

Discussion 1110

The majority of previously published models of coordinate transformation from 1111

eye-centred to head-centred visual representations have relied on some form of 1112

supervised error-correction learning, in which an explicit supervisory signal is used to 1113

specify the desired head-centred output responses during training [14–16]. The 1114

availability of such a supervisory training signal makes the self-organisation of these 1115

models robust even with monotonic (e.g. planar or sigmoidal) eye-position gain 1116

modulated input neurons. However, an immediate problem with these kinds of models 1117

is explaining exactly where such a supervisory training signal might originate from in 1118

the brain. Another major problem for models that employ a backpropagation of error 1119

supervised learning, such as the classic model of [14], is that this model architecture is 1120

entirely biologically implausible [18]. In particular, there is no plausible explanation for 1121

how the error terms needed to adjust the afferent synaptic weights in the intermediate 1122

layer of the model could be generated and implemented in the brain. One consequence 1123

of this is that the backpropagation of error learning procedure can result in individual 1124

neurons making both excitatory and inhibitory synaptic connections on different 1125

postsynaptic neurons. Although not shown here, we have verified this through 1126

replicating the model simulations of [14] and [16]. This feature of backpropagation of 1127

error models violates an accepted principle of cortical architecture, sometimes referred 1128

to as Dale’s Law, that an individual neuron must have the same kind of excitatory or 1129

inhibitory effect at all of its synaptic connections with other neurons [19]. This failure 1130

of backpropagation of error models even undermines the potential relevance of their 1131

trained synaptic architecture to understanding how coordinate transformations to 1132

head-centred visual representations might be implemented in the brain. [15] also used 1133

error-correction learning to develop head-centred output representations. Their learning 1134

scheme employed a simpler global error signal for the entire output population, which 1135

might conceivably be implemented by some form of neuromodulator release. However, 1136

the implementation of error correction learning in their model still required complex 1137

architectural features that have not been identified in cortex. 1138

To remedy the lack of biological plausibility in previously published models that use 1139

supervised learning to drive the development of visual neurons that respond in a 1140

head-centred reference frame, [1] demonstrated a model that self-organised using 1141

unsupervised competitive learning driven by the standard trace learning rule (6). In 1142

their model the trace learning rule was able to exploit the natural statistics of how 1143

primates tend to move their eyes and head as they explore their visual environment, 1144

with more frequent shifts in eye-position than head position. These natural eye and 1145

head movements enable trace learning to bind together different visual input patterns 1146

May 15, 2018 32/39

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 21, 2018. ; https://doi.org/10.1101/327288doi: bioRxiv preprint 

https://doi.org/10.1101/327288
http://creativecommons.org/licenses/by/4.0/


corresponding to visual targets located in the same head-centred location but different 1147

retinal locations, thereby driving the development of postsynaptic neurons that respond 1148

to visual targets in specific head-centred locations. 1149

It was originally demonstrated by [1], and shown again above, that the 1150

self-organising model described in section Materials and methods using the standard 1151

trace learning rule (6) with peaked eye-position gain modulated input neurons is able to 1152

develop head-centred output representations during training. However, a key new result 1153

in this paper is that the self-organising model with purely sigmoidal eye-position gain 1154

modulated input neurons develops eye-centred output neurons when using the standard 1155

trace learning rule. The cause of this contrasting behaviour between peaked and 1156

sigmoidal gain fields is the correlations between the activity of the input neurons across 1157

all of the input patterns during training. It is well understood that in a standard 1158

competitive neural network, individual output neurons learn to respond to subsets of 1159

input neurons that tend to be most frequently co-active [18]. In the self-organising 1160

model with peaked gain modulation, the subsets of input neurons that are frequently 1161

co-active correspond to circular clusters that are highly localised in both the retinotopic 1162

preference and eye-position preference dimensions. With a standard hebbian learning 1163

rule with no significant memory trace of recent neuronal activity, individual output 1164

neurons will learn to respond to these localised circular clusters of input neurons. If a 1165

trace learning rule is implemented, it is a relatively easy task for individual output 1166

neurons to simply bind together these clusters of input neurons along a diagonal line in 1167

the input space corresponding to a particular head-centred location. Output neurons 1168

will then respond to particular head-centred locations regardless of eye-position or the 1169

retinal location of a visual target. However, the situation is quite different with 1170

sigmoidal gain modulated input neurons. Due to monotonic saturation of the input 1171

neuron response function in the eye-position dimension of the input space, the subsets 1172

of input neurons that are most frequently co-active are localised in the retinotopic 1173

preference dimension but elongated in the eye-position preference dimension. With a 1174

standard hebbian learning rule, individual output neurons will learn to respond to these 1175

elongated clusters of input neurons, which will give rise to eye-centred output responses. 1176

However, if a trace learning rule is implemented, the output neurons still learn to 1177

represent eye-centred rather than head-centred locations. This is because developing 1178

head-centred output responses would require the trace learning rule to disrupt and 1179

break apart output representations corresponding to the elongated clusters of input 1180

neurons with correlated activities. However, in practice the trace learning effect is not 1181

strong enough to achieve this. Consequently, even with trace learning, the elongated 1182

clusters of input neurons with correlated activities continue to drive the development of 1183

eye-centred output neurons. This finding holds for any input neuron response function 1184

with a monotonic gain in the eye-position dimension, be it purely linear [14] or linear 1185

rectified [20]. 1186

We next showed that a manually prewired neural network model with sigmoidal 1187

eye-position gain modulated input neurons could perform the coordinate transformation. 1188

This is achieved by elevating the weight of synaptic connections from all input neurons 1189

which responded strongly, for some eye-position, to a visual target in the head-centred 1190

location to which the postsynaptic output neuron is assigned. This result established 1191

the feasability of the coordinate transformation within the given model architecture 1192

with sigmoidal gain fields acting on the input population. However, when synaptic 1193

plasticity based on the standard trace learning rule (6) is suddenly introduced into the 1194

manually prewired model, it is found that just a single epoch of visually-guided training 1195

is sufficient to dramatically reduce the prevalence of head-centred neurons in the output 1196

population, and by the 5th epoch all neurons are eye-centred for all subsequent epochs 1197

of training. This showed that sigmoidal gain modulation would, in so far as the 1198
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synapses are plastic, even undermine the functioning of a cortical circuit which is 1199

somehow prewired, perhaps by genetic hardwiring or by an initial period of supervised 1200

learning as suggested by [20], to produce the head-centred visual representations. Given 1201

the ubiquitous presence of associative synaptic plasticity in cortex, it is therefore a 1202

substantial challenge to explain how head-centred visual neurons might develop and 1203

persist in the brain given the relatively large proportion of precursor eye-centred visual 1204

neurons that have monotonic eye-position gain fields. 1205

It has been shown that neurons in many parietal areas have a mixture of different 1206

forms of gain modulation, not all of which are planar. In fact, 41% and 56% are not 1207

planar in areas LIP and 7a, respectively [8]. Consequently, we explored how various 1208

degrees of prevalence of sigmoidal gain modulation would influence the self-organisation 1209

of the model with the standard trace learning rule (6). It is found that so long as there 1210

is no more than approximately 20% sigmoidal gain modulation in the input population 1211

then the fraction of head-centred neurons in the trained model did not drop below 1212

∼15%. However, the decrease in performance, and eventual collapse of the model, is 1213

very severe when the presence of sigmoidal gain modulation in the input population is 1214

increased. In particular, with a more biologically realistic 50:50 mix in peaked and 1215

sigmoidal gain modulated input neurons, the model failed to develop a significant 1216

population of head-centred output neurons with the standard trace learning rule (6). 1217

In order to find a biologically plausible way in which the self-organising model could 1218

develop relatively large numbers of head-centred visual output neurons when at least 1219

half or even all of the input neurons had sigmoidal gain fields, we next explored the 1220

performance of the model architecture using a variety of more sophisticated learning 1221

rules that may incorporate temporally delayed memory traces, as well as a mixture of 1222

both trace learning and anti-Hebbian learning terms. These new, modified learning 1223

rules were previously developed by [25] in the context of modelling transform invariant 1224

visual object recognition. The new learning rules continue to be biologically plausible 1225

because they rely on locally available biological quantities, namely the activities of the 1226

pre- and post-synaptic neurons, to guide the modification of synaptic weights. The 1227

different modified learning rules were found to successfully drive the self-organisation of 1228

head-centred output responses when all of the input neurons had sigmoidal eye-position 1229

modulation. The modified learning rules were able to substantially improve the 1230

temporal binding of the standard trace learning rule by incorporating a trace of 1231

previous neuronal activity with an explicit time delay ∆T . This was evidenced by 1232

better performance being achieved when the learning rule incorporated a trace value of 1233

the postsynaptic neuron from an earlier time ∆T in the past instead of the trace value 1234

at the current time. Furthermore, the new learning rules were able to overcome the high 1235

correlations between overlapping input patterns with sigmoidal gain fields through the 1236

additional incorporation of anti-Hebbian learning, which had been previously found to 1237

offer a significant performance enhancement by [25]. However, learning rule (20) 1238

incorporated a delayed postsynaptic trace without an anti-Hebbian term 1239

(section Modified Learning Rule: Delayed Postsynaptic Trace Learning Rule). 1240

Simulation results with this learning rule showed that head-centred output responses 1241

developed in the trained model. Thus, anti-Hebbian learning is not necessarily a 1242

requirement for the development of head-centred output responses. The performance of 1243

learning rule (20) was then investigated under a more biologically realistic scenario in 1244

which the input population consisted of a 50:50 mixture of neurons with either peaked 1245

or sigmoidal eye-position gain modulation. These results demonstrated that the model 1246

could produce large numbers of head-centred output neurons with a learning rule that 1247

relied purely on a postsynaptic delayed-trace term without any anti-hebbian term if the 1248

input population contained a 50:50 mix of neurons modulated by either peaked or 1249

sigmoidal gain fields. These last findings should be contrasted with the performance of 1250
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the model with the standard trace learning rule (6), which failed to develop a significant 1251

number of head-centred output neurons with such a mixed input population. 1252

Conclusion 1253

In conclusion, the work presented here has shown that the existence of a synaptic 1254

weight structure that can perform a coordinate transformation does not guarantee that 1255

it will emerge through a process of self-organisation using any one particular form of 1256

trace learning rule. In particular, the standard trace learning rule originally proposed 1257

by [1] failed to produce head-centred output neurons when the input neurons were 1258

modulated by a sigmoidal function of eye-position, and even failed with a biologically 1259

realistic 50:50 mix of input neurons with peaked and sigmoidal gain fields. In order to 1260

remedy this problem, we had to investigate the use of more sophisticated, yet still 1261

biologically plausible, learning rules that incorporated temporally delayed memory 1262

traces, as well as a mixture of both trace learning and anti-hebbian learning terms. 1263

These new, modified learning rules were found to produce head-centred output neurons 1264

when the input population had sigmoidal gain fields. Moreover, it was also found that 1265

the delayed postsynaptic trace in learning rule (20) was sufficient to drive the 1266

development of head-centred output neurons in the absence of anti-hebbian learning, 1267

especially if the input population had a 50:50 mix of peaked and monotonic gain fields. 1268

This work thus makes an important contribution to understanding how head-centred 1269

visual neurons may develop in the brain through an unsupervised process of 1270

visually-guided learning given visual precursor neurons with sigmoidal (monotonic) 1271

eye-position modulation. Furthermore, although we have studied one particular kind of 1272

coordinate transformation, i.e. from eye-centred to head-centred visual representations, 1273

these findings may also apply to a range of other coordinate transformations with 1274

sensorimotor integration of monotonically encoded motor variables [4, 5]. 1275

Supporting information 1276

Appendix A. Eye-centredness Reference Frame Analysis. During testing, 1277

the visual target was located in head-centred locations 1278

tj = t1 + ∆h(j − 1) (21)

for j = 1, . . . , T , and while in each location it was observed from eye-positions 1279

ei = e1 + ∆e(i− 1) (22)

for i = 1, . . . , E. The eye-position shift ∆e was set to a multiple of the head-centred 1280

target location shift ∆h to cause resampling of the neuron’s response at the same 1281

retinal location for different eye-positions, thereby providing a resampling of the 1282

response in both head-centred and eye-centred space across multiple eye-positions. 1283

The set of head-centred locations {t1, . . . , tT } corresponded to retinal locations
Ri = {t1 − ei, . . . , tT − ei} when the model was fixating eye-position ei, and from this it
is clear that among retinal locations common to all eye-positions, t1 − e1 was the first
and tT − eE was the last, that is

min
⋂
i

Ri = t1 − e1

max
⋂
i

Ri = tT − eE (23)
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Therefore fi and li, denoting the first and last position included from the ith response 1284

vector respectively, had to correspond to these two retinal locations respectively 1285

tfi − ei = t1 − e1 (24)

1286

tli − ei = tT − eE (25)

We can resolve each equation to find an explicit formula for fi and li in terms of i as 1287

follows. 1288

By substituting Eq 21 and Eq 22 into Eq 24 we obtain 1289

(t1 + ∆h(fi − 1))− (e1 + ∆e(i− 1)) = t1 − e1

Rearranging this gives 1290

∆h(fi − 1)−∆e(i− 1) = 0
1291

fi =
∆e

∆h
(i− 1) + 1 (26)

By substituting Eq 21 and Eq 22 into Eq 25 we obtain 1292

(t1 + ∆h(li − 1))− (e1 + ∆e(i− 1)) = (t1 + ∆h(T − 1))− (e1 + ∆e(E − 1))

Rearranging this gives 1293

∆h(li − 1)− (e1 + ∆e(i− 1)) = ∆h(T − 1)− (e1 + ∆e(E − 1))
1294

∆h(li − 1)−∆e(i− 1) = ∆h(T − 1)−∆e(E − 1)
1295

∆h(li − 1− (T − 1)) = −∆e(E − 1 + (i− 1))
1296

∆h(li − T ) = −∆e(E + i)
1297

li = T − ∆e

∆h
(E + i) (27)

We can also deduce the length V of the portion of each response vector that is used 1298

in the eye-centred correlation analysis as follows. By definition, for each response vector 1299

V = li − fi + 1

Substituting in Eq 26 and Eq 27 gives 1300

V = T − ∆e

∆h
(E + i)−

(
∆e

∆h
(i− 1) + 1

)
+ 1

Rearranging gives

V = T − ∆e

∆h
(E + i)− ∆e

∆h
(i− 1)

= T − ∆e

∆h
(E + i− (i− 1))

= T − ∆e

∆h
(E + 1) (28)
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