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Abstract 

A large volume of biological data is being generated for studying mechanisms of 

various biological processes. These precious data enable large-scale computational 

analyses to gain biological insights. However, it remains a challenge to mine the data 

efficiently for knowledge discovery. The heterogeneity of these data makes it difficult to 

consistently integrate them, slowing down the process of biological discovery. We 

introduce a data processing paradigm to identify key factors in biological processes via 

systematic collection of gene expression datasets, primary analysis of data, and 

evaluation of consistent signals. To demonstrate its effectiveness, our paradigm was 

applied to epidermal development and identified many genes that play a potential role in 

this process. Besides the known epidermal development genes, a substantial proportion 

of the identified genes are still not supported by gain- or loss-of-function studies, 

yielding many novel genes for future studies. Among them, we selected a top gene for 

loss-of-function experimental validation and confirmed its function in epidermal 

differentiation, proving the ability of this paradigm to identify new factors in biological 

processes. In addition, this paradigm revealed many key genes in cold-induced 

thermogenesis using data from cold-challenged tissues, demonstrating its 

generalizability. This paradigm can lead to fruitful results for studying molecular 

mechanisms in an era of explosive accumulation of publicly available biological data. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 23, 2018. ; https://doi.org/10.1101/327478doi: bioRxiv preprint 

https://doi.org/10.1101/327478
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Introduction 

The huge amount of data generated from previous biological studies provides a 

precious resource for mining new biological knowledge. A significant portion of the data 

is freely available in public repositories such as ArrayExpress 1 and Gene Expression 

Omnibus (GEO) 2. For example, around one million series studies are publicly available 

in GEO. Due to the unstructured nature of the metadata associated with public data, 

manual curation is required 3-7, a step that is essential for collecting large-scale gene 

expression data. 

Gene expression data facilitate the application of the network reconstruction 

approach for identifying key factors in biological processes. For example, Bhaduri et al. 

8 applied the gene network reconstruction approach to explore epidermal differentiation 

regulators. Using network analysis, the MPZL3 gene was identified as a highly 

connected hub required for epidermal differentiation. In addition, the MPZL3 gene 

indirectly regulates epidermis genes, including ZNF750, TP63, KLF4, and RCOR1, 

through the FDXR gene and reactive oxygen species. 

Complementing data analyses with more relevant data improves the identification 

of key factors in biological processes. Even though massive expression data can 

provide essential insights in revealing genetic interactions, there are confounding 

factors or “noise” introduced by technical variations, such as batch effects 9. To obviate 

the “noise” and generate a consistent result, one solution is integrative analysis by 

comparing large-scale datasets 10. In this report, we introduce a paradigm to integrate 

data collection and data analysis for mining key factors in specific biological processes 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 23, 2018. ; https://doi.org/10.1101/327478doi: bioRxiv preprint 

https://doi.org/10.1101/327478
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

(Figure 1). To demonstrate the power of our data processing paradigm, we evaluate 

key factors of two applications in skin biology and energy homeostasis. 

The epidermis of skin mediates various functions that protect against the 

environment, such as microbial pathogen challenges, oxidant stress, ultraviolet light, 

chemicals, and mechanical insults 11. Therefore, it is critical to understand mechanisms 

of epidermal development to develop new treatment for human skin diseases 12. Our 

paradigm predicts key factors in epidermal development by collecting related datasets 

and integrating the information. A fraction of genes are annotated in Gene Ontology 

(GO) or have strong functional validation based on gain-/loss-of-function studies 13. The 

remaining genes are novel; their functionality has not been experimentally validated. We 

picked a top hit, suprabasin (SBSN), and performed loss-of-function experiments for the 

mouse homolog of gene Sbsn using RNA-Seq. The analysis validates that Sbsn 

knockdown in mouse keratinocyte cultures down-regulates cornified envelope genes, 

suggesting an essential role of SBSN in epidermal differentiation. These results 

demonstrate the effectiveness of our paradigm in discovering key factors of epidermal 

development. 

As another application, cold-induced thermogenesis (CIT) can reduce body 

weight by increasing resting energy expenditure in mammals 14. Genes involved in CIT 

can be promising therapeutic targets for treating obesity and diabetes. Thus, it is 

important to understand the underlying mechanism of CIT. Our paradigm detected 

potential CIT-related genes, including known CIT genes and novel ones, showing that 

the paradigm can be generalized easily to other biological processes. It is a promising 

integrative analysis approach to identify key factors in biological processes. 
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Results 

Identification of candidate epidermal development genes 

To identify key gene expression datasets that are likely to be related to epidermal 

development, data curation was performed. A total of 295 epidermis development 

genes (according to GO) were searched on ArrayExpress to query microarray datasets, 

and over 300 datasets were retrieved. Due to the limitation of the search function in 

ArrayExpress, many retrieved datasets did not have any perturbation of these epidermis 

development genes, even though the gene symbols were mentioned in the datasets. To 

overcome this problem, manual curation was performed on each retrieved dataset to 

retain relevant ones, and the manual curation resulted in 24 experimental comparisons 

from 17 datasets with gain or loss function of 14 epidermis development genes (Table 

S1 and Methods). 

To determine the candidate genes potentially involved in epidermal development, 

differential gene expression (DEG) analysis was performed on the 24 experimental 

comparisons of the curated microarray datasets. Differentially expressed genes were 

identified under � �  0.05. The large-scale gene expression changes derived from our 

curated datasets provided a list of candidate genes that may be potentially involved in 

epidermal development (Figure 2). 

To identify genes that are potentially critical in epidermal development, 

consensus gene scores were summarized for each gene from affinities on the 24 

experimental comparisons. Eighty-one genes were identified as key genes related to 

epidermal development with a consensus score � 6 (Table S2). The heatmap (Figure 

S1) shows a majority of these genes with a 	1 affinity score in skin-related cell types. 
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This information suggests that these top genes may play a role in epidermal 

development. To infer the biological processes involved, GO analysis was performed on 

these top genes using Fisher’s exact test (the null hypothesis is log-odds-ratio � 2) with 

all the genes annotated in GO as the background. Several epidermis-related GO terms 

were enriched in these genes (Figure 3). For example, the essential GO terms in the 

epidermis were enriched, such as keratinocyte differentiation, epidermal cell 

differentiation, epidermis development, skin development, cornified envelope, and 

keratinization. In addition, the GO terms involved in skin barrier formation were also 

enriched, such as fatty acid elongase activity, lipoxygenase pathway, and establishment 

of skin barrier. These enriched GO terms suggest that the top identified genes are 

critical in epidermal development. 

Because GO annotation is not complete for gene functions 15, we manually 

curated functional annotations for the top identified genes. Of these genes, besides the 

18 genes annotated in the GO term “epidermis development,” only three genes have 

loss-of-function experiments supporting their role in epidermal development. However, 

the majority of these identified genes have no functional experimental validation on 

epidermal development. Of the three genes with literature evidence, EDN1 (consensus 

score = 7) mediates the homeostasis of melanocyte (located at the bottom of epidermis) 

in vivo upon ultraviolet irradiation 16. The loss function of ELOVL4 (consensus score = 6) 

represses the generation of very-long-chain fatty acids, which is critical for the 

epidermal barrier function, showing the important role of ELOVL4 in epidermis 

development 17. The in vitro loss-of-function experiment of HOPX (consensus score = 6) 
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leads to increased expression of cell differentiation markers in human keratinocytes, 

demonstrating its involvement in epidermal development 18. 

To evaluate how well the roles of the identified genes are understood in 

epidermal development, we queried the PubMed literature database and examined the 

results. For each gene, the keyword used in the PubMed search was constructed as 

“<symbol>[tiab] AND (epidermis OR skin)”. The search results showed that a large 

proportion of identified genes (~42% = 34/81) have no publications related to skin. 

Therefore, these understudied novel genes revealed potential candidate genes for new 

studies on epidermal development. In addition, the majority (� 70%) of identified genes 

were not in the epidermis development GO term (Figure S2). These novel genes 

demonstrate the ability of the paradigm to discover unknown factors in epidermal 

development. 

To demonstrate the effectiveness of the paradigm computationally, top-ranked 

genes using collective comparisons were compared to genes using individual 

comparisons (Text S1). Figure S3 shows the significantly (p-value =  3.6 � 10�� ) 

increased epidermal development genes identified by the paradigm compared to 

differentially expressed genes derived from individual comparisons. 

Validation of Sbsn role in epidermal differentiation by loss-of-function and other 

experiments 

Among the identified genes, a top gene (SBSN) (with a high consensus score of 

9) was selected to validate its role in epidermal development. A phylogenetics-based 

GO analysis revealed enriched GO terms related to epidermal development using co-

evolved genes of SBSN (Text S2, Figure S4). In addition, a time-course microarray 
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dataset showed an increased expression of SBSN upon epidermal differentiation (Text 

S3, Figure S5). These results suggest a potentially critical role of SBSN in epidermal 

development. To determine the cellular component that Sbsn is involved with, we 

performed a study of the differentially expressed genes in differentiating mouse primary 

keratinocyte cultures from mice with Sbsn knockdown. In Sbsn knockdown mouse 

cultures, 326 genes were up-regulated, and 161 genes were down-regulated (Methods, 

Table S3, Figure 4a). To investigate the functional roles of Sbsn, these differentially 

expressed genes were used to search for enriched GO terms 19 using Fisher’s exact 

test (null hypothesized log-odds-ratio � 2 ) with the genes expressed in the Sbsn 

knockdown mouse culture and the controls as background. Specifically, the cornified 

envelope GO term was found enriched in the genes down-regulated upon Sbsn 

knockdown (p-value < 0.05), and eight cornified envelope genes were down-regulated 

(Table S4). These results suggest the role that Sbsn may play in epidermal 

differentiation and cornified envelope formation. 

Atopic dermatitis (AD) is the most common chronic inflammatory skin disease 20. 

IL-4, a type 2 cytokine, contributes to the development of AD. Because broad defects of 

cornified envelope have been identified in AD 21, SBSN may play a critical role in AD via 

defective cornification. To investigate the putative role of SBSN in AD, differentiated 

primary normal human epidermal keratinocytes (NHEKs) were cultured to examine the 

expression levels of SBSN upon IL-4 treatments via RT-PCR. In the presence of IL-4 (at 

doses of 5 ng/ml and 50 ng/ml), SBSN mRNA levels in the differentiated cells were 

significantly decreased as compared to differentiated cells without cytokine treatment 

(Figure 4b). These decreased expression levels of SBSN upon IL-4 treatment suggest 
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a critical precursor role of SBSN in the development of AD via disruption of 

cornification—and further indicate an important role of SBSN in epidermal differentiation. 

To investigate the role of SBSN in AD, expression levels of three SBSN 

transcripts were measured in AD lesional/nonlesional and control skins via RT-PCR 

(Methods). A total of 49 skin biopsies were measured, consisting of 16 AD lesional skin 

biopsies, 16 AD nonlesional skin biopsies, and 17 healthy controls. The expression 

levels of SBSN transcripts were normalized to G6PD. SBSN transcript v1 

(NM_001166034.1) showed a significantly decreased level in AD lesional skin 

compared to AD nonlesional skin and controls (Figure 4c). The decreased expression 

levels of the full-length transcript of SBSN suggests an important role of this SBSN 

isoform in AD. 

Generalization of the paradigm as demonstrated by its application on CIT 

To investigate the generalizability of our integrative analysis approach, we 

applied the paradigm to reveal thermogenesis genes in tissues upon cold exposure. We 

collected ten gene expression datasets from GEO (Table S5). These gene expression 

data were collected from tissues of mice treated with cold temperature to induce 

thermogenesis. Both microarray and RNA-Seq data were collected. Because 

thermogenesis is always activated upon cold exposure, the direction of thermogenesis 

is thus increased in all the 24 comparisons within the ten collected datasets. Using DEG 

analysis, the paradigm calculated the consensus scores for measured genes from 24 

comparisons and identified 153 genes with a consensus score � 6 (Table S6). These 

153 identified genes were then used to perform GO analysis. Enriched GO terms are 

related to energy homeostasis (Figure S6). Literature curation confirmed the functional 
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evidence in CIT of some identified genes. For example, elongation of very-long-chain 

fatty acids (Elovl3, consensus score = 13) in ablated mice showed a proliferated 

metabolic rate in a cold environment, indicating a higher capacity for brown fat-mediated 

nonshivering thermogenesis. Thus, Elovl3 is a key regulator for CIT in adipose tissue 

upon cold exposure 22. As another example, carnitine palmitoyltransferase 2 (Cpt2, 

consensus score = 11) depletion mediates the fatty acid oxidation in adipose tissue, 

which is required for CITs, suggesting the critical role of Cpt2 in CIT 15,23. This second 

application of our paradigm in CIT suggests that the paradigm can be generalized to 

other biological processes. Our paradigm is a simple but important integrative data 

processing approach for gene expression data. 
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Discussion 

We propose a gene expression data processing paradigm to identify key factors 

in biological processes. The collection of gene expression data enhances the 

identification of key factors in biological processes. The application of the paradigm for 

epidermal development revealed known and novel epidermal development genes. To 

validate the novel predictions, an understudied gene, SBSN, was specifically 

investigated for its potential role in epidermal differentiation. SBSN has been identified 

in the suprabasal layers of the epithelia in the epidermis 24. Although SBSN was 

previously shown to be induced upon differentiation of epidermal keratinocytes, no loss-

of-function study has been performed to demonstrate the functional role of SBSN in 

epidermis or skin. Our phylogenetics-based GO analysis suggests relevant biological 

processes in epidermal development for SBSN co-evolved genes (Figure S4). RNA-

Seq analysis in Sbsn knockdown mouse keratinocyte cultures revealed down-regulated 

cornified envelope genes, suggesting a role for Sbsn in epidermal differentiation. SBSN 

may also be critical in AD, an inflammatory skin disease, because AD has a broadly 

defective cornified envelope 21,25. Due to the full-length isoform of SBSN potentially 

playing a more critical role in the development of AD (Text S4, Figure 4c and S7) and 

IL-4 being involved in AD 20, we examined the effects of IL-4 on human differentiating 

keratinocyte cultures and found decreased expression levels of SBSN in IL-4 treated 

compared to non-treated cultures (Figure 4b). These results indicate that SBSN may be 

a target for aberrant cytokine production in AD. 

The paradigm identified key genes by collecting multiple datasets and integrating 

information from the collected datasets, especially from datasets of the cell or tissue 
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types most relevant to the target biological process. However, due to the limited 

availability of such datasets in certain areas, relevant datasets from other cell or tissue 

types may also be used, for they generally will not worsen the results. This is consistent 

with the idea of ensemble learning, in which merging many weak and independent 

classifiers will result in a strong classifier 26. The heatmap of identified genes 

(consensus score � 6) showed seven experimental comparisons from epidermal cells 

clustered together (Figure S1). To systematically cluster the 24 experimental 

comparisons, a hierarchical clustering analysis using an affinity distance metric (Text 

S5) grouped the comparisons into eleven distinct clusters (at a cutoff distance � 0.05) 

(Figure S8). As a result, the seven experimental comparisons from epidermal cells 

were also consistently clustered together in the hierarchical clustering analysis. These 

results indicate that the experimental comparisons from epidermal cells contributed the 

most. In the future, with more datasets from epidermal tissues/cells generated, it may 

not be necessary to include datasets from nonepidermal tissues/cells, as the marginal 

contribution from them is likely to be negligible. 

The paradigm starts from gene expression datasets with the perturbation of a 

biological process. This data collection process is critical. As for the application in 

epidermal development, we searched ArrayExpress using the text of epidermal 

development for candidate gene expression datasets. However, none of the five 

retrieved datasets showed changes in epidermal development, leaving us with no data 

from reliance on the bare keyword search functionality offered by ArrayExpress (Figure 

S9). Because known genes annotated in the epidermis development GO term provide 

candidate factors responsible for the regulation of epidermal development, datasets with 
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these perturbed known genes can be a starting point for our paradigm. However, it 

should be understood that the paradigm is not limited to a single GO term. Due to 

incomplete annotation in GO 5, genes in other GO terms, such as keratinocyte 

differentiation (GO:0030216) and epidermal cell differentiation (GO:0009913), can also 

play roles in epidermis development. Thus, starting from these additional genes along 

with the genes in the epidermis development GO term, the performance of the paradigm 

is expected to improve because more information may be borrowed from other relevant 

datasets. To apply our paradigm, it is critical to examine the collection of gene 

expression datasets. In addition, our paradigm can include both microarray and RNA-

Seq data, as shown in the CIT application, enabling the inclusion of more data—leading 

to better results than with only one data type. 

To obtain a manageable number of identified genes, our computation analysis 

focused on genes with a consensus score � 6. A simulation was performed to evaluate 

the empirical distribution of consensus scores in epidermal development and CIT, and a 

cutoff of � 6 corresponds to an empirical p-value =  3.72 � 10��  and 1.09 � 10��   for 

epidermal development and CIT, respectively (Text S6 and Figure S10). But other 

thresholds may also be used. Higher thresholds lead to fewer but more robust identified 

genes, while lower thresholds lead to more but less robust identified genes. An 

investigator should pick a cutoff appropriate for the intent of the investigation. For 

example, if the purpose is to identify more novel epidermis development genes for 

further experimental validation, genes with consensus scores lower than 6 can also be 

considered. In addition, the cutoff should be also related to the total number of 
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comparisons used in the analysis. In general, with more comparisons, the cutoff for the 

consensus score should be greater. 

It is worth mentioning that genes with negative consensus scores, in general, do 

not contribute to regulation in biological processes. For the application of epidermal 

development and CIT, a consensus score cutoff � �5 is used to extract negative genes, 

and no enriched GO terms are related to epidermal development (44 negative genes) 

and CIT (95 negative genes) (data not shown). These results are consistent with the 

intent of the scoring scheme defined in Figure 1. The number of genes with positive 

and negative consensus scores would be expected to be roughly the same due to 

normalization, but the positive genes, in fact, have longer tails than the negative genes 

(Figure S11). Quantile testing shows significantly larger positive scores compared to 

the absolute negative score at 0.95-quantile for both applications (p-value < 2.2 � 10���) 

27. This suggests that genes positively correlated with epidermal development and CIT 

are more likely to be consistent across different experiments, indicating that these 

positive genes are more likely to be relevant to the respective processes. In summary, 

the paradigm is valuable in identifying key factors for biological processes using gene 

expression data. 
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Methods 

Ethics statement 

All skin samples were collected according to procedures (NKEBN/486/2011) 

previously approved by the local ethics committee (Independent Bioethics Commission 

for Research at Medical University of Gdansk). Written consent was obtained from all 

patients prior to enrollment in the study. 

Curating gene expression data related to epidermal development 

We collected gene expression datasets related to epidermal development by 

manual curation according to the following procedure. First, we searched ArrayExpress 

using the keyword (“epidermis+development” OR "epidermal+development”) AND 

organism: “homo sapiens”, retrieving only five studies, none of which could be reused to 

study the epidermal development process because of no change in epidermal 

development in the datasets (Figure S9). Therefore, we started from known epidermal 

development genes to curate datasets with the process perturbed. Specifically, genes 

from the GO 19 epidermis development (accession GO:0008544) term were extracted 

first for humans. Then, the official symbol of each gene was queried on ArrayExpress 

for human microarray datasets. Each retrieved dataset was manually examined to retain 

only the datasets with at least one epidermis development gene being perturbed (i.e., 

knocked out, knocked down, or overexpressed). To ensure proper downstream 

statistical analysis, any dataset with no replicates was discarded. 

Data processing paradigm of the perturbed expression data 

To identify the genes related to a biological process, our data processing 

paradigm was performed on the gene expression data to capture the affinities between 
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specific genes and the biological process. An affinity score of 	1 or �1 means that the 

gene is positively or negatively related to the biological process. Specifically, if the 

expression of a gene is increased or decreased in a biological process that is increased, 

the gene has an affinity score of 	1 or �1 for the biological process. Alternatively, if the 

biological process is decreased, these genes have an affinity score of �1 or 	1. The 

affinity score was 0 or NA for the genes not differentially expressed or unmeasured. The 

detailed workflow of the paradigm is shown in Figure 1. For a biological process, 

systematic data curation is performed to collect gene expression datasets with the 

process perturbed (increased or decreased). Using DEG analysis (Text S7 and S8) 28-30, 

affinity scores are calculated for each gene in each comparison in each dataset. Finally, 

a consensus score is calculated by summing these affinity scores among the 

comparisons for each gene. High consensus scores suggest that the corresponding 

genes are potentially critical to the biological process. Thus, our paradigm is a general 

framework that can be used to identify the key factors in a biological process. 

NHEK cell culture and treatment 

Primary NHEKs of neonatal foreskin were purchased from Thermo Fisher 

Scientific and were maintained in EpiLife Medium containing 0.06 mM CaCl2 and S7 

supplemental reagent under standard tissue culture conditions. The cells were seeded 

in 24 well dishes at 2 × 105/well to form a confluent monolayer. In the following day, the 

cells were subjected to differentiation by increasing CaCl2 to 1.3 mM in the culture 

media with or without the human recombinant IL-4 at designated concentrations. The 

cells were harvested for total RNA extraction before differentiation and were 

differentiated for 5 days. Total RNA was extracted using RNeasy mini kit according to 
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manufacturer guidelines (QIAGEN, MD). RNA was then reverse transcribed into cDNA 

using superScript® III reverse transcriptase from Invitrogen (Portland, OR) and was 

analyzed by real-time RT-PCR using an ABI Prism 7000 sequence detector (Applied 

Biosystems, Foster City, CA). Primers and probes for human SBSN (Hs01078781_m1) 

and 18s (Hs99999901_S1) were purchased from Applied Biosystems (Foster City, CA). 

Quantities of all target genes in test samples were normalized to the corresponding 18S 

levels. 

Sbsn siRNA in mouse keratinocyte culture and RNA sequencing 

Primary murine keratinocytes were isolated from BALB/c neonatal mice as 

previously described 31. Primary murine keratinocytes were cultured in a supplemented 

minimal essential medium (Gibco, Thermo Fisher Scientific Inc., Waltham, MA, USA) 

with 8% fetal bovine serum (FBS, Atlanta Biologicals, Flowery Branch, GA, USA) and 1% 

antibiotic (Penicillin Streptomycin Amphotericin B, Sigma), with 0.05 mM Ca2+ 

concentration. A total of 1 � 10�  cells were seeded in each well of six well plates. 

Twenty-four hours after seeding, the siRNA mix (Opti-Mem serum free media (GIBCO), 

75 pmol of siRNA (Dharmacon), and HiPerfect transfection reagent (Qiagen)) was 

added to cells. For SBSN, the siRNA used were Dharmacon, SMARTpool; siGENOME 

Sbsn siRNA M-054578-01-0005 and Control (mouse) SMARTpool; and siGENOME 

Non-Targeting siRNA Pool #1. Each condition was done in triplicates. To induce 

keratinocyte differentiation, a final concentration of 0.12 mM Ca2+ was used. RNA was 

harvested 48 hours after siRNA transfection. Total RNA from cells was extracted using 

RNeasy kit (Qiagen) according to manufacturer instructions. A total of 100 ng was used 
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to prepare the libraries utilizing a Neoprep Library kit (Illumina). RNA sequencing was 

performed in the NIAMS Genome Core Facility at the National Institutes of Health. 

DEG analysis using Sbsn knockdown RNA-Seq data in mouse differentiating 

primary keratinocyte cultures 

To identify the differentially expressed genes in mouse differentiating primary 

keratinocyte cultures in which Sbsn had been knocked down with siRNA, the following 

analysis was performed. The raw RNA-Seq reads were aligned to the mouse (mm10) 

genome using STAR (version 2.5.1b) 32 with default settings. The uniquely aligned 

reads were retained to calculate the read counts for each gene against the UCSC 

KnownGene annotation (mm10), and a count table was constructed by counting the 

number of reads aligned uniquely to each of the genes for each sample. DEG analysis 

was performed by DESeq2 33. To adjust the batch effect, a generalized linear model 

with a batch factor was used to model the read counts for all samples, and the Wald test 

was used to test the significance of differences in gene expression between Sbsn 

knockdown samples and controls. FDR adjusted q-values were then calculated from the 

p-values in the Wald test using the Benjamini-Hochberg procedure 34. The log2-fold 

changes between Sbsn knockdown samples and controls were also calculated for each 

gene. The differentially expressed genes were identified under |log2-fold-change| � 0.5 

and � � 0.05. 

RT-PCR analysis of AD skin 

For the current study, arm skin samples (2 mm punch biopsies of 3 mm depth) 

were taken from AD patients (from lesional and nonlesional AD skin), and skin samples 

(controls) were obtained from healthy subjects. The nonlesional skin biopsy was 
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performed at a 10 cm distance (at least) from AD skin lesions. Immediately after biopsy, 

the skin samples were placed in RNA-later solution (Qiagen) and were stored at –20 0C. 

Total RNA was isolated using standard methods. The mRNA levels were analyzed by 

real-time RT-PCR with TaqMan primer-probe sets using the Path-ID Multiplex One-Step 

RT-PCR kit (Path-ID™ Multiplex One-Step RT-PCR Kit (Applied Biosystems). The 

reference transcript G6PD was used as an internal standard and was amplified together 

with each target gene transcript in the same well using primers and probes, as shown in 

Table S7. The level of each analyzed transcript was normalized to that of the 

appropriate reference transcript. 

Data availability 

The datasets used in this study are available in the National Center for 

Biotechnology Information’s (NCBI’s) GEO 2 with accession GSE100100. 
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Figures legends 

Fig. 1. Data processing paradigm flowchart. Data curation was performed to identify 

the gene expression datasets with the given biological process perturbed (e.g., the 

process is increased in CMP 1 with �1 and is decreased in CMP 2 or CMP m with 

direction �1). DEG analysis was performed on the curated datasets, and �1/�1/0 

represents the up-regulated, down-regulated, or unchanged genes, respectively. To 

prioritize important genes in the biological process for each gene in a curation dataset, 

an affinity score of �1/�1/0 was calculated first by comparing the gene expression 

change and the regulation of the biological process, where �1 indicates that the gene 

(e.g., Gene 1 in CMP 1 and CMP 2) is positively related to the biological process, �1 

indicates that the gene (e.g., Gene 2 in CMP m and Gene n in CMP 1) is negatively 

related to the biological process, and 0 indicates no relation of the gene to the biological 

process. No measurement (notated as NA, e.g., Gene 3 in CMP 1) indicates an 

unknown affinity of the gene in the dataset. By summing the affinity scores, a 

consensus score was calculated for genes in the perturbed datasets. Genes with higher 

consensus scores were identified as more related to the biological process. 

Fig. 2. DEG results of the curated microarray datasets. To identify the differentially 

expressed genes of the 24 experimental comparisons in curated microarray datasets, 

DEG analysis was performed as mentioned in supplemental materials. DEGs were 

identified under � � 0.05. (a) The bar plot depicts the number of DEGs identified in each 

of the 24 experimental comparisons. (b) The figure depicts the number of genes 

differentially expressed in n comparisons out of all the 24 comparisons. A large number 
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of DEGs were identified in the curated datasets. A small group of genes was 

differentially expressed in multiple datasets. 

Fig. 3. Biological process and literature study of genes with consensus score 
 �. 

To identify the biological process that the 81 top genes (consensus score 
 6) were 

involved in, a GO enrichment analysis was performed. The enriched GO pathways were 

plotted with a log10 p-value, along with their log10 odds ratios in the enrichment 

analysis. 

Fig. 4. Validations of SBSN in epidermal differentiation. (a) Heatmap of the 

expression levels between Sbsn knockdown mice and controls. Expression levels are 

shown for genes differentially expressed (under |log2-fold-change| > 0.5 and q-value < 

0.05) upon Sbsn knockdown. Red and white colors indicate high and low expression 

levels (arc-sine hyperbolic transformed normalized counts by DESeq and scaled by 

standard deviations) for 326 up-regulated genes, respectively. Blue and white colors 

indicate high and low expression levels for 161 down-regulated genes, respectively. (b) 

Expression values of SBSN normalized by 18S rRNA in differentiated keratinocytes 

upon IL-4 treatment. To evaluate the gene expression changes of SBSN during 

keratinocyte differentiation upon IL-4 treatment, an RT-PCR experiment was performed 

with nine differentiated cells with and without IL-4 treatments (three replicates per 

condition). The expression values of SBSN were normalized by the expression levels of 

18S rRNA. The boxplot shows a significant decrease of SBSN expression at two IL 

doses (5 ng/ml and 50 ng/ml) (*: p-value  0.05). (c) Expression values of full-length 

SBSN transcript (v1) in AD skins. To evaluate the expression changes of SBSN in AD 

skins, expression values were measured in AD skins for the SBSN transcripts via RT-
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PCR. The expression levels were normalized by the expression levels of G6PD. The 

full-length SBSN transcript showed significantly decreased expression levels in AD 

lesional skins compared to AD nonlesional and control skins (***: p-value  0.001, **: p-

value  0.01, *: p-value  0.05). 
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Data curation in ArrayExpress/GEO for experimental 
comparisons (CMPs) in datasets with the biological 

process perturbed, i.e., increased (+1) or decreased (-1).

CMP 1:
increased: +1

CMP 2:
decreased: -1

CMP m:
decreased: -1

symbol CMP 1 CMP 2 … CMP m Consensus 
Score

Gene 1 +1=+1*+1 +1=-1*-1 … 0=-1*0 2=+1+1+0

Gene 2 +1=+1*+1 +1=-1*-1 … -1=-1*+1 1=+1+1-1

Gene 3 NA=+1*NA 0=-1*0 … 0=-1*0 0=0+0

… … … … … …

Gene n -1=+1*-1 -1=-1*+1 … -1=-1*+1 -3=-1-1-1

…

DEG analysis

Biological process related genes with high consensus scores
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