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Abstract
Quality control plays a major role in the analysis of ancient DNA (aDNA). One
key step in this quality control is assessment of DNA damage: aDNA contains
unique signatures of DNA damage that distinguish it from modern DNA, and so
analyses of damage patterns can help confirm that DNA sequences obtained are
from endogenous aDNA rather than from modern contamination. Predominant
signatures of DNA damage include a high frequency of cytosine to thymine sub-
stitutions (C-to-T) at the ends of fragments, and elevated rates of purines (A
& G) before the 5’ strand-breaks. Existing QC procedures help assess damage
by simply plotting for each sample, the C-to-T mismatch rate along the read
and the composition of bases before the 5’ strand-breaks. Here we present a
more flexible and comprehensive model-based approach to infer and visualize
damage patterns in aDNA, implemented in an R package aRchaic. This ap-
proach is based on a "grade of membership" model (also known as "admixture"
or "topic" model) in which each sample has an estimated grade of member-
ship in each of K damage profiles that are estimated from the data. We illus-
trate aRchaic on data from several aDNA studies and modern individuals from
1000 Genomes Project Consortium (2012). Here, aRchaic clearly distinguishes
modern from ancient samples irrespective of DNA extraction, lab and sequenc-
ing protocols. Additionally, through an in-silico contamination experiment, we
show that the aRchaic grades of membership reflect relative levels of exogenous
modern contamination. Together, the outputs of aRchaic provide a concise
visual summary of DNA damage patterns, as well as other processes generating
mismatches in the data. Availability: aRchaic is available for download from
https://www.github.com/kkdey/aRchaic.
Contact: halasadi@uchicago.edu, kkdey@uchicago.edu
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1 Introduction
Ancient DNA (aDNA) research has seen rapid growth with the recent advance-
ments in recovery of short DNA fragments, increased throughput, and lower
per-base cost in sequencing (Shapiro and Hofreiter, 2014). Both the number
and size of aDNA datasets have grown rapidly over the last five years, and sev-
eral recent studies sequenced hundreds of ancient individuals (Mathieson et al.,
2015; Allentoft et al., 2015; Mathieson et al., 2017; Olalde et al., 2017; Lazaridis
et al., 2016; Lipson et al., 2017).

This rapid recent growth in aDNA research has provided novel insights into
human history. However, working with aDNA remains challenging. For exam-
ple, ancient samples often contain very little endogenous DNA because in many
environments DNA degrades rapidly post-mortem (Sawyer et al., 2012). Fur-
thermore, ancient samples are often contaminated by microbes and exogenous
human DNA (Malmström et al., 2007). Both these factors mean that many
sequence reads generated by an aDNA study may not actually come from the
ancient sample.

Because of these challenges, aDNA researchers pay careful attention to qual-
ity control (QC), including checking sequencing reads from each sample for sig-
natures of endogenous aDNA. These signatures include: short fragment length,
an enrichment of purines before strand breaks, and a high frequency of cytosine
to thymine substitutions (C-to-T) at the ends of fragments (Sawyer et al., 2012;
Ginolhac et al., 2011; Jónsson et al., 2013; Briggs et al., 2007; Skoglund et al.,
2014b). One common QC procedure is to plot, for each sample, the C-to-T
mismatch rate as a function of position from the end of the read, and to look
for an elevated rate near the ends of reads as an indication of the presence of
endogenous aDNA. Another common procedure is to look for elevated rates of
purines (A & G) before the 5’ strand-breaks. Both these procedures are imple-
mented in the software mapdamage (Ginolhac et al., 2011; Jónsson et al., 2013),
for example.

These commonly-used QC checks, though simple and useful, have several
limitations. For example, they produce a plot for each sample, which can be
inconvenient to work with and difficult to compare across many samples. This
issue becomes increasingly important with the growing size of aDNA datasets.
These plots can also be difficult to interpret, in part because they do not con-
trast observed patterns with expected patterns in modern samples. Finally,
these approaches can detect only pre-defined damage signatures, and may fail
to capture other key features or artifacts in the data.

Here we introduce methods to help address these problems. These methods
start with a Binary Alignment Map (BAM) file, obtained by aligning each read
to a reference genome. The BAM file includes information on the mismatches
that occur in each read (vs the reference). We characterize each mismatch by
several relevant features, including its type (e.g. C-to-G, etc), flanking bases,
and distance from the end of the read. We then use these features to cluster the
mismatches into groups, which we callmismatch profiles. Intuitively, a mismatch
profile associated with post-mortem damage is expected to show high levels of
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C-to-T mismatches at the ends of reads. On the other hand, a mismatch profile
that is typical of modern DNA polymorphism will show a different pattern, such
as a transition to transversion ratio of 2:1 (Goldman and Yang, 1994). Finally we
estimate the relative frequency of each mismatch profile in each sample, which
we refer to as the “Grade of membership” (Erosheva, 2006) of that sample in that
mismatch profile. These grades of membership should reflect which processes
generated mismatches in each sample. For example ancient samples should have
a high grade of membership in mismatch profiles characteristic of post-mortem
DNA damage. Grade of membership models are widely used to infer structure in
admixed populations (Pritchard et al., 2000), document collections (Blei et al.,
2003), RNA-seq data Dey et al. (2017a) and somatic mutation data (Shiraishi
et al., 2015) for example.

We have implemented methods to fit this model, and visualize the results
in a software package, aRchaic. For example, the grades of membership for
all samples are succinctly displayed in a single STRUCTURE plot (Rosenberg
et al., 2002), and each mismatch profile is displayed using simple intuitive plots
(Dey et al., 2017b). Together these plots provide a concise visual summary of
DNA damage patterns, as well as other processes generating mismatches in the
data.

2 Methods
For each sample i = 1, . . . , I we first obtain a BAM file. From this BAM file
we extract information on the mismatches (vs a reference) that occur in reads
from the sample. First we filter out low-quality reads (mapping ≤ 30), low-
quality mismatches (base quality ≤ 20), and mismatches that occur more than
20bp from the end of a read (since these are unlikely to reflect damage patterns
(Briggs et al., 2007)). When a read carries more than one mismatch we treat
these as independent (an assumption we verified by checking that the probability
of a mismatch conditional on the occurrence of another mismatch on the same
read is not significantly different from the marginal probability, p-value = 0.43).

Let Ji denote the total number of remaining mismatches. For each mismatch
j = 1, · · · , Ji, we first identify the strand in the reference genome that carries
a C or T allele; we call this strand the "reference strand" and denote it by Sj .
Let xi,j = (xi,j,1, xi,j,2, xi,j,3, xi,j,4, xi,j,5) denote the following features of the
mismatch (see Supplementary Figure S1 for illustration):

1. xi,j,1 ∈ {T-to-A,T-to-C,T-to-G,C-to-A,C-to-G,C-to-T} denotes the mis-
match (with respect to the reference strand Sj).

2. xi,j,2 ∈ {A,C,G,T} denotes the nucleotide immediately 5’ to the mis-
match on Sj .

3. xi,j,3 ∈ {A,C,G,T} denotes the nucleotide immediately 3’ to the mis-
match on Sj .
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4. xi,j,4 ∈ {0, ...20} denotes the distance (in base-pairs) from the mismatch
to the nearest end of the read.

5. xi,j,5 ∈ {A,C,G,T} denotes the nucleotide that occurs one base upstream
from the 5’ end of the reference strand that is closest to the location
of mismatch. Since mismatches resulting from damage primarily occur
at 5’ ends of the reads, this features captures the enrichment of purines
immediately one base 5’ upstream of the strand-break for samples with
sufficient DNA damage (Sawyer et al., 2012; Briggs et al., 2007).

These features are designed to reflect the major modes of DNA damage
(Briggs et al., 2007; Sawyer et al., 2012; Prüfer et al., 2014; Sawyer et al.,
2012)). For each feature l ∈ {1, . . . , 5} we let Ml denote the number of possible
values of xi,j,l, and for notational convenience we relabel the possible outcomes
such that xi,j,l takes on integer values in {1, . . . ,Ml}. For example we represent
xi,j,1 = T-to-A by xi,j,1 = 1.

Our model assumes that each mismatch in each individual arose from one of
K mismatch profiles (“clusters"). We introduce latent variables zi,j ∈ {1, ..,K}
to denote the profile that gave rise to mismatch j in individual i. We assume

Pr(zi,j = k) = qi,k, (1)

where qi,k represents the membership proportion of individual i in mismatch
profile (cluster) k ∈ 1, ..,K.

We further assume that, given zi,j = k,

Pr(xi,j,l = m|zi,j = k) = fk,l(m), (2)

where m ∈ {1, . . . ,Ml}, and fk,l(m) denotes the relative frequency of m at
feature l in cluster k. We follow (Shiraishi et al., 2015) in assuming independence
among features within each cluster.

Putting this all together, and assuming independence of observations yields
the likelihood:

L(q, f ;x) =
∏
i,j,l

∑
k

fk,l(xi,j,l)qi,k. (3)

We fit this model, and estimate the individual parameters (q) and cluster pa-
rameters (f) by maximum likelihood using an accelerated EM algorithm. We
use the same EM updates as in equations 2-4 in (Shiraishi et al., 2015), and we
add first-order quasi-Newton acceleration to improve convergence (Lange, 1995;
Alexander et al., 2009; Taddy, 2012).

For each cluster k, we visualize the cluster parameters fk using an EDLogo
plot (Dey et al., 2017b), see Figure 1. The EDLogo plot allows one to visualize
both enrichment and depletion of mismatch features scaled against a reference
frequency. In our application, the reference frequency was computed by aver-
aging the proportion of the five aRchaic features across individuals in the 1000
Genomes Project. This allows us to to compute an enrichment score which
effectively compares mismatch profiles in our samples against that of modern
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individuals from 1000 Genomes Project Consortium (2012). We use a STRUC-
TURE plot (Rosenberg et al., 2002) to visualize the estimates of qi,k for each
sample.

3 Results
We demonstrate the utility of aRchaic using three case-studies.

3.1 aRchaic clustering of modern and ancient individuals
We applied aRchaic to a combined dataset of 52 ancient samples from four re-
cent studies Skoglund et al. (2014a); Gamba et al. (2014); Lazaridis et al. (2016);
Lipson et al. (2017) and 60 modern samples from 1000 Genomes Project Con-
sortium (2012) (n=50) and 10 individuals from HGDP (Cann et al.) individuals
sequenced by Meyer et al. (2012). Two of the aDNA studies used partial-UDG
treated libraries, which removes most – but not all – of the C-to-T deamination
(Rohland et al., 2015).

Figure 2 shows results from aRchaic with K = 3 (see Supplementary Fig-
ure S2 for K = 4, 5, 6). To give a sense of computational requirements, these
results took approximately 23 minutes to generate on a single modern compute
node. The results clearly highlight differences between modern, ancient (UDG),
and ancient (non-UDG) samples. The modern samples show very strong mem-
bership in a single cluster (red). As expected, this "modern" cluster shows
only modest enrichment in its mismatch type, flanking base composition, and
mismatch location, relative to the modern background.

Ancient (non-UDG) samples show high membership in a second cluster
(blue). This cluster is characterized by a very strong enrichment of C-to-T
mismatches at the ends of the reads, which is a typical sign of DNA damage
(Rohland et al., 2015), and this enrichment is accompanied by a depletion of
guanine just 3’ to the mismatch. We see this depletion in guanine because the
blue cluster is driven by mismatches at cytosine sites which seldom precedes
a guanine because CpG sites occur less frequently than expected (Shen et al.,
1994).

The ancient UDG-treated individuals show high membership in the third
(orange) cluster, and partial membership in the first (red) cluster. The mem-
bership in the red cluster presumably reflects the fact that the UDG-treatment
repairs much of the damage in these samples, making them look more "modern"
in their mismatch profiles. The orange cluster is characterized by enrichment
of C-to-T mismatches very close to the ends of reads, with a strong enrichment
of guanine at the right flanking base. That is, an enrichment of CpG-to-TpG
mismatches at the ends of reads. This may be explained by the fact that when a
methylated cytosine undergoes deamination it becomes thymine (in contrast to
unmethylated cytosines, which deaminate to uracil) and these thymines are not
repaired by the UDG-treatment (Duncan and Miller, 1980). Furthermore, we
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see a depletion of thymine 5’ upstream of the strand-break, which consequently
is manifested as a depletion of thymine at the left flanking base.

3.2 The effects of contamination on inferred grades of
membership

We next sought to examine the effects of exogenous modern contamination on
inferred grades of memberships in ancient samples.

We performed an in-silico experiment to artificially contaminate ancient
samples with modern data from the 1000 Genomes Project (1000 Genomes
Project Consortium, 2012). We selected one BAM file from an ancient sample
(K01 from (Gamba et al., 2014)), and split its reads into 10 equal subsets. We
then contaminated each subset with reads from a distinct modern individual
from the 1000 Genomes Project, varying the contamination level from 0% to
100% (Figure 3a). This results in 10 samples (S1-S10) representing 10 contam-
inated ancient samples with known levels of modern contamination.

We applied aRchaic with K = 2 on the contaminated samples (S1-S10)
plus 40 other modern individuals (randomly sampled from the 1000 Genomes
Project; Figure 3b). Modern individuals showed high grades of membership in
one cluster (red). Fully contaminated individuals nearly showed full membership
in the red cluster, while uncontaminated ancient samples showed essentially no
membership in this cluster. For samples in between, membership in the red
cluster increased approximately monotonically with the level of contamination
(Figure 3c). We obtained similar results even with only 10000 randomly-sampled
reads for each sample (Figure 3e) implying that these results are robust to low
sequencing depth.

We find that the grades of membership in the red cluster (representing mod-
erns) are consistently less than the proportion of contaminated reads (Figure
3c red curve). This pattern can be partly explained by the fact that the vast
majority of reads from a DNA library contain no damage. To elaborate, only
a fraction of contaminated DNA from a modern source have mismatches, and
this fraction will typically be less than for ancient DNA. Thus, the estimated
proportion of mismatches arising from a “modern DNA” cluster should gener-
ally be expected to be less than the contamination fraction of the library. This
implies aRchaic will typically provide a lower bound on contamination rates.

In this experiment, if we define the “mismatch contamination rate” as pro-
portion of mismatches that originate from a contaminating read, we see that the
aRchaic grades of membership are approximately linearly proportional to the
mismatch contamination rate, and only slightly underestimate the true propor-
tion of contaminated reads (Figure 3d). This encourages the use of a possible
correction factor to infer a true read-level contamination rate. The fraction of a
DNA library with mismatches can be measured (f̂ , e.g. f̂ = 0.3), and the frac-
tion of modern DNA reads with mismatches to reference (d̂, e.g. d̂ = 0.09) can
be approximated using modern samples. With those values a simple moment
estimator of the read level contamination rate would be: ĉ = f(d/q + f − d)−1,
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where q is the fraction of membership in the “modern” cluster. Applying this
estimator to the grade of membership in the the modern cluster in Figure 3c
(red curve) provides values that are closer to the true contamination rates (Fig-
ure 3c green curve). However, a complication is that high quality aDNA may
generate mismatches that cluster with “modern” mismatch profiles even without
contamination. This effect is not accounted for by this simple estimator, and is
difficult to predict.

3.3 aRchaic can identify both DNA damage and technical
artifacts

As a final case study, we compiled data from 25 modern and 25 ancient Native
Americans from the Northwest Coast of North America (Lindo et al., 2016).
This dataset offers us a opportunity to apply aRchaic on modern and ancient
DNA samples collected from the same population and sequenced in the same
laboratory. In these data, the first two positions from the 5’ end of each read had
been removed by the original authors in an attempt to mitigate effects of DNA
damage. Despite this, aRchaic, when applied with K = 2 to all 50 samples,
clearly distinguishes between modern and ancient individuals (Supplementary
Figure S3).

When we applied aRchaic to just modern samples we were surprised to
find two clear clusters (Figure 4a). These clusters turned out to reflect the
fact that the modern samples had been processed using two different library
preparation kits, Nextera & TruSeq (Lindo et al., 2016). Samples prepared with
the TruSeq kit showed nearly full membership in one cluster (beige), and those
prepared with the Nextera kit showed nearly full membership in a second cluster
(pink). These clusters show only small differences in mismatch patterns, but
the pink cluster is characterized by a strong excess of mismatches at position 12,
apparently an artifact introduced by the Nextera preparation (Supplementary
Figure S5).

We also applied aRchaic with K = 2 to just the ancient samples (see Figure
4b). Unlike the moderns, this yielded a continuous gradient of memberships in
the two clusters (cyan and gold). One cluster (gold) is dominated by the strong
enrichment of C-to-T mismatches relative to the modern background that is typ-
ical of ancient samples. The other cluster (cyan) is enriched primarily in C-to-A
mismatches, possibly representing another type of damage, or other artifacts,
in the ancient DNA. Interestingly, the individual with highest membership in
this cyan cluster was much older than all the others (≈ 6000 years BP; all other
samples are ≈ 2000 years BP).

4 Discussion
We developed a method (aRchaic) for clustering and visualization of sam-
ples based on DNA mismatch patterns. Our method is based on a Grade-of-
Membership (GoM) model, which generalizes the concept of clustering to allow
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samples to have membership in multiple clusters. We provide a visual represen-
tation of the grades of membership using a "Structure plot" (Rosenberg et al.,
2002) and visualization of the mismatch profiles (or clusters) with an EDLogo
plot (Dey et al., 2017b).

In GoMmodels, the choice of the number of clustersK (or mismatch profiles)
is a contentious issue. In our analyses we selected values of K that highlight
interpretable structure in the data. We emphasize that there will typically
be no single "true" K, and that examining results with different K can often
provide additional insights (Dey et al., 2017a). For example, Figure 2 shows
results for K = 3, but higher values of K reveal additional structure within
each ancient subgroup (Supplementary Figure S2). Similarly, Supplementary
Figure S3 shows results for K = 2 where the model fails to distinguish between
Nextera and TruSeq modern samples, but analysis with K = 6 does pick up
this difference (Supplementary Figure S4). More generally, aRchaic is useful
for detecting batch effects as Figure 4 and Supplementary Figure S4 suggest.

A key challenge in analyzing ancient DNA is that data are often contam-
inated with exogenous modern DNA. Several approaches have been suggested
to estimate the amount of contamination. One approach is to compute the rate
of polymorphism across the X chromosome in males (Korneliussen et al., 2014;
Rasmussen et al., 2011), where the presence of polymorphism would suggest
contamination because males have only one X chromosome. Another approach
is to quantify the contribution of a panel of modern mitochondrial haplotypes
to the ancient DNA (Renaud et al., 2015; Fu et al., 2014). Neither of these ap-
proaches leverages autosomal DNA. Although aRchaic does not provide explicit
estimates of contamination levels, in some settings (e.g. Figure 3) the inferred
grades of membership can reflect relative levels of contamination even with low
sequencing depth, and may be a useful complement to these other methods.
Some caution is necessary though. Under conditions where an ancient sam-
ple has undergone a noticeable amount of DNA damage, we underestimate the
proportion of contamination (Figure 3). On the other hand, when ancient mis-
matches are indistinguishable from modern, the proportion in modern cluster
of a sample might be greater than the proportion of contamination (as in the
case of an ancient sample with little to no damage). We encourage users to
keep these caveats in mind, and suggest that in practice aRchaic will be most
useful for flagging potentially contaminated samples as those that have an above
average clustering with modern samples.

Here we have chosen to model features at the level of mismatches, which have
been shown to be informative of DNA damage in previous studies (Ginolhac
et al., 2011; Jónsson et al., 2013; Briggs et al., 2007). Alternatively, one could
formulate a model at the level of reads. For example, the method PMDtools
computes a score for every read representing the probability that the read is
damaged (Skoglund et al., 2014b). This method models mismatches along the
read; additionally, one can incorporate indels and fragment length along with
mismatches. One reason we chose not to model these extra features was to
reduce the feature and computational complexity of our method. Furthermore,
these extra features may not actually be driven by DNA damage. For example,
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we explored fragment length profiles in several aDNA data-sets and found their
distributions to be primarily driven by lab-specific effects rather than DNA
damage. Another limitation of fragment length is that it can be used only in
studies using paired-end sequencing.

Methods described here are available in an open-source R software package
at www.github.com/kkdey/aRchaic.
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Figure 1: Illustration of the aRchaic grades of membership and mismatch pro-
files. (a) The features of a mismatch modeled by aRchaic (b) A depiction of
an ancient DNA sample that has 80% of its reads assigned to cluster 1 and
20% of its reads assigned to cluster 2. Each cluster is defined by a mismatch
profile showing the enrichment of the mismatch type, bases flanking the mis-
match, the distance of the mismatch from the nearest end of the read, and the
base immediately 5’ to the strand-break. To produce a mismatch profile for a
cluster, mismatch features are aggregated across reads assigned to the cluster,
and their frequencies are represented by an EDLogo plot (Dey et al., 2017b).
In the EDLogo plot, the frequencies are scaled against a background frequency
computed from 1000 Genomes Project Consortium (2012).
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Figure 2: aRchaic clearly distinguishes between modern, ancient (UDG), and
ancient (non-UDG) samples. aRchaic is applied with K = 3 to a collection
of ancient individuals from four studies Skoglund et al. (2014a); Gamba et al.
(2014); Lazaridis et al. (2016); Lipson et al. (2017) along with modern individu-
als randomly sampled from the 1000 Genomes Project and 10 individuals from
the Human Genome Diversity Panel (1000 Genomes Project Consortium, 2012;
Cann et al.; Meyer et al., 2012). Modern samples have high membership in the
red cluster. The EDLogo representation of this cluster does not show strong
enrichment against a modern background. The ancient (non-UDG) samples are
representative of the blue cluster. The EDLogo plot for the blue cluster shows
a strong enrichment in C-to-T mismatches at the end of reads, a depletion of
guanine in the right flanking base, and a depletion of cytosine at the 5’ strand-
break. The ancient (UDG) samples have partial membership both in the red
cluster and in the gold cluster. The EDLogo plot for the gold cluster is enriched
in C-to-T mismatches at the terminal ends of the reads, shows an enrichment
of guanine at the right flanking base, and a depletion of thymine one base 5’
upstream of the strand break.
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Figure 3: Estimated grades of membership reflect levels of contamination. (a)
Reads from one ancient individual (KO1 from Gamba et al. (2014)) were split
into 10 equally sized groups. Reads were added from a distinct individual in the
1000 Genomes Project (1000 Genomes Project Consortium, 2012) to each group
(S1-S10) at varying levels of percentages (indicating levels of contamination).
(b) We applied aRchaic with K = 2 on a combined dataset comprised of these
10 contaminated groups of reads (S1-S10) along with 40 other modern individ-
uals from 1000 Genomes (c) The grades of membership in cluster 1 (“modern”
cluster) were plotted as a function of the percentage of contamination before
(red curve) and after (green curve) applying the correction factor discussed in
the last paragraph of Section (3.2). (d) We repeated the same experiment as de-
scribed in panel a, except we discarded all reads with no mismatches or greater
than one mismatch. The grades of membership in cluster 1 were plotted as
a function of the “mismatch contamination rate” which is defined as the pro-
portion of mismatches that originate from a contaminated read (e) Each group
(S1-S10) was further sub-sampled to 10,000 reads, and aRchaic was applied
with K = 2 to the new subsampled groups and the same 40 modern individuals
as in panel b.
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Figure 4: DNA damage and library preparation techniques drive grades of mem-
bership. (a) We applied aRchaic with K = 2 to 25 modern samples from Lindo
et al. (2016). The samples prepared with the TruSeq kit show nearly full mem-
bership in the pink cluster. Samples prepared with the Nextera kit show partial
membership in the pink cluster and the tan cluster. The tan cluster shows a
blip at the 12th position from the end of the read (b) We applied aRchaic with
K = 2 to 25 ancient samples from Lindo et al. (2016). The two clusters show
an enrichment of C-to-T mismatches at the ends of reads and an enrichment of
purines at the 5’ strand-break.
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Figure S1: Four examples of how the reference strand for a mismatch is desig-
nated. The dark yellow line denotes the mapped read, and the blue and teal line
represent the reference genome at two different strand orientations. The refer-
ence strand is always designated as the strand that contains the C mismatch or
T mismatch (latter not shown).
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Figure S2: aRchaic grades of membership for the example in Fig 1 correspond-
ing to 3 different values of K (K = 4, 5, 6). Higher values of K distinguish
among the ancient studies, reflecting lab and study specific biases.
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Figure S3: aRchaic plot for K = 2 on the combined data of 25 moderns and 25
ancients from Lindo et al. (2016). aRchaic clearly distinguishes the moderns
from the ancients. The ancients are primarily presented by the blue cluster.
This cluster shows an enrichment of C-to-T mismatches and depletion of T-
to-C mismatches with respect to modern background, as well as enrichment of
G and depletion of T at the 5’ strand break. The red cluster shows a blip at
12th position from the end of the read, the explanation for which is provided in
Figure S5.
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Figure S4: We apply aRchaic with K = 6 on the data from Fig 4. In addition
to separating out the ancients from the moderns, aRchaic now distinguishes
between moderns individuals based on library kit (Nextera vs Tru-seq.)
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Figure S5: The frequency of all mismatch types plotted against the position of
the read (from the 5’ end) for each of the 25 moderns samples in Lindo et al.
(2016). Each sample was prepared by one of two library kits: Nextera and
TruSeq. Most of the samples prepared with the Nextera kit show a spike in
frequency at the 12th position from the 5’ end of the read
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