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1 Abstract

Semantic similarity has been used for comparing
genes, proteins, phenotypes, diseases, etc. for various
biological applications. The rise of ontology-based
data representation in biology has also led to the de-
velopment of several semantic similarity metrics that
use different statistics to estimate similarity.

Although semantic similarity has become a cru-
cial computational tool in several applications, there
has not been a formal evaluation of the statistical
sensitivity of these metrics and their ability to rec-
ognize similarity between distantly related biological
objects.

Here, we present a statistical sensitivity compar-
ison of five semantic similarity metrics (Jaccard,
Resnik, Lin, Jiang& Conrath, and Hybrid Rela-
tive Specificity Similarity) representing three differ-
ent kinds of metrics (Edge based, Node based, and
Hybrid) and explore key parameter choices that can
impact sensitivity. Furthermore, we compare four
methods of aggregating individual annotation simi-

larities to estimate similarity between two biological
objects - All Pairs, Best Pairs, Best Pairs Symmetric,
and Groupwise.

To evaluate sensitivity in a controlled fashion, we
explore two different models for simulating data with
varying levels of similarity and compare to the noise
distribution using resampling. Source data are de-
rived from the Phenoscape Knowledgebase of evolu-
tionary phenotypes.

Our results indicate that the choice of similarity
metric along with different parameter choices can
substantially affect sensitivity. Among the five met-
rics evaluated, we find that Resnik similarity shows
the greatest sensitivity to weak semantic similarity.
Among the ways to combine pairwise statistics, the
Groupwise approach provides the greatest discrimi-
nation among values above the sensitivity threshold,
while the Best Pairs statistic can be parametrically
tuned to provide the highest sensitivity.

Our findings serve as a guideline for an appropri-
ate choice and parameterization of semantic similar-
ity metrics, and point to the need for improved re-

1

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 22, 2018. ; https://doi.org/10.1101/327833doi: bioRxiv preprint 

https://doi.org/10.1101/327833
http://creativecommons.org/licenses/by/4.0/


porting of the statistical significance of semantic sim-
ilarity matches in cases where weak similarity is of
interest.

2 Introduction

Semantic similarity is a way of measuring partial
or imperfect similarity between objects based on
the similarity of their ontology annotations Pesquita
et al. [2009]. In biology, semantic similarity has been
used to compare proteins, phenotypes, diseases, and
other biological objects Jain and Bader [2010]; Robin-
son et al. [2014]; Washington et al. [2009]; Manda
et al. [2015]. For example, semantic similarity is
the cornerstone for hypothesizing candidate genes for
evolutionary transitions in the Phenoscape project
Edmunds et al. [2015]; Manda et al. [2015] and for
connecting model organism phenotypes to human dis-
ease phenotypes for rare disease diagnosis within the
Monarch Initiative Mungall et al. [2015, 2016]. In
some applications, such as in Phenoscape, the bio-
logical objects being compared are distantly related
requiring semantic similarity approaches that can ef-
fectively identify low degrees of partial relatedness
Manda et al. [2015].

Although semantic similarity comparisons have be-
come the linchpin of several applications, and, are of-
ten used to compare distantly related biological ob-
jects, it is unclear how sensitive these metrics are to
the degree of similarity. It is also unknown if sen-
sitivity to imperfect matches differs among different
similarity metrics. In addition to the choice of a simi-
larity metric, there are several other parameters that
influence how similarity between biological objects is
computed and may influence sensitivity. One is how
individual similarities between two objects’ annota-
tion sets are summarized to determine the similarity
between the objects. Another is the difference be-
tween symmetric metrics versus asymmetric metrics.

Here, we conduct a statistical sensitivity analysis
of a set of semantic similarity metrics combined with
different choices of parameters to assess robustness
at identifying different levels of imperfect similarity.
This sensitivity analysis can serve as a guide for eval-
uating different semantic similarity metrics, and rel-

evant parameters to enable appropriate choices for
any particular application.

First, we introduce an application within the
Phenoscape project that requires the comparison of
distant biological objects (Manda et al. [2015, 2016])
and use it for evaluating the sensitivity of semantic
similarity metrics and associated parameters.

Phenotypic diversity among species is typically de-
scribed in phylogenetic studies using characters con-
sisting of two or more states that vary in some at-
tribute of that character, such as size or shape Dah-
dul et al. [2010]; Mabee et al. [2012]. These evolu-
tionary character states are associated with taxa at
different levels in a phylogenetic tree. Species closely
related to each other will generally have more char-
acter states in common Dahdul et al. [2010]. Model
organism communities have studied phenotypes, but
in this case resulting from genetic perturbations of
specific genes Sprague et al. [2007]; Smith et al.
[2005]; Karpinka et al. [2015]. Connecting evolu-
tionary variation among taxa on a phylogenetic tree
to knowledge from developmental genetics using se-
mantic similarity can expand our understanding of
both evolutionary variation and genetics, and this is
a major goal of the Phenoscape project Manda et al.
[2015]; Dahdul et al. [2010]; Edmunds et al. [2015];
Mabee et al. [2012]. The Phenoscape Knowledgebase
(KB) currently contains 415,819 phenotype annota-
tions that correspond to 21,570 evolutionary charac-
ter states in 5,211 vertebrate taxa, 4,161 of which are
terminal. These are integrated with phenotypes for
3,526 human, 7,758 mouse, 5,883 zebrafish, and 12
Xenopus genes from the Human Phenotype Ontol-
ogy Köhler et al. [2013], Mouse Genome Informat-
ics, Eppig et al. [2015], Zebrafish Information Net-
work Bradford et al. [2011], and Xenbase Karpinka
et al. [2015], respectively, and aims to support seman-
tic similarity matching among phenotypes within and
between these different sources Manda et al. [2015].

However, there are several challenges in comparing
evolutionary phenotypes to gene phenotypes using
semantic similarity. First, evolutionary and model
organism gene phenotypes are studied by different
research communities who describe them using dif-
ferent ontologies and different annotation formats.
For example, evolutionary phenotypes are often an-
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notated in the Entity Quality (EQ) annotation for-
mat Mungall et al. [2010]. The Entity (e.g. ‘anal
fin’) is drawn from one ontology, such as the animal
anatomy ontology UBERON Haendel et al. [2014],
and the Quality (e.g. ‘elongated’), that describes
how the Entity is affected, is drawn from a trait on-
tology, such as PATO Gkoutos et al. [2005]; Mungall
et al. [2010]. In contrast, model organism gene phe-
notypes such as ones from mouse are described us-
ing the Mammalian Phenotype ontology Smith et al.
[2005] . Second, the species and their anatomical
structures being described in evolutionary and model
organism phenotypes can be vastly different. Even
when changes in the same genetic pathways affect
the same anatomical structures, the phenotypes that
have changed over evolution will generally be dif-
ferent from those induced in the laboratory. Given
these various considerations, exact matches between
phenotypes from these different data sources will be
vanishingly rare. It is essential that semantic simi-
larity measures have the ability to detect very weak
matches, and that one can recognize when the best
match available is sufficiently weak that it cannot be
distinguished from noise.

There are several important parameter choices in
the computation of semantic similarity that can affect
sensitivity. First, we address choice of the metric it-
self. Several semantic similarity measures have been
developed and applied to biological data Pesquita
et al. [2009]. Some of these metrics primarily use on-
tology structure while others also use statistics such
as Information Content (IC) computed from annota-
tion data Pesquita et al. [2009].

The set of ontology annotations used to describe
an object is said to be the object’s profile. After
computing similarity between two sets of individual
annotations, there are several approaches to aggre-
gate the individual similarities to estimate similar-
ity between the two objects. For example, the All
Pairs profile similarity approach uses the distribution
of all pairwise similarities between annotations in the
two profiles of objects being compared Pesquita et al.
[2009]. In contrast, the Best Pairs approach consid-
ers only the distribution of best matches for annota-
tions in a profile Pesquita et al. [2009]. In both ap-
proaches, different representations of the above simi-

larity distribution such as the mean, median, or a dif-
ferent quantile can be used to quantify similarity be-
tween the objects being compared. In contrast to All
Pairs and Best Pairs, Groupwise aggregation deter-
mines similarity between two objects by computing
set-based operations over the two profiles Pesquita
et al. [2009]. Another issue to consider for semantic
similarity computation is that some semantic simi-
larity metrics for profiles, such as Best Pairs, are not
commutative, which is to say that the similarity be-
tween object A to object B may differ from that of
B to A.

Since it is not clear how these choices affect the sen-
sitivity for detecting weak semantic similarities, we
sought to address this within the context of our ap-
plication of interest - comparison of biological pheno-
types. We designed a series of experiments to assess
the sensitivity of a set of semantic similarity metrics,
based on how well the measure of similarity between
increasingly imperfect profiles could be distinguished
from noise. We introduce two models for increasing
dissimilarity between initially identical phenotypes,
and simulate annotations under these models using
sourse data from the Phenoscape KB.

2.1 Semantic similarity metrics

A variety of semantic similarity metrics have been
developed and applied to compare biological entities
Pesquita et al. [2009]. These metrics can be broadly
classified into edge-based, node-based, and hybrid
measures Pesquita et al. [2009]. Edge-based metrics
primarily use distance between terms in the ontol-
ogy as a measure of similarity. Node-based measures
use Information Content of the terms being compared
and/or their least common subsumer (LCS). Hybrid
measures incorporate both edge distance and Infor-
mation Content to estimate similarity between ontol-
ogy terms. Jaccard (edge-based) and Resnik (node-
based) similarity are two of the most widely used sim-
ilarity metrics for biological applications Washington
et al. [2009]. We selected Jaccard from the edge based
category and Resnik, Lin, Jiang, and Conrath from
the node based category Pesquita et al. [2009]. From
the set of hybrid measures, Hybrid Relative Speci-
ficity Similarity (HRSS) Wu et al. [2013] was selected
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because this metric was shown to outperform other
metrics in tests such as distinguishing true protein-
protein interactions from randomized ones and ob-
taining the highest functional similarity among or-
thologous gene pairs Wu et al. [2013].

3 Methods

3.1 Simulating decay of semantic sim-
ilarity

A database of 659 simulated evolutionary profiles
with the same size distribution as the 659 true profiles
in the Phenoscape KB was created by selecting anno-
tations with uniform probability and without replace-
ment from the pool of evolutionary annotations. Five
query profiles each of sizes 10, 20, and 40 were ran-
domly selected from the simulated database. Three
different profile sizes were examined.

Next, “decayed” profiles were created for each sim-
ulated profile using one of the two models described
below, in order to compare the query profile to pro-
gressively dissimilar profiles. Initially, the query pro-
file is a perfect matches to itself, but similarity even-
tually decays until it is no longer distinguishable from
noise. To characterize the noise distributions, we also
generated 5,000 profiles of the same size as the query
by drawing annotations randomly from among the
57,051 available. These profiles would not be ex-
pected to have more than nominal similarity with
any of the simulated subject profiles.

These two decay models reflect two different ways
in which we might simulate semantic similarity pro-
gressively decreasing between two profiles.

3.1.1 Decay by Random Replacement

In the Decay by Random Replacement (RR) ap-
proach (Figure 1), annotations in the query profile
are replaced, one per iteration, by an annotation se-
lected randomly, with replacement, from the pool of
57,051 annotations. The process terminates when all
annotations in the profile have been replaced. Thus,
there is a 1-step decayed profile in which one origi-
nal annotation has been replaced, a 2-step decayed

profile in which two have been replaced, and so on.

1 random 

annotationQuery Profile

2 random 

annotations

Decayed Profiles

Annotation 

Pool

Sampling 

without replacement

Figure 1: Profile decay via random replacement. Pro-
files are decayed iteratively with one annotation per
iteration being replaced with a random selection from
the pool of all possible annotations. The decay pro-
cess ends when every original annotation in the profile
has been replaced.

3.1.2 Decay by Ancestral Replacement

In the Decay by Ancestral Replacement (RA) ap-
proach (Figure 2), annotations in the query profile
are replaced, one per iteration, by progressively more
semantically distant sibling, cousin, or parent terms.
If an annotation has no siblings, it is replaced by an
immediate parent. If an annotation has multiple im-
mediate parents, a parent is selected randomly from
the set of parents for replacement. Unlike the RR ap-
proach which only goes through N replacements for
a profile of size N , the RA approach continues the
decay process after each annotation in the profile has
been replaced once. Subsequent iterations further de-
cay the modified profile from the previous iteration
by replacing each annotation with a more distantly
related term. The process of decaying the query pro-
file can be terminated when all annotations in the
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profile converge at the ontology root or when there is
no further decay in similarity.

Query 

Profile

Decayed Profiles

Degree

 1  

Replace with 

related classes

Degree

 2  
Degree

3  

Degree

4  

Figure 2: Profile decay via ancestral replacement.
Profiles are decayed iteratively with one annotation
per iteration being replaced with a related ontology
class (sibling, cousin, parent). The decay process
ends the process converges at the root or when there
is no further decay in similarity.

3.2 Semantic similarity metrics

3.2.1 Jaccard similarity

The Jaccard similarity (sJ) of two classes (A, B) in
an ontology is defined as the ratio of the number of
classes in the intersection of their subsumers over the
number of classes in their union of their subsumers
Mistry and Pavlidis [2008].

sJ(A,B) =
|S(A) ∩ S(B)|
|S(A) ∪ S(B)|

where S(A) is the set of classes that subsume A.

3.2.2 Resnik similarity

The Information Content of ontology class A, de-
noted I(A) is defined as the negative logarithm of the
proportion of profiles annotated to that class f(A)
out of T profiles in total.

I(A) = − log
f(A)

T

Since the minimum value of I(A) is zero at the root of
the ontology, while the maximum value is − log(1/T ),
we can compute a Normalized Information Content
(In) with range [0, 1]

In(A) =
I(A)

− log(1/T )

The Resnik similarity (sR) of two ontology classes is
defined as the Normalized Information Content of the
least common subsumer (LCS) of the two classes.

sR(A,B) = In(LCS(A,B))

3.2.3 Jiang and Conrath

Jiang and Conrath similarity (sC) takes into account
the IC of two ontology classes as well as the IC of their
Least Common Subsumer (LCS) Gan et al. [2013].

sC(A,B) = In(A) + In(B)− 2 ∗ In(LCS(A,B))

3.2.4 Lin

Lin similarity (sL) also takes into account the IC of
the two ontology classes and the IC of their least
common subsumer (LCS), but in a different way Gan
et al. [2013].

sL(A,B) =
2 ∗ In(LCS(A,B))

In(A) + In(B)

3.2.5 Hybrid Relative Specificity Similarity

Hybrid Relative Specificity Similarity (HRSS,
sH(A,B)) combines edge based and IC based mea-
sures. HRSS takes into account the specificity of the
classes being compared along with their generality
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by using the LCS and the Most Informative Leaves
(MIL) of the classes Wu et al. [2013].

sH(A,B) =
1

1 + γ
∗ α

α+ β

where
α = In(LCS(A,B))

,

β =
D(A,MILA) +D(B,MILB)

2
,

D(u, v) = In(v)− In(u)

where MILi is the MIL of class i, u and v are ontol-
ogy terms, and u is an ancestor of v.

3.3 Profile similarity

An annotation profile may consist of several anno-
tations to a single object, such as a taxon or gene.
In order to provide a single measure of the similar-
ity of two objects when there are multiple pairwise
similarity measures available between individual an-
notations, several methods are commonly used.

3.3.1 All pairs

The All Pairs score (az) between two entities X and
Y (az(X,Y )) is calculated by computing all pairwise
annotation similarities between the annotation sets
of X and Y . These |X|*|Y | pairwise annotation sim-
ilarities can be summarized by taking the median or
another quantile (or summary measure).

az(X,Y ) = median
i∈{1...|X|},j∈{j=1...|Y |}

{
sz(Xi, Yj)

}
The index z can be used to specify the semantic sim-
ilarity metric used in the computation.

3.3.2 Best Pairs

To compute the Best Pairs score (bz) between X and
Y , for each annotation in X, the best scoring match
in Y is determined, and the median of the |X| resul-
tant values is taken (bz(X,Y )).

bz(X,Y ) = median
i∈{1...|X|},j=argmax

j=1...|Y |
sz(Xi,Yj)

{
sz(Xi, Yj)

}

Unlike All Pairs, Best Pairs is not a commuta-
tive measure. To address this, a symmetric version
(pz(X,Y )) of Best Pairs can be used.

pz(X,Y ) = (1/2)[bz(X,Y ) + bz(Y,X)]

3.3.3 Groupwise

Groupwise approaches (gz) compare profiles directly
based on set operations or graph overlap. The Group-
wise Jaccard similarity of profiles X and Y , gJ(X,Y ),
is defined as the ratio of the number of classes in the
intersection to the number of classes in the union of
the two profiles

gJ(X,Y ) =
|T (X) ∩ T (Y )|
|T (X) ∪ T (Y )|

where T (X) is the set of classes in profile X plus all
their subsumers.

Similarly, the Groupwise Resnik similarity of pro-
files X and Y , gR(X,Y ), is defined as the ratio of
the normalized Information Content summed over all
nodes in the intersection of X, Y to the Information
Content summed over all nodes in the union.

gR(X,Y ) =

∑
t∈{T (X)∩T (Y )} In(t)∑
t∈{T (X)∪T (Y )} In(t)

where T (X) is defined as above.

4 Results

The Phenoscape Knowledgebase contains a dataset
of 661 taxa with 57,051 evolutionary phenotypes,
which are phenotypes that have been inferred to vary
among the taxon’s immediate descendents Manda
et al. [2015]. A simulated dataset of subject profiles
having the same size distribution of annotations per
taxon was created by permutation of annotations.

4.1 Effect of query profile size on sim-
ilarity decay

First, we wanted to determine how the pattern of
similarity decline varies between different query pro-
file sizes. We randomly selected five simulated query
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profiles each of size 10, 20, and 40 and created de-
cayed profiles using the Decay by Random Replace-
ment (RR) approach. The query profiles along with
their decayed profiles were compared to the simu-
lated database and the similarity score of the best
match was plotted. Similarity was computed us-
ing five semantic similarity metrics (Jaccard, Resnik,
Lin, Jiang, and HRSS) along four profile similarity
settings (All Pairs, Best Pairs, Best Pairs Symmet-
ric, and Groupwise (Jaccard and Resnik only)).

The results (Figure 3) indicate that the pattern of
similarity decay is very similar across the three query
profile sizes. This trend was observed consistently
across different similarity metrics and profile similar-
ity choices. For the Best Pairs methods, a sharp de-
cline in similarity is observed at the 50% decay mark
for all profile sizes. Groupwise metrics show a pat-
tern of gradual decline across the three profile sizes.
Given that pattern of decay was very similar across
query profile sizes for all metrics, we only used query
profiles of size 10 for the rest of the experiments in
this study.

4.2 Effect of profile similarity method
on sensitivity of similarity metrics

Next, we conducted two comparisons - the four pro-
file similarity approaches against each other, and the
five semantic similarity metrics against each other.
For ease of interpretation, we take the upper 99.9% of
the similarity distribution for random profile matches
(noise) as an arbitrary threshold for comparing the
sensitivity of the different series. We use discrimi-
nation of similarity from the noise threshold as an
indicator of the sensitivity of metrics. We observed
discrimination from noise on two factors - the mag-
nitude of discrimination (the higher, the better), and
the point in the decay process at which similarity was
no longer distinguishable from noise (the higher, the
better).

The All Pairs profile similarity method (Figure 4,
Col 1) fails to distinguish match similarity from noise
across all five metrics. Both the Best Pairs variants
(Figure 4, Cols 2, 3) demonstrate an initial discrim-
ination from the noise threshold followed by a sharp
decline around the 50% decay mark after which simi-

larity falls below the noise threshold. The Symmetric
measure (Figure 4, Col 3) shows substantially greater
discrimination from noise as compared to the Asym-
metric measure. Thus, both Best Pairs variants show
greater sensitivity as compared to All Pairs, the Best
Pairs Symmetric performing the best among the two
Best Pairs methods.

Groupwise measures (for Jaccard and Resnik) show
a gradual decline in similarity unlike the sharp decline
exhibited by Best Pairs methods. The magnitude
of discrimination from noise is greater than for Best
Pairs, and discrimination is still possible beyond 50%
decay.

These results from the comparison of the four pro-
file similarity approaches show that Best Pairs Sym-
metric (among pairwise statistics) and Groupwise re-
sult in the greatest sensitivity across the tested sim-
ilarity metrics. Accordingly, these two profile simi-
larity methods were selected for subsequent experi-
ments.

Since Groupwise statistics are available only for
two of the five similarity metrics, we focus only on
Best Pairs Symmetric to compare the five semantic
similarity metrics (Figure 4, Rows 1-5, Col 3). We
observe that among the IC based measures (Resnik,
Lin, and Jiang), Lin shows the greatest discrimina-
tion from noise. All three metrics decline into noise
similarity at the 50% decay mark. Lin and Jiang
show a flat performance until 50% decay before sud-
denly dipping below the noise threshold. This indi-
cates that these metrics fail to distinguish between
perfect similarity between identical profiles (no de-
cay) from imperfect similarity between decayed pro-
files before 50% decay. On the contrary, Resnik dis-
plays a gradual decline in similarity indicating greater
discrimination between true matches of varying qual-
ity. Comparing the distance based metric (Jaccard)
to the hybrid metric (HRSS), HRSS declines below
the noise threshold at the 30% decay mark unlike Jac-
card which discriminates from noise until 50% decay.

Based on these results, we conclude that Resnik
(among the IC-based metrics), and Jaccard (between
distance-based and hybrid metrics) demonstrate the
greatest sensitivity. These two metrics in conjunction
with the two selected profile similarity methods were
used for all further experiments.
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Figure 3: Decline in similarity for five simulated query profiles and associated decayed profiles each of size
10 (blue), 20 (green), and 40 (red). Solid lines represent the mean best match similarity of the five query
profiles to the database after each annotation replacement. Error bars show two standard errors of mean
similarity across the five profiles.
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Figure 4: Pattern of similarity decay with five profiles of size 10 are decayed via Random Replacement.
Similarity is computed using five semantic similarity metrics (Rows 1-5) in combination with four profile
similarity methods (Cols 1-4). Solid lines represent the mean best match similarity of the five query profiles to
the database after each annotation replacement. Error bars show two standard errors of the mean similarity
across the five profiles. Dotted lines represent the 99.9th percentile of the noise distribution.
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4.3 Improving the sensitivity of Best
Pairs metrics

The sharp decline in similarity under the Best Pairs
statistics at approximately 50% decay can be under-
stood as a result of summarizing pairwise similar-
ity scores with the median of the distribution Manda
et al. [2016]. To understand if the sensitivity of pair-
wise statistics such as Best Pairs can be tuned using
a different percentile of the pairwise score distribu-
tion, we compared the results using the 80th per-
centile rather than the median.

Best Pairs Jaccard and Resnik distinguish similar-
ity from noise for greater levels of decay when the
80th percentile is used (Figure 5) than for the me-
dian. This illustrates that sensitivity for pairwise
metrics can be tuned by how the pairwise similar-
ities are aggregated. Jaccard and Resnik perform
similarly with respect to how long similarity can
be distinguished from noisewith Groupwise showing
marginally less sensitivity. We again see that Group-
wise has a more gradual decline in similarity. The
implication of this is that Groupwise statistics will
provide more fine discrimination among matches of
varying quality and thus be better for rank ordering
the strength of matches Manda et al. [2016], while
sensitivity may be slightly greater for Best Pairs when
using a high percentile.

4.4 Similarity Decay under the Ances-
tral Replacement Model

Next, we explored if the metrics exhibit the same
relative performance when using the Ancestral Re-
placement decay mmodel rather than Random Re-
placement (Section 3.1.2).

The results for Ancestral Replacement are in gen-
eral agreement with those reported above for the
Random Replacement. Changing the percentile at
which pairwise scores are aggregated again shows the
percentage decay at which similarity for the Best
Pairs statistics can no longer be discriminated from
noise to be at the percentile used (either 50% or 80%).
Groupwise metrics again, show a more gradual de-
cline and fail to discriminate signal from noise at less
extreme level of decay than for the Best Pairs statistic

using the 80th percentile.

5 Discussion

Our findings reveal that sensitivity can vary dramat-
ically among semantic similarity metrics and among
different parameter choices. The majority of studies
that use semantic similarity employ the Best Pairs
or All Pairs approaches to aggregate similarity be-
tween two profiles, employing a variety of semantic
similarity metrics. Here we see pronounced perfor-
mance differences among these metrics. The way
in which pairwise statistics are aggregated has eas-
ily predictable effects upon sensitivity. In some case,
Groupwise approaches may be more sensitive, and
generally show greater discrimination among levels
of similarity above the sensitivity threshold. These
results suggest specific ways to improve the sensitiv-
ity and interpretability of semantic similarity appli-
cations, particularly for profile comparisons.

We compared two models for decay of similarity
between profiles, and found similar results for both.
We also saw no substantive effect of profile size on the
results. This increases our confidence in the general-
ity of the results, although our evaluation is limited
to one context, comparison among profiles sampled
from among the Entity-Quality phenotype annota-
tions in the Phenoscape KB.

Our results also illustrate how difficult it can be
to statistically discriminate weakly matching profiles
from noise, something which has received relatively
little consideration in many applications of semantic
similarity search to date. This suggests a need for
more statistically informed reporting of results from
semantic similarity matches, so that results which
may be statistically meaningless are not interpreted
as having biological significance.
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Figure 5: Comparison of the sensitivity of Best Pairs (summarized using the 50th percentile or the 80th
percentile) and Groupwise metrics. Solid lines represent the mean best match similarity of the five query
profiles to the database after each annotation replacement. Error bars show two standard errors of the mean
similarity across the five profiles. Dotted lines represent the 99.9th percentile of the noise distribution.
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Figure 6: Pattern of similarity decay with the Ancestral Replacement model. Solid lines represent the mean
best match similarity of the five query profiles to the database after each annotation replacement. Error bars
show two standard errors of the mean similarity across the five profiles. Dotted lines represent the 99.9th
percentile of the noise distribution.
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