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The Bioconductor project has created many useful data abstractions for analysing
high-throughput genomics experiments. However, there is a cognitive load placed on
a user in learning a data abstraction and understanding its appropriate use. Through-
out a standard workflow, a user must navigate and know many of these abstractions
to perform an genomic analysis task, when a single data abstraction, a GRanges ob-
ject will suffice. The GRanges class naturally represent genomic intervals and their
associated measurements. By recognising that the GRanges class follows ‘tidy’ data
principles we have created a grammar of genomic data transformation. The grammar
defines verbs for performing actions on and between genomic interval data. It pro-
vides a principled way of performing common genomic data analysis tasks through
a coherent interface to existing Bioconductor infrastructure, resulting in human read-
able analysis workflows. We have implemented this grammar as a Bioconductor/R
package called plyranges.
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Introduction

High-throughput genomics promises to unlock new disease therapies, and strengthen
our knowledge of basic biology. To deliver on those promises, scientists must derive a
stream of knowledge from a deluge of data. Genomic data is challenging in both scale
and complexity. Innovations in sequencing technology often outstrip our capacity to
process the output. Beyond their common association with genomic coordinates, ge-
nomic data are heterogeneous, consisting of raw sequence read alignments, genomic
feature annotations like genes and exons, and summaries like coverage vectors, ChIP-
seq peak calls, variant calls, and per-feature read counts. Genomic scientists need
software tools to wrangle the different types of data, process the data at scale, test
hypotheses, and generate new ones, all while focusing on the biology, not the compu-
tation. For the tool developer, the challenge is to define ways to model and operate on
the data that align with the mental model of scientists, and to provide an implementa-
tion that scales with their ambition.

Several domain specific languages (DSLs) enable scientists to process and reason about
heterogeneous genomics data by expressing common operations, such as range ma-
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nipulation and overlap-based joins, using the vocabulary of genomics. Their imple-
mentations either delegate computations to a database, or operate over collections of
files in standard formats like BED. An example of the former is the Genome Query
Language (GQL) and its distributed implementation GenAp which use an SQL-like
syntax for fast retrieval of information of unprocessed sequencing data [1, 2]. Sim-
ilarly, the Genometric Query Language (GMQL) implements a relational algebra for
combining genomic datasets [3]. The command line application BEDtools develops
an extensive algebra for performing arithmetic between two or more sets of genomic
regions [4]. All of the aforementioned DSLs are designed to be evaluated either at
the command line or embedded in scripts for batch processing. They exist in a sparse
ecosystem, mostly consisting of UNIX and database tools that lack biological seman-
tics and operate at the level of files and database tables.

The Bioconductor/R packages IRanges and GenomicRanges [5, 6, 7] define a DSL for
analysing genomics data with R, an interactive data analysis environment that en-
courages reproducibility and provides high-level abstractions for manipulating, mod-
elling and plotting data, through state of the art methods in statistical computing. The
packages define object-oriented (OO) abstractions for representing genomic data and
enable interoperability by allowing users and developers to use these abstractions in
their own code and packages. Other genomic DSLs that are embedded in program-
ming languages include pybedtools and valr [8, 9], however these packages lack the
interoperability provided by the aforementioned Bioconductor packages and are not
easily extended.

The Bioconductor infrastructure models the genomic data and operations from the
perspective of the power user, one who understands and wants to take advantage of
the subtle differences in data types. This design has enabled the development of so-
phisticated tools, as evidenced by the hundreds of packages depending on the frame-
work. Unfortunately, the myriad of data structures have overlapping purposes and
important but obscure differences in behavior that often confuse the typical end user.

Recently, there has been a concerted, community effort to standardize R data structures
and workflows around the notion of tidy data [10]. A tidy dataset is defined as a
tabular data structure that has observations as rows and columns as variables, and all
measurements pertain to a single observational unit. The tidy data pattern is useful
because it allows us to see how the data relate to the design of an experiment and the
variables measured. The dplyr package [11] defines an API that maps notions from
the general relational algebra to operations on tidy data. It expresses each operation
as a cohesive, endomorphic verb. Taken together these features enable a user to write
human readable analysis workflows.

We have created a genomic DSL called plyranges that reformulates notions from ex-
isting genomic algebras and embeds them in R as a genomic extension of dplyr. By
analogy, plyranges is to the genomic algebra, as dplyr is to the relational algebra. The
plyranges Bioconductor package implements the language on top of a key subset of
Bioconductor data structures and thus fully integrates with the Bioconductor frame-
work, gaining access to its scalable data representations and sophisticated statistical
methods.
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Genomic relational algebra
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Figure 1: An illustration of the GRanges data model for a sample from an RNA-seq
experiment. The core components of the data model include a seqname column (rep-
resenting the chromosome), a ranges column which consists of start and end coordi-
nates for a genomic region, and a strand identifier (either positive, negative, or un-
stranded). Metadata are included as columns to the right of the dotted line as annota-
tions (gene_id) or range level covariates (score).

The plyranges DSL is built on the core Bioconductor data structure GRanges, which
is essentially a constrained table, with fixed columns for the chromosome, start and
end coordinates, and the strand, along with an arbitrary set of additional columns,
consisting of measurements or metadata specific to the data type or experiment (figure
1). GRanges balances flexibility with formal constraints, so that it is applicable to
virtually any genomic workflow, while also being semantically rich enough to support
high-level operations on genomic ranges. As a core data structure, GRanges enables
interoperability between plyranges and the rest of Bioconductor. Adhering to a single
data structure simplifies the API and makes it easier to learn and understand, in part
because operations become endomorphic, i.e., they return the same type as their input.

GRanges follows the intuitive tidy data pattern: it is a rectangular table corresponding
to a single biological context. Each row contains a single observation and each column
is a variable describing the observations. GRanges specializes the tidy pattern in that
the observations always pertain to some genomic feature, but it largely remains com-
patible with the general relational operations defined by dplyr. Thus, we define our
algebra as an extension of the dplyr algebra, and borrow its syntax conventions and
design principles.

Algebraic operations

The plyranges DSL defines an expressive algebra for performing genomic operations
with and between GRanges objects (see table 1). The grammar includes several classes
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Verb Description
summarise() aggregate over column(s)

Aggregation disjoin_ranges() aggregate column(s) over the union of
end coordinates

reduce_ranges() aggregate column(s) by merging over-
lapping and neighbouring ranges

mutate() modifies any column
select() select columns

Arithmetic (Unary) arrange() sort by columns
stretch() extend range by fixed amount
shift_(direction) shift coordinates
flank_(direction) generate flanking regions
%intersection% row-wise intersection
%union% row-wise union
compute_coverage coverage over all ranges

Arithmetic (Binary) %setdiff% row-wise set difference
between() row-wise gap range
span() row-wise spanning range
join_overlap_*() merge by overlapping ranges
join_nearest merge by nearest neighbour ranges
join_follow merge by following ranges

Merging join_precedes merge by preceding ranges
union_ranges range-wise union
intersect_ranges range-wise intersect
setdiff_ranges range-wise set difference
complement_ranges range-wise union
anchor_direction() fix coordinates at direction

Modifier group_by() partition by column(s)
group_by_overlaps() partition by overlaps
filter() subset rows

Restriction filter_by_overlaps() subset by overlap
filter_by_non_overlaps() subset by no overlap

Table 1: Overview of the plyranges grammar. The core verbs are briefly described and
categorised into one of: aggregation, unary or binary arithmetic, merging, modifier, or
restriction. A verb is given bold text if its origin is from the dplyr grammar.
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of operation that cover most use cases in genomics data analysis. There are range
arithmetic operators, such as for resizing ranges or finding their intersection, and op-
erators for merging, filtering and aggregating by range-specific notions like overlap
and proximity.

Arithmetic operations transform range coordinates, as defined by their start, end and
width. The three dimensions are mutually dependent and partially redundant, so di-
rect manipulation of them is problematic. For example, changing the width column
needs to change either the start, end or both to preserve integrity of the object. We
introduce the anchor modifier to disambiguate these adjustments. Supported anchor
points include the start, end and midpoint, as well as the 3’ and 5’ ends for strand-
directed ranges. For example, if we anchor the start, then setting the width will adjust
the end while leaving the start stationary.

The algebra also defines conveniences for relative coordinate adjustments: shift (unan-
chored adjustment to both start and end) and stretch (anchored adjustment of width).
We can perform any relative adjustment by some combination of those two operations.
The stretch operation requires an anchor and assumes the midpoint by default. Since
shift is unanchored, the user specifies a suffix for indicating the direction: left/right or,
for stranded features, upstream/downstream. For example, shift_right shifts a range
to the right.

The flank operation generates new ranges that are adjacent to existing ones. This is use-
ful, for example, when generating upstream promoter regions for genes. Analogous
to shift, a suffix indicates the side of the input range to flank.

As with other genomic grammars, we define set operations that treat ranges as sets
of integers, including intersect, union, difference, and complement. There are two sets of
these: parallel and merging. The parallel operations map to infix operators, which we
surround with % symbols, a convention borrowed from R syntax. For example, the
parallel intersection (x %intersect% y) finds the intersecting range between xi and yi for
i in 1. . . n, where n is the length of both x and y. In contrast, the merging intersection
(intersect_ranges(x, y)) returns a new set of disjoint ranges representing wherever there
was overlap between a range in x and a range in y. We use the infix syntax for the
parallel operations, since it is the conventional syntax for parallel, binary operations
in R. Finding the parallel union will fail when two ranges have a gap, so we introduce
a span operator that takes the union while filling any gap. The complement operation
is unique in that it is unary. It finds the regions not covered by any of the ranges in a
single set. Closely related is the between parallel operation, which finds the gap sepa-
rating xi and yi. The binary operations are callable from within arithmetic, restriction
and aggregation expressions.

To support merging, our algebra recasts finding overlaps or nearest neighbours be-
tween two genomic regions as variants of the relational join operator. A join acts on
two GRanges objects, a query and a subject. The join operator is relational in the sense
that metadata from the query and subject ranges is retained in the joined range. All
join operators in the plyranges DSL generate a set of hits based on overlap or prox-
imity of ranges and use those hits to merge the two datasets in different ways. There
are four supported matching algorithms: overlap, nearest, precede, and follow (figures 2
and 3). We can further restrict the matching by whether the query is completely within
the subject, and adding the directed suffix ensures that matching ranges have the same
direction (strand).

For merging based on the hits, we have three modes: inner, intersect and left. The inner
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Figure 2: Illustration of the three overlap join operators. Each join takes query and
subject range as input (black and light gray rectangles, respectively). An index for the
join is computed, returning a Hits object, which contains the indices of where the sub-
ject overlaps the query range. This index is used to expand the query ranges by where
it was ’hit’ by the subject ranges. The join semantics alter what is returned: for an
inner join the query range is returned for each match, for an intersect the intersection
is taken between overlapping ranges, and for a left join all query ranges are returned
even if the subject range does not overlap them. This principle is gnerally applied
through the ‘plyranges‘ DSL for both overlaps and nearest neighbour operations.
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overlap join is similar to the conventional inner join in that there is a row in the result
for every match. A major difference is that the matching is not by identity, so we have
to choose one of the ranges from each pair. We always choose the left range. The
intersect join uses the intersection instead of the left range. Finally, the overlap left join
is akin to left outer join in Cobb’s relational algebra: it performs an overlap inner join
but also returns all query ranges that are not hit by the subject.

Figure 3: Illustration of neighbour finding joins. Each join takes a query and subject
range and computes a ’Hits’ object. For the nearest join all query ranges are returned
as they are all nearest neighbours of the second subject range. For the follow join there
is only one query range that follows any subject range. Likewise for the precede join,
there is only one query range that precedes a subject range.

Since the GRanges object is a tabular data structure, our grammar includes operators to
filter, sort and aggregate by columns in a GRanges. These operations can be performed
over partitions formed using the group_by modifier. Together with our algebra for
arithmetic and merging, these operations conform to the semantics and syntax of the
dplyr grammar.

Design principles

The design of plyranges adheres to well understood principles of language and API
design: cognitive consistency, cohesion, expressiveness and endomorphism [12]. To
varying degrees, these principles also underlie the design of dplyr and the Biocon-
ductor infrastructure.
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Cognitive consistency and fluency

We aim for our interfaces to have a simple and direct mapping to the user’s cognitive
model, i.e., how the user thinks about the data. This requires careful selection of the
level of abstraction so that the user can express workflows in the language of genomics.
This motivates the adoption of the tidy GRanges object as our central data structure.
The basic data.frame and dplyr tibble lack any notion of genomic ranges and so could
not easily support our genomic grammar, with its specific verbs for range-oriented
data manipulation. Another example of cognitive consistency is how plyranges is in-
sensitive to direction/strand by default when, e.g., detecting overlaps. GenomicRanges
has the opposite behavior. We believe that defaulting to purely spatial overlap is most
intuitive to most users.

Like dplyr, plyranges verbs are functional: they are free of side effects and return
their result. This enables chaining of verbs through syntax like the forward pipe
operator (%>%, read as “then”) of the magrittr package [13]. This has syntax has a
direct cognitive mapping to natural language and the intuitive notion of pipelines.
The low-level object-oriented APIs of Bioconductor tend to manipulate data via sub-
replacement functions, like start(gr) <- x. These ultimately produce the side effect
of replacing a symbol mapping in the current environment and thus are not amenable
to so-called fluent syntax.

Cohesion

A function is cohesive if it performs a singular task without producing any side-effects.
Singular tasks are not necessarily atomic; they can always be broken down further at
lower levels of abstraction. For example, to resize a range, the user needs to specify
which position (start, end, midpoint) should be invariant over the transformation. The
resize() function from the GenomicRanges package has a fix argument that sets the
anchor, so calling resize() coalesces anchoring and width modification. The coupling
at the function call level is justified since the effect of setting the width depends on the
anchor. However, plyranges increases cohesion and decouples the anchoring into its
own function call.

Increasing cohesion simplifies the interface to each operation, makes the meaning of
arguments more intuitive, and relies on function names as the primary means of ex-
pression, instead of a more complex mixture of function and argument names. Since
functions are superordinate to their arguments, flattening the API at the function level
enables the user to conceptualize the API as a catalog of functions, without having to
descend further. A flat function catalog also enhances API discoverability, particularly
through auto-completion in IDEs. One downside of pushing cohesion to this extreme
is that function calls become coupled, and care is necessary to treat them as a group
when modifying code.

Expressiveness

Expressiveness relates to the information content in code: the programmer should be
able to clarify intent without unnecessary verbosity. For example, our overlap-based
join operations are more concise than the multiple steps necessary to achieve the same
effect in the original GenomicRanges API. In other cases, the plyranges API increases
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verbosity for the sake of clarity and cohesion. Explicitly calling anchor() can require
more typing, but the code is easier to comprehend. Another example is the set of rou-
tines for importing genomic annotations, including read\_gff(), read\_bed(), and
read_bam(). Compared to the generic import() in rtracklayer, the explicit format-
based naming in plyranges clarifies intent and the type of data being returned. Simi-
larly, every plyranges function that computes with strand information indicates its in-
tentions by including suffixes such as directed, upstream or downstream in its name,
otherwise strand is ignored. The GenomicRanges API does not make this distinction
explicit in its function naming, instead relying on a parameter that defaults to strand
sensitivity, an arguably unintuitive behavior.

Results

Here we provide illustrative examples of using the plyranges DSL to show how our
grammar could be integrated into genomic data workflows. We also highlight how in-
teroperability with existing Bioconductor infrastructure, enables easy access to public
datasets and methods for analysis and visualisation.

Peak Finding

In the workflow of ChIP-seq data analysis, we are interested in finding peaks from
islands of coverage over chromosome. Here we will use plyranges to call peaks from
islands of coverage above 8 then plot the region surrounding the tallest peak.

Using plyranges and the the Bioconductor package AnnotationHub [14] we can down-
load and read BigWig files from ChIP-Seq experiments from the Human Epigenome
Roadmap project [15]. Here we analyse a BigWig file corresponding to H3 lysine 27
trimethylation (H3K27Me3) of primary T CD8+ memory cells from peripheral blood,
focussing on coverage islands over chromosome 10.

First, we extract the genome information from the BigWig file and filter to get the range
for chromosome 10. This range will be used as a filter when reading the file.

library(plyranges)
chr10_ranges <- bw_file %>%

get_genome_info() %>%
filter(seqnames == "chr10")

Then we read the BigWig file only extracting scores if they overlap chromosome 10. We
also add the genome build information to the resulting ranges. This book-keeping is
good practice as it ensures the integrity of any downstream operations such as finding
overlaps.

chr10_scores <- bw_file %>%
read_bigwig(overlap_ranges = chr10_ranges) %>%
set_genome_info(genome = "hg19")

After filtering for regions with a coverage score greater than 8, we can reduce individ-
ual runs to ranges representing the islands of coverage by using the reduce_ranges()
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function. This function allows a summary to be computer over each island: in this
case we take the maximum of the scores to find the coverage peaks over chromosome
10.

all_peaks <- chr10_scores %>%
filter(score > 8) %>%
reduce_ranges(score = max(score))

Returning to the GRanges object containing normalised coverage scores, we filter to
find the coordinates of the peak containing the maximum coverage score. We can
then find a 5000 nt region centered around the maximum position by anchoring and
modifying the width.

chr10_max_score_region <- chr10_scores %>%
filter(score == max(score)) %>%
anchor_center() %>%
mutate(width = 5000)

Finally, the overlap inner join is used to restrict the chromosome 10 coverage islands,
to the islands that are contained in the 5000nt region that surrounds the max peak
(figure 4).

peak_region <- chr10_scores %>%
join_overlap_inner(chr10_max_score_region)
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Figure 4: The final result of the plyranges operations to find a 5000nt region sur-
rounding the peak of normalised coverage scores over chromosome 10, displayed as a
density plot.

Computing Windowed Statistics

Another common operation in genomics data analysis is to compute data summaries
over genomic windows. In plyranges this can be achieved via the group_by_overlaps()
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operator. We bin and count and find the average GC content of reads from a H3K27Me3
ChIP-seq experiment by the Human Epigenome Roadmap Consortium.

We can directly obtain the genome information from the header of the BAM file: in
this case the reads were aligned to the hg19 genome build and there are no reads
overlapping the mitochondrial genome. To generate bins of fixed width 10000nt we
apply the tile_ranges() function to the genomic coordinates in locations.

locations <- h1_bam_sorted %>%
read_bam() %>%
get_genome_info()

bins <- locations %>%
tile_ranges(width = 10000L)

Next we only read in alignments that overlap the genomic locations we are interested
in and select the query sequence. Note that the reading of the BAM file is deferred:
only alignments that pass the filter are loaded into memory. We can add another col-
umn representing the GC proportion for each alignment using the letterFrequency()
function from the Biostrings package [16].

alignments <- h1_bam_sorted %>%
read_bam() %>%
filter_by_overlaps(locations) %>%
select(seq) %>%
mutate(score = as.numeric(letterFrequency(seq, "GC", as.prob = TRUE)))

Finally, we use group_by_overlaps() to see where the alignments overlap the ge-
nomic windows and then apply summarize() to compute the total number of reads
and average GC content within each window.

alignments_summary <- bins %>%
group_by_overlaps(alignments %>% select(score)) %>%
summarize(n_reads = n(), avg_gc = mean(score))

Quality Control Metrics

We have created a GRanges object from genotyping performed on the H1 cell line,
consisting of approximately two million single nucleotide polymorphisms (SNPs) and
short insertion/deletions (indels). The GRanges object consists of 7 columns, relat-
ing to the alleles of a SNP or indel, the B-allele frequency, log relative intensity of the
probes, GC content score over a probe, and the name of the probe. We can use this in-
formation to compute the transition-transversion ratio, a quality control metric, within
each chromosome in GRanges object.

First we filter out the indels and mitochondrial variants. Then we create a logical
vector corresponding to whether there is a transition event.
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h1_snp_array <- h1_snp_array %>%
filter(!(ref %in% c("I", "D")), seqnames != "M") %>%
mutate(transition = (ref %in% c("A", "G") & alt %in% c("G","A"))|

(ref %in% c("C","T") & alt %in% c("T", "C")))

We then compute the transition-transversion ratio over each chromosome using group_by()
in combination with summarize() (figure 5).

ti_tv_results <- h1_snp_array %>%
group_by(seqnames) %>%
summarize(n_snps = n(),

ti_tv = sum(transition) / sum(!transition))
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Figure 5: The final result of computing quality control metrics over the SNP array data
with plyranges, displayed as a dot plot. Chromosomes are ordered by their estimated
transition-transversion ratio. A white reference line is drawn at the expected ratio for
a human exome.

Discussion and conclusion

We have shown how to create expressive and reproducible genomic workflows using
the plyranges DSL. By realising that the GRanges data model is tidy we have high-
lighted how to implement a grammar for performing genomic arithmetic, aggregation,
restriction and merging. Our examples show that plyranges code is succinct, human
readable and can take advantage of the interoperability provided by the Bioconductor
ecosystem and the R language.

A caveat to constructing a compatible interface with dplyr is that plyranges makes
extensive use of non-standard evaluation in R via the rlang package [17]. Simply, this
means that computations are evaluated in the context of the GRanges objects. Both
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dplyr and plyranges are based on the rlang language, because it allows for more ex-
pressive code that is free of repeated references to the container. Implicitly referenc-
ing the container is particularly convenient when programming interactively. Conse-
quently, when programming with plyranges, a user needs to generally understand
the rlang language and how to adapt their code accordingly. Users familiar with the
tidyverse should already have such knowledge.

We aim to continue developing the plyranges package and to extend it for use with
more complex data structures, such as the SummarizedExperiment class, the core Bio-
conductor data structure for representing experimental results (e.g., counts) from mul-
tiple sample experiments in conjunction with feature and sample metadata. The gram-
mar and design of the plryanges DSL are naturally extensible to SummarizedExperi-
ment.

As the plyranges interface encourages tidy data practices, it integrates well with the
grammar of graphics [18]. To achieve responsive performance, interactive graphics
rely on lazy data access and computing patterns, so the deferred mechanisms within
plyranges should help support interactive genomics applications.

The plyranges package can be obtained via the Bioconductor project website https:
//bioconductor.org or accessed via Github https://github.com/sa-lee/plyranges.
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