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ABSTRACT 

The significance of long non-coding RNAs (lncRNAs) in many biological processes 

and diseases has gained intense interests over the past several years. However, 

computational identification of lncRNAs in a wide range of species remains 

challenging; it requires prior knowledge of well-established sequences and 

annotations or species-specific training data, but the reality is that only a limited 

number of species have high-quality sequences and annotations. Here we first 

characterize lncRNAs by contrast to protein-coding RNAs based on feature 

relationship and find that the feature relationship between ORF (open reading frame) 

length and GC content presents universally substantial divergence in lncRNAs and 

protein-coding RNAs, as observed in a broad variety of species. Based on the feature 

relationship, accordingly, we further present LGC, a novel algorithm for identifying 

lncRNAs that is able to accurately distinguish lncRNAs from protein-coding RNAs in 

a cross-species manner without any prior knowledge. As validated on large-scale 

empirical datasets, comparative results show that LGC outperforms existing 

algorithms by achieving higher accuracy, well-balanced sensitivity and specificity, 

and is robustly effective (>90% accuracy) in discriminating lncRNAs from 

protein-coding RNAs across diverse species that range from plants to mammals. To 

our knowledge, this study, for the first time, differentially characterizes lncRNAs and 

protein-coding RNAs based on feature relationship, which is further applied in 
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computational identification of lncRNAs. Taken together, our study represents a 

significant advance in characterization and identification of lncRNAs and LGC thus 

bears broad potential utility for computational analysis of lncRNAs in a wide range of 

species. 
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INTRODUCTION 

Long non-coding RNAs (lncRNAs) are prevalently expressed in a large number of 

organisms (1-5). Evidence has accumulated that lncRNAs play vital roles in 

biological processes including transcriptional regulation, post-transcriptional 

interference, translational control (6-9) and are implicated in the development of a 

variety of human diseases (10-14). Although the rapid advancement in DNA 

sequencing technologies has led to an exponential increase in the number of lncRNAs 

(11,15,16), lncRNAs are often tissue/cell-specific (13,17,18) and 

lineage/species-specific (18,19) and thus a large number of novel lncRNAs are yet to 

be discovered. Experimental approaches (such as ribosome profiling and mass 

spectrometry) for coding potential detection could provide the most direct evidence 

but are very time-consuming and expensive yet with limited throughput. Therefore, 

computational approaches are in great demand for better characterizing the landscape 

of lncRNAs and identifying lncRNAs in a wide variety of species. 

Over the past few years, several computational algorithms have been proposed to 

identify lncRNAs, which fall roughly into two classes: alignment-based algorithms 

(20-26) and alignment-free algorithms (27-29). Representative alignment-based 

algorithms include CPC (Coding Potential Calculator) (21), PhyloCSF (Phylogenetic 

Codon Substitution Frequencies) (22), and COME (coding potential calculation tool 

based on multiple features) (26). To distinguish lncRNAs from protein-coding 
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transcripts, specifically, CPC uses sequence alignments against known proteins (21), 

PhyloCSF relies on multiple alignments of sequences from closely related species 

(22), and COME integrates multiple sequence-derived and experiment-based features 

(including DNA conservation, protein conservation, RNA structure conservation, GC 

content, expression, histone methylation) (26). Clearly, alignment-based algorithms 

are limited by the completeness of known proteins and the accuracy of DNA 

alignments and some of them are highly dependent on experiment-based features. 

Most importantly, they are incapable of identifying lncRNAs that are 

lineage/species-specific (18,19) and become unreliable when no high-quality genome 

annotation is available. Additionally, alignment-based algorithms require prior 

sequence alignments and thus are exceedingly time-consuming, especially when more 

and more known sequences become available.  

In contrast, alignment-free algorithms do not need any alignment but require 

high-quality protein-coding RNAs and lncRNAs as training data (27-30). 

Representative algorithms include CPAT (Coding-Potential Assessment Tool) (28), 

CNCI (Coding-Non-Coding Index) (27) and PLEK (predictor of long non-coding 

RNAs and messenger RNAs based on an improved k-mer scheme) (29). However, 

most of these algorithms are species-specific. These algorithms become unreliable 

when they are trained on data from one species and applied to data from another 

species (24,27,29). Moreover, alignment-free algorithms are heavily dependent on 

high-quality training data, but in reality, many species have low-quality or even no 
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annotations, especially for newly sequenced species. It is reported that there are ~8.7 

million eukaryotic species on Earth and ~90% species’ genomes are still waiting to be 

deciphered (31). Therefore, it is desirable to develop a more robust and effective 

algorithm that is able to accurately distinguish lncRNAs from protein-coding RNAs 

without the need of any prior information on alignment or training.  

It would be straightforward to classify lncRNAs and protein-coding RNAs by taking 

account of sequence features. Although sequence features have already been factored 

in existing algorithms, for instance, ORF (open reading frame) length and coverage 

(20,21,24,25,28), sequence similarity and conservation (20-25), nucleotide 

composition and codon usage (20,24,26-29), existing algorithms regard sequence 

features as independent variables and do not consider their potential biological 

relationship. Here we characterize lncRNAs by contrast to protein-coding RNAs 

based on a feature relationship between ORF length and GC content. As this feature 

relationship presents universally substantial divergence between lncRNAs and 

protein-coding RNAs as observed in a wide variety of species, we further propose 

LGC （ORF Length and GC content）, a novel algorithm for robust and effective 

discrimination of lncRNAs from protein-coding RNAs. As testified on large-scale 

empirical datasets, LGC represents a significant advance over existing algorithms by 

identifying lncRNAs in a wide range of species not only effectively but also robustly. 

To our knowledge, this is the first to differentially characterize lncRNAs and 

protein-coding RNAs based on feature relationship, which is further applicable and 
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effective in accurate identification of lncRNAs.  

METHODS AND MATERIALS 

Modeling the Relationship between ORF Length and GC Content 

It has been reported that in an ORF with random distribution of nucleotide, the 

expected ORF length increases with its GC content (32). More specifically, in an 

unbiased sequence, where the frequency of adenine is equal to that of thymine, and 

the frequency of guanine is equal to that of cytosine, i.e., PA=PT and PG=PC, the 

probability of observing a stop-codon (f) as reported in (32), can be expressed as 

f=
1

3
PTPA

2
+
2

3
PTPAPG=

1

24
�1� PGC � PGC

2
+PGC

3�,    (1) 

where PGC is the GC content and equals to PG + PC. However, the presence of intron 

(33), mutation pressure on different exons (34), and selection against cytosine (C) 

usage (35) will modulate the relationship between ORF length and GC content, so 

that the stop-codon probability can hardly be inferred from Eq. (1). Therefore, we 

compose a more flexible equation (Eq. (2)), which utilizes four parameters (a0, a1, a2, 

a3) to reflect the different relationship between GC content and stop-codon probability 

(f) in different genomic background  

f=a0+a1PGC+a2PGC
2+a3PGC

3.   (2) 
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Accordingly, the expected length of ORF is 3/f. Because of a potential bias from short 

sequences, we consider only ORFs longer than 100nt and thus, the expected ORF 

length (E(l)) can be expressed as 

E�l�=
3

a0+a1PGC+a2PGC
2
+a3PGC

3
�∑ i×Pi

100

i=1
 ,     (3) 

where Pi is the frequency of ORFs with the length of i nt (ranging from 1 to 100). 

Then we use polynomial function of GC content to approximate ∑ i×Pi

100

i=1 . 

To investigate the relationship between ORF length and GC content, we choose the 

top three longest ORFs (longer than 100nt) for each sequence and divide ORFs into 

100 groups based on their GC contents. Mean estimates of ORF length and GC 

content are used to estimate the parameters of Eq. (3) by the least square method. 

Root mean square error (RMSE) is used as the criterion function for fitting the model 

of the expected ORF length from Eq. (3) for both protein-coding RNAs and lncRNAs 

(Table 1). 

Maximum Likelihood Estimation of Coding Potential 

Protein-coding RNAs and lncRNAs are used to fit Eq. (3) to estimate parameters a0, 

a1, a2 and a3, and these estimates are then applied to Eq. (2), from which the 

probability of stop codon can be derived. For any given transcript that has n sense 

codons, its coding potential score (L) can be estimated by the maximum likelihood 

method through calculating the log likelihood ratio based on Eq. (4) 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2018. ; https://doi.org/10.1101/327882doi: bioRxiv preprint 

https://doi.org/10.1101/327882
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
10

L=log
2

p
c

p
nc

=log
2

(1�f
c
)
n-1

f
c

(1�f
nc

)
n-1

f
nc

 ,       (4) 

where pc is the probability of ORF in coding sequence, pnc is the probability of ORF 

in non-coding sequence, fc is the probability of finding a stop codon in coding 

sequence, and fnc is the probability of finding a stop codon in non-coding sequence. 

L>0 indicates it is a protein-coding RNA and L<0 indicates that it is a non-coding 

RNA. Symbols used in calculating coding potential score are listed in Table 2. 

Performance Evaluation of LGC 

Protein-coding RNAs (38,811 transcripts) and lncRNAs (27,669 transcripts) of human 

(Table S1) are used to build LGC. Ten-fold cross-validation shows that LGC achieves 

very high accuracy on human data, with an AUC of 0.981 (Figure S1). LGC is 

evaluated by comparison with several existing popular algorithms, including CPC 

(21), CPAT (28), CNCI (27), and PLEK (29). LGC, CPC, and PLEK can be used in a 

cross-species manner that do not require any training or specific model. CNCI is also 

used in a cross-species manner, but uses two specific models, namely, “ve” and “pl”, 

to identify lncRNAs in animals (human, mouse, zebrafish, worm) and plants (rice and 

tomato), respectively. Contrastingly, CPAT uses species-specific training data to 

build specific models. Specifically, it adopts species-specific logistic regression 

models to calculate coding probability and sets different cutoffs, viz., 0.36 for human, 

0.44 for mouse, 0.38 for zebrafish, and 0.39 for worm. Due to the lack of a prebuilt 

model for plant, the logistic regression model of human is additionally applied to rice 
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and tomato during performance comparison. We compare LGC with algorithms that 

can be used in a cross-species manner or adopt specific models. All datasets used for 

comparisons are summarized into Table S1. To reduce any bias from unequal 

sampling size of lncRNAs and protein-coding RNAs, we randomly select 

protein-coding RNAs with the equal number of lncRNAs. 

To compare the performance of different algorithms in distinguishing lncRNAs from 

protein-coding RNAs, protein-coding RNAs and lncRNAs are denoted as positive and 

negative samples, respectively. As a result, accuracy, sensitivity, and specificity can 

be estimated according to Eqs. (5-7), which take account of true positive (TP), true 

negative (TN), false positive (FP) and false negative (FN) predictions.  

 Accuracy �
TP+TN

TP+TN+FP+FN
       (5) 

  Sensitivity �
TP

TP+FN
        (6) 

  Specificity=
TN

TN+FP
        (7) 

Data Collection 

A total of six representative organisms are used in this study, including two mammals 

(human and mouse), one vertebrate (zebrafish), one invertebrate (worm) and two 

plants (rice and tomato). Protein-coding RNAs for human and mouse are both 

collected from NCBI RefSeq (36) and their corresponding lncRNAs are obtained 

from Gencode version 22 (37) and Gencode version M7 (38), respectively. For the 
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remaining organisms, both protein-coding RNAs and ncRNAs are downloaded from 

Ensembl (39). To obtain lncRNAs, ncRNAs shorter than 200nt are excluded. All 

detailed information of these datasets is summarized in Table S1. 

Availability 

The package of LGC can be downloaded for academic use only at BioCode (a source 

code archive for bioinformatics software tools; http://bigd.big.ac.cn/biocode) in the 

BIG Data Center (40), with accession number BT000004. In addition, a web server is 

publicly available at http://bigd.big.ac.cn/lgc/calculator. 

RESULTS AND DISCUSSION 

Characterization of Protein-coding RNAs and LncRNAs Based on Feature 

Relationship  

It is extensively documented that in protein-coding sequences ORF length is 

dominantly determined by GC content, since base composition of translational stop 

codons (TAG, TAA, and TGA) is biased toward low GC content (32,34,35). If a 

sequence is AT-rich, it is most likely that stop codons would appear earlier, resulting 

in a shorter ORF; conversely, a GC-rich sequence tends to have longer ORF because 

it is less likely to have stop codons earlier (32). Considering that protein-coding 

RNAs differ from lncRNAs in possessing significantly longer ORFs (21,24,25,28), it 

is possible that protein-coding RNAs and lncRNAs may present different 
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relationships between GC content and ORF length. Of course, ORF length, as one of 

the important features, has been widely used by the existing algorithms in coding 

potential prediction (20,21,24,25,28). However, the two features—ORF length and 

GC content—are often regarded as independent, and their relationship has not been 

well characterized in protein-coding RNAs and lncRNAs. Therefore, we model the 

relationship between ORF length and GC content and hypothesize that this 

relationship can be used to differentially characterize protein-coding RNAs and 

lncRNAs. 

To test the hypothesis, we collect protein-coding RNAs and lncRNAs from six 

representative organisms (Table S1) and examine their corresponding relationships 

between ORF length and GC content (based on Eq. (3); see Materials and Methods). 

Consistent with our expectations, protein-coding RNAs and lncRNAs present 

strikingly different relationships in all investigated organisms (Figure 1). An obvious 

inverted V-shape curve is observed in protein-coding RNAs, that is, ORF length 

increases with GC content for low-GC genes, while decreases for high-GC genes. 

This is well consistent with pervious findings that selection against cytosine usage 

(prone to mutation to T/U; e.g. CAR to TAR and CGA to TGA) (35) in GC-rich 

genes may contribute to negative correlation between GC content and ORF length. 

Compared to protein-coding RNAs, contrastingly, curves are extremely flat in 

lncRNAs. Overall, these results show that protein-coding RNAs and lncRNAs exhibit 

significant and universal heterogeneity in the relationship between ORF Length and 
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GC content (LGC model). Thus, based on the LGC model, we further explore 

whether such heterogeneity can be used to effectively distinguish lncRNAs from 

protein-coding RNAs for a wide variety of species. 

Application of the LGC Model in LncRNA Identification  

To apply the LGC model in the identification of lncRNAs, we first estimate 

parameters in Eqs. (2-3) (see Methods and Materials) using all lncRNAs and 

protein-coding RNAs for each species and build species-specific LGC (Table 1). We 

then employ these parameters’ estimates to calculate the coding potential score (Eq. 

(4)), which is an indicator to distinguish lncRNAs from protein-coding RNAs. As 

validated on empirical datasets from six representative species (Table 3), we find that 

species-specific LGC model achieves high accuracy (>0.88) in each species and 

performs well in the identification of both protein-coding RNAs and lncRNAs as 

indicated by well-balanced sensitivities and specificities. These results suggest that 

the LGC model is indeed applicable for identifying lncRNAs in a wide range of 

species. 

To further test the universality of the LGC model across different species, we 

compare the performances of species-specific LGC model against the LGC model 

built based merely on human data (whose quality is believed to be relatively higher). 

Strikingly, the LGC model based on human data overall shows better performances 

than the species-specific LGC models in terms of accuracy, specificity, and sensitivity 

(Table 3); it achieves higher accuracies (>0.91) in all six organisms, with both 
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sensitivities and specificities greater than 0.84. Although the LGC model is built 

bases on human data, high accuracy is achieved not only for mammals and vertebrates 

but also for invertebrates and plants. This result, which is most likely caused by both 

larger-quantity and higher-quality of human data, suggests that the LGC model is 

universally applicable, guaranteeing that the LGC model can be used in a 

cross-species manner without requiring species-specific data. 

Effective Discrimination of LncRNAs from Protein-coding RNAs 

To test the effectiveness of the LGC model and to examine its performance in 

discriminating lncRNAs from protein-coding RNAs, we further evaluate it on data 

from six representative organisms by comparison with several popular algorithms 

including CPC (21), CNCI (27), and PLEK (29) that can be used in a cross-species 

manner (see Methods and Materials). In what follows, the LGC model built on human 

data (as detailed above), is used in all comparisons. 

Comparative evaluations regarding accuracy, specificity, and sensitivity show that 

LGC outperforms existing algorithms, significantly and robustly across different 

species (Figure 2). Specifically, LGC overall achieves higher accuracies for all six 

organisms (higher than 0.91); it outperforms CNCI and PLEK in non-human species, 

and CPC in human, mouse, zebrafish and rice. Considering the average accuracy over 

all six species (Table 4), LGC obtains the highest average accuracy (0.937) compared 

with CPC (0.903), CNCI (0.895) and PLEK (0.822). Moreover, LGC yields better 

average specificity of 0.953 across all six species than the other algorithms (Table 4); 
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it outperforms CNCI in zebrafish and rice, PLEK in mouse, zebrafish and rice, and 

CPC in human, mouse, zebrafish and rice (and performs comparably in the remaining 

cases) (Figure 2). Regarding sensitivity, LGC achieves the average sensitivity at 

0.921 (just follows CPC at 0.981), better than CNCI at 0.848, and PLEK at 0.756 

(Table 4); it outperforms CPC in mouse, CNCI in human, worm and tomato, and 

PLEK in mouse, worm, tomato and rice (Figure 2). 

Strikingly, LGC provides well-balanced sensitivity and specificity (both higher than 

84%), which is consistently observed for all examined species (Figure 2). Contrary to 

this, existing algorithms show poor balance between sensitivity and specificity; CPC 

yields extremely unbalanced sensitivity and specificity (for instance, 0.998 and 0.651 

in human, respectively), CNCI presents sensitivity at 0.761 and specificity at 0.984 in 

worm (consistent with the previous study in (27)), and PLEK exhibits sensitivity at 

0.527 and specificity at 0.980 in worm. Taken together, these results clearly show that 

LGC achieves a good balance between sensitivity and specificity and is capable of 

discriminating lncRNAs from protein-coding RNAs more accurately than the existing 

algorithms. 

To further evaluate the performance of LGC, we also compare it with CPAT (28), 

which requires appropriate training to build specific models with different cutoff 

values (see details in Methods and Materials). Albeit CPAT uses species-specific 

models, we find that LGC overall performs better than CPAT (Figure 2 and Table 4). 

Specifically, it performs comparably with CPAT in human and outperforms CPAT in 
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non-human species (Figure 2). Although CPAT builds species-specific models for 

human, mouse, zebrafish, and fly, it does not perform well as expected. In zebrafish, 

CPAT shows poor balance between sensitivity (0.988) and specificity (0.817), 

whereas LGC yields sensitivity at 0.939 and specificity at 0.882. This may because 

that training data of different models show unequal qualities, and the robust 

performance of human, mouse, and fly models of CPAT are attributable to the high 

quality of training data sets. Also, it is noted that species-specific algorithms have 

significant limitation in application. As no prebuilt models are available for plants, we 

apply human model of CPAT to tomato and rice. However, the human model of 

CPAT presents unbalanced sensitivity (at 0.783) and specificity (at 0.994) in tomato, 

whereas LGC yields sensitivity at 0.844 and specificity at 0.995. Given that CPAT is 

heavily dependent on high-quality training data and many species presently may still 

have low-quality or even no training data, LGC bears broad utility for computational 

analysis of lncRNAs in a wide range of species.  

Robustness in a Wide Diversity of Species 

To further examine the robustness of LGC for a wider diversity of species, we set up a 

more comprehensive dataset by collecting all curated protein-coding RNAs (accession 

prefixed with NM) and ncRNAs (accession prefixed with NR) from NCBI RefSeq 

(36). All protein-coding RNAs and ncRNAs are classified into: mammals (127,903 

protein-coding RNAs from 81 species and 23,644 ncRNAs from 26 species), 

vertebrates (53,239 protein-coding RNAs from 59 species and 2,582 ncRNAs from 9 
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species), invertebrates (68,229 protein-coding RNAs from 42 species and 29,527 

ncRNAs from 11 species) and plants (97,119 protein-coding RNAs from 34 species 

and 1,795 ncRNAs from 10 species).  

We test the performance of LGC on this more comprehensive dataset derived from a 

larger number of species and compare it against existing algorithms that can be used 

in a cross-species manner without requiring any species-specific training or model. 

Accordingly, only PLEK, albeit built on human data, can be used for a wide range of 

species (29), whereas other algorithms are unsuitable for this comparison (as CNCI is 

limited to two specific models, namely, ‘ve’ for vertebrates, and ‘pl’ for plants (27), 

CPC depends on sequence alignments against known proteins (21), which are 

completely identical to the dataset obtained from NCBI RefSeq (36)). Comparative 

results show that in general LGC performs more stable and achieves higher accuracy 

(>0.9 for most datasets) in the identification of both protein-coding and ncRNAs 

(Figure 3). By contrast, PLEK, based on a k-mer scheme and a support vector 

machine (SVM) algorithm (29), performs poorly and shows an obvious imbalance in 

its ability to identify both protein-coding and non-coding RNAs for all investigated 

cases (Figure 3). In addition, PLEK presents unstable varied performances in plants, 

vertebrates, invertebrates and mammals, whereas LGC achieves robust higher 

accuracies in almost all datasets (Figure 3, Tables S2 and S3). Collectively, these 

results indicate that LGC is robust in accurately discriminating lncRNAs from 

protein-coding RNAs in a wide variety of species. 
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CONCLUSION 

To our knowledge, our study is the first to differentially characterize lncRNAs and 

protein-coding RNAs based on a feature relationship between ORF length and GC 

content, on the grounds that lncRNAs and protein-coding RNAs present considerable 

divergence in terms of this relationship, which is consistently and universally detected 

in a wide range of species. Hence, we further present LGC, a novel algorithm to 

discriminate lncRNAs from protein-coding RNAs based on this feature relationship. 

As demonstrated in multiple empirical datasets across a wide diversity of species, 

LGC is superior to existing algorithms by achieving higher accuracy and 

well-balanced sensitivity and specificity. In addition, LGC is able to accurately and 

robustly distinguish lncRNAs from protein-coding RNAs in a cross-species manner 

without the need for species-specific adjustments. Overall, LGC represents a simple, 

robust and powerful algorithm for characterization and identification of lncRNAs in a 

wide range of species, providing a significant advance for computational analysis of 

lncRNAs. 

ACKNOWLEDGEMENT 

We thank Shuhui Song, Lili Hao, and Shixiang Sun for valuable comments on this 

work. 

FUNDING 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2018. ; https://doi.org/10.1101/327882doi: bioRxiv preprint 

https://doi.org/10.1101/327882
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
20

This work was supported by Strategic Priority Research Program of the Chinese 

Academy of Sciences [XDB13040500 and XDA08020102 to Z.Z.]; National Key 

Research and Development Program of China [2017YFC0907502 and 

2015AA020108 to Z.Z.; 2016YFE0206600 to Y.B.]; International Partnership 

Program of the Chinese Academy of Sciences [153F11KYSB20160008]; National 

Natural Science Foundation of China [31200978 to L.M.]; The 100-Talent Program of 

Chinese Academy of Sciences to Z.Z. and Y.B.; The Open Biodiversity and Health 

Big Data Initiative of IUBS [Y.B.]; The 13th Five-year Informatization Plan of 

Chinese Academy of Sciences [XXH13505-05 to Y.B.]; The King Abdullah 

University of Science and Technology (KAUST) Base Research Funds 

[BAS/1/1606-01-01 to VBB]. Funding for open access charge: Strategic Priority 

Research Program of the Chinese Academy of Sciences. 

AUTHOR CONTRIBUTIONS  

LM and ZZ conceived and designed the project. Model development: GW and LM; 

Program and web server coding: GW, LM, BL, FW, XX, JC, LW; Data analysis: LM, 

GW, HY, CY; Manuscript draft: LM and GW. AA, LW, VBB and YB revised the 

manuscript. ZZ supervised this project and revised the manuscript. 

CONFLICT OF INTEREST 

The authors declare no competing financial interests. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2018. ; https://doi.org/10.1101/327882doi: bioRxiv preprint 

https://doi.org/10.1101/327882
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
21

REFERENCES 

1. Carninci, P., Kasukawa, T., Katayama, S., Gough, J., Frith, M.C., Maeda, N., Oyama, R., Ravasi, T., Lenhard, B., 

Wells, C. et al. (2005) The transcriptional landscape of the mammalian genome. Science, 309, 1559-1563. 

2. Kapranov, P., Cheng, J., Dike, S., Nix, D.A., Duttagupta, R., Willingham, A.T., Stadler, P.F., Hertel, J., 

Hackermuller, J., Hofacker, I.L. et al. (2007) RNA maps reveal new RNA classes and a possible function for 

pervasive transcription. Science, 316, 1484-1488. 

3. Pennisi, E. (2010) Shining a light on the genome's 'dark matter'. Science, 330, 1614. 

4. Djebali, S., Davis, C.A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi, A., Tanzer, A., Lagarde, J., Lin, W., 

Schlesinger, F. et al. (2012) Landscape of transcription in human cells. Nature, 489, 101-108. 

5. Liu, X., Hao, L., Li, D., Zhu, L. and Hu, S. (2015) Long non-coding RNAs and their biological roles in plants. 

Genomics Proteomics Bioinformatics, 13, 137-147. 

6. Wilusz, J.E., Sunwoo, H. and Spector, D.L. (2009) Long noncoding RNAs: functional surprises from the RNA world. 

Genes Dev, 23, 1494-1504. 

7. Mercer, T.R., Dinger, M.E. and Mattick, J.S. (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet, 

10, 155-159. 

8. Rinn, J.L. and Chang, H.Y. (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem, 81, 145-166. 

9. Chen, H., Du, G., Song, X. and Li, L. (2017) Non-coding Transcripts from Enhancers: New Insights into Enhancer 

Activity and Gene Expression Regulation. Genomics Proteomics Bioinformatics, 15, 201-207. 

10. Chen, G., Wang, Z., Wang, D., Qiu, C., Liu, M., Chen, X., Zhang, Q., Yan, G. and Cui, Q. (2013) LncRNADisease: a 

database for long-non-coding RNA-associated diseases. Nucleic Acids Res, 41, D983-986. 

11. Ma, L.N., Li, A., Zou, D., Xu, X.J., Xia, L., Yu, J., Bajic, V.B. and Zhang, Z. (2015) LncRNAWiki: harnessing 

community knowledge in collaborative curation of human long non-coding RNAs. Nucleic Acids Res, 43, 

D187-D192. 

12. Salhi, A., Essack, M., Alam, T., Bajic, V.P., Ma, L., Radovanovic, A., Marchand, B., Schmeier, S., Zhang, Z. and 

Bajic, V.B. (2017) DES-ncRNA: A knowledgebase for exploring information about human micro and long noncoding 

RNAs based on literature-mining. RNA Biol, 14, 963-971. 

13. Alam, T., Uludag, M., Essack, M., Salhi, A., Ashoor, H., Hanks, J.B., Kapfer, C., Mineta, K., Gojobori, T. and Bajic, 

V.B. (2017) FARNA: knowledgebase of inferred functions of non-coding RNA transcripts. Nucleic Acids Res, 45, 

2838-2848. 

14. Fang, Y. and Fullwood, M.J. (2016) Roles, Functions, and Mechanisms of Long Non-coding RNAs in Cancer. 

Genomics Proteomics Bioinformatics, 14, 42-54. 

15. Iyer, M.K., Niknafs, Y.S., Malik, R., Singhal, U., Sahu, A., Hosono, Y., Barrette, T.R., Prensner, J.R., Evans, J.R., 

Zhao, S. et al. (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet, 47, 199-208. 

16. Zhao, Y., Li, H., Fang, S., Kang, Y., Wu, W., Hao, Y., Li, Z., Bu, D., Sun, N., Zhang, M.Q. et al. (2016) NONCODE 

2016: an informative and valuable data source of long non-coding RNAs. Nucleic Acids Res, 44, D203-208. 

17. Cabili, M.N., Trapnell, C., Goff, L., Koziol, M., Tazon-Vega, B., Regev, A. and Rinn, J.L. (2011) Integrative 

annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev, 

25, 1915-1927. 

18. Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., Guernec, G., Martin, D., Merkel, A., 

Knowles, D.G. et al. (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene 

structure, evolution, and expression. Genome Res, 22, 1775-1789. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2018. ; https://doi.org/10.1101/327882doi: bioRxiv preprint 

https://doi.org/10.1101/327882
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
22

19. Paralkar, V.R., Mishra, T., Luan, J., Yao, Y., Kossenkov, A.V., Anderson, S.M., Dunagin, M., Pimkin, M., Gore, M., 

Sun, D. et al. (2014) Lineage and species-specific long noncoding RNAs during erythro-megakaryocytic 

development. Blood, 123, 1927-1937. 

20. Liu, J.F., Gough, J. and Rost, B. (2006) Distinguishing protein-coding from non-coding RNAs through support vector 

machines. Plos Genetics, 2, 529-536. 

21. Kong, L., Zhang, Y., Ye, Z.Q., Liu, X.Q., Zhao, S.Q., Wei, L. and Gao, G. (2007) CPC: assess the protein-coding 

potential of transcripts using sequence features and support vector machine. Nucleic Acids Res, 35, W345-349. 

22. Lin, M.F., Jungreis, I. and Kellis, M. (2011) PhyloCSF: a comparative genomics method to distinguish protein coding 

and non-coding regions. Bioinformatics, 27, i275-282. 

23. Washietl, S., Findeiss, S., Muller, S.A., Kalkhof, S., von Bergen, M., Hofacker, I.L., Stadler, P.F. and Goldman, N. 

(2011) RNAcode: robust discrimination of coding and noncoding regions in comparative sequence data. RNA, 17, 

578-594. 

24. Achawanantakun, R., Chen, J., Sun, Y.N. and Zhang, Y. (2015) LncRNA-ID: Long non-coding RNA IDentification 

using balanced random forests. Bioinformatics, 31, 3897-3905. 

25. Sun, K., Chen, X.N., Jiang, P.Y., Song, X.F., Wang, H.T. and Sun, H. (2013) iSeeRNA: identification of long 

intergenic non-coding RNA transcripts from transcriptome sequencing data. Bmc Genomics, 14, S7. 

26. Hu, L., Xu, Z., Hu, B. and Lu, Z.J. (2016) COME: a robust coding potential calculation tool for lncRNA 

identification and characterization based on multiple features. Nucleic Acids Res, 45, e2. 

27. Sun, L., Luo, H., Bu, D., Zhao, G., Yu, K., Zhang, C., Liu, Y., Chen, R. and Zhao, Y. (2013) Utilizing sequence 

intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res, 41, e166. 

28. Wang, L., Park, H.J., Dasari, S., Wang, S., Kocher, J.P. and Li, W. (2013) CPAT: Coding-Potential Assessment Tool 

using an alignment-free logistic regression model. Nucleic Acids Res, 41, e74. 

29. Li, A., Zhang, J. and Zhou, Z. (2014) PLEK: a tool for predicting long non-coding RNAs and messenger RNAs based 

on an improved k-mer scheme. BMC Bioinformatics, 15, 311. 

30. Alam, T., Medvedeva, Y.A., Jia, H., Brown, J.B., Lipovich, L. and Bajic, V.B. (2014) Promoter analysis reveals 

globally differential regulation of human long non-coding RNA and protein-coding genes. PLoS One, 9, e109443. 

31. Mora, C., Tittensor, D.P., Adl, S., Simpson, A.G. and Worm, B. (2011) How many species are there on Earth and in 

the ocean? PLoS Biol, 9, e1001127. 

32. Oliver, J.L. and Marin, A. (1996) A relationship between GC content and coding-sequence length. J Mol Evol, 43, 

216-223. 

33. Senapathy, P. (1986) Origin of Eukaryotic Introns - a Hypothesis, Based on Codon Distribution Statistics in Genes, 

and Its Implications. P Natl Acad Sci USA, 83, 2133-2137. 

34. Xia, X.H., Xie, Z. and Li, W.H. (2003) Effects of GC content and mutational pressure on the lengths of exons and 

coding sequences. J Mol Evol, 56, 362-370. 

35. Xia, X.H., Wang, H.C., Xie, Z., Carullo, M., Huang, H. and Hickey, D. (2006) Cytosine usage modulates the 

correlation between CDS length and CG content in prokaryotic genomes. Mol Biol Evol, 23, 1450-1454. 

36. Pruitt, K.D., Tatusova, T. and Maglott, D.R. (2007) NCBI reference sequences (RefSeq): a curated non-redundant 

sequence database of genomes, transcripts and proteins. Nucleic Acids Res, 35, D61-65. 

37. Harrow, J., Frankish, A., Gonzalez, J.M., Tapanari, E., Diekhans, M., Kokocinski, F., Aken, B.L., Barrell, D., 

Zadissa, A., Searle, S. et al. (2012) GENCODE: the reference human genome annotation for The ENCODE Project. 

Genome Res, 22, 1760-1774. 

38. Mudge, J.M. and Harrow, J. (2015) Creating reference gene annotation for the mouse C57BL6/J genome assembly. 

Mamm Genome, 26, 366-378. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2018. ; https://doi.org/10.1101/327882doi: bioRxiv preprint 

https://doi.org/10.1101/327882
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
23

39. Cunningham, F., Amode, M.R., Barrell, D., Beal, K., Billis, K., Brent, S., Carvalho-Silva, D., Clapham, P., Coates, 

G., Fitzgerald, S. et al. (2015) Ensembl 2015. Nucleic Acids Res, 43, D662-669. 

40. BIG Data Center Members. (2018) Database Resources of the BIG Data Center in 2018. Nucleic Acids Research, 45, 

D18-D24. 

 

TABLE AND FIGURE LEGENDS 

Table 1. Parameters for species-specific model 

Species Protein-coding RNA  LncRNA 

a0 a1 a2 a3 RMSE*  a0 a1 a2 a3 RMSE* 

H. sapiens 0.0247 -0.1109 0.1781 -0.0933 106.14  0.0018 0.0256 -0.0577 0.0356 24.94 

M. musculus 0.0295 -0.1241 0.1773 -0.0776 109.30  0.0064 -0.0035 0.0024 -0.0043 21.36 

D. rerio 0.0499 -0.2116 0.2772 -0.0941 188.41  0.0200 -0.0705 0.0919 -0.0315 53.81 

C. elegans 0.0707 -0.4205 0.8338 -0.5340 136.26  0.0067 -0.0069 0.0084 -0.0001 16.97 

O. sativa 0.0246 -0.1130 0.1803 -0.0933 114.11  0.0177 -0.0773 0.1568 -0.1033 27.48 

S. lycopersicum 0.0649 -0.3437 0.5536 -0.2249 177.46  -0.0478 0.3571 -0.7745 0.5419 66.07 

* RMSE: root-mean-square error; see Eq. (2) for more information on parameters (a0, 

a1, a2, a3). 

 

Table 2. Symbols used in calculating coding potential score 

Symbol Definition 

PA Probability of adenine 

PT Probability of thymine 

PG Probability of guanine 

PC Probability of cytosine 

PGC GC content 

f Stop-codon probability  

fc Stop-codon probability in coding sequence 

fnc Stop-codon probability in non-coding sequence 

E(l) Expected ORF length 

Pi Frequency of ORFs with the length of i nt 

pc Probability of ORF in coding sequence 

pnc Probability of ORF in non-coding sequence 

L Coding potential score 
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Table 3. Performance of LGC based on species-specific model and human model 

Species 
Species-specific model  Human model 

Accuracy Sensitivity Specificity  Accuracy Sensitivity Specificity 

H. sapiens 0.942  0.964  0.921   0.942  0.964  0.921  

M. musculus 0.956 0.948 0.965  0.965  0.960  0.969  

D. rerio 0.884 0.875 0.893  0.911  0.939  0.882  

C. elegans 0.933 0.868 0.996  0.952  0.908  0.996  

O. sativa 0.929 0.915 0.944  0.931  0.909  0.953  

S. lycopersicum 0.899 0.805 0.993  0.920  0.844  0.995  

* The species-specific model indicates that LGC is built based on species-specific 

protein-coding RNAs and lncRNAs. The human model indicates that LGC is built 

based only on human protein-coding RNAs and lncRNAs. These models are 

compared in terms of accuracy, sensitivity, and specificity, where numbers in bold 

represent the better performance.  

 

Table 4. Estimates of accuracy, sensitivity, and specificity averaged over six 

representative organisms 

Algorithm LGC CNCI CPAT CPC PLEK 

Accuracy 0.937 0.895 0.925 0.903 0.822 

Sensitivity 0.921 0.848 0.910 0.981 0.756 

Specificity 0.953 0.941 0.940 0.823 0.936 

* Numbers in bold represent the better performance.  
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Figure 1. Relationship between ORF length and GC content for protein-coding RNAs 

(red circles) and lncRNAs (blue dots), respectively. For each transcript, the top three 

longest ORFs (longer than 100nt) are used. ORFs are grouped into 100 bins based on 

their GC contents and each dot represents the averaged estimate for each bin. 

 

Figure 2. Performances of LGC, CNCI, CPAT, CPC, and PLEK. LGC, CPC, CNCI, 

and PLEK can be used in a cross-species manner, while CPAT uses specific models 

and cutoffs for different species (see Methods and Materials). 

 

Figure 3. Accuracy of LGC and PLEK on protein-coding RNAs and non-coding 

RNAs from NCBI RefSeq. The number of sequences (n) as well as the number of 

species (s) is labeled. The boxes depict data between the 25th and 75th percentiles 

with central horizontal lines representing the median values. The Wilcoxon test is 

used to evaluate the significance level when comparing the accuracy between LGC 

and PLEK, and P-value is indicated by NS (Not Significant) > 0.05, ‘*’ < 0.05, ‘**’ < 

10-3, and ‘***’ < 10-5. Comparison results for each species are listed in Table S2 

(non-coding RNA) and Table S3 (protein-coding RNA). 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2018. ; https://doi.org/10.1101/327882doi: bioRxiv preprint 

https://doi.org/10.1101/327882
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2018. ; https://doi.org/10.1101/327882doi: bioRxiv preprint 

https://doi.org/10.1101/327882
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2018. ; https://doi.org/10.1101/327882doi: bioRxiv preprint 

https://doi.org/10.1101/327882
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 30, 2018. ; https://doi.org/10.1101/327882doi: bioRxiv preprint 

https://doi.org/10.1101/327882
http://creativecommons.org/licenses/by-nc-nd/4.0/

