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Abstract 17 

Background: Vaccination is an effective method to protect against infectious diseases. An 18 
important consideration in any vaccine formulation is the inoculum dose, i.e., amount of 19 
antigen or live attenuated pathogen that is used. Higher levels generally lead to better 20 
stimulation of the immune response but might cause more severe side effects and allow for 21 
less population coverage in the presence of vaccine shortages. Determining the optimal 22 
amount of inoculum dose is an important component of rational vaccine design. A 23 
combination of mathematical models with experimental data can help determine the 24 
impact of the inoculum dose. 25 

Methods: We designed mathematical models and fit them to data from influenza A virus 26 
(IAV) infection of mice and human parainfluenza virus (HPIV) of cotton rats at different 27 
inoculum doses. We used the model to predict the level of immune protection and 28 
morbidity for different inoculum doses and to explore what an optimal inoculum dose 29 
might be. 30 

Results: We show how a framework that combines mathematical models with 31 
experimental data can be used to study the impact of inoculum dose on important 32 
outcomes such as immune protection and morbidity. We find that the impact of inoculum 33 
dose on immune protection and morbidity depends on the pathogen and both protection 34 
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and morbidity do not always increase with increasing inoculum dose. An intermediate 35 
inoculum dose can provide the best balance between immune protection and morbidity, 36 
though this depends on the specific weighting of protection and morbidity. 37 

Conclusions: Once vaccine design goals are specified with required levels of protection and 38 
acceptable levels of morbidity, our proposed framework which combines data and models 39 
can help in the rational design of vaccines and determination of the optimal amount of 40 
inoculum. 41 

Introduction 42 

Vaccines are the best and most cost-effective defenses we have against many infectious 43 
diseases. While the composition of a vaccine can be complex, the most important 44 
component is the antigen of the pathogen against which one wants to immunize [1]. 45 
Different types of vaccines exist, those based on antigens that contain the pathogen in a 46 
non-replicating form, and those that contain the pathogen in a replicating form, usually 47 
attenuated to reduce morbidity and mortality [1]. 48 

When deciding on the inoculum dose for a vaccine, one often needs to strike a balance 49 
between conflicting goals. Higher doses generally lead to more immunity and better 50 
protection [2]. Lower doses might reduce vaccine side effects and might also be required if 51 
there is a vaccine shortage, for instance due to a pandemic emergency, manufacturing 52 
issues or high costs [3,4]. The ability to predict how changes in inoculum dose impact 53 
immune protection and morbidity, and how to achieve the best balance between enough 54 
inoculum to trigger a robust immune response and low enough inoculum would 55 
significantly contribute toward better vaccine design [5–12]. 56 

Currently, the main way to determine vaccine inoculum dose is by trial and error, which is 57 
expensive and logistically challenging [13–16]. A way to improve this approach is to 58 
combine mathematical models with experimental data. Such approaches are commonly 59 
applied to drugs, where pharmacokinetic/pharmacodynamic (PK/PD) models are used in 60 
combination with experimental data to try and optimize drug dosing regimens [17]. 61 
Application of a similar approach to vaccines has been recently proposed for tuberculosis 62 
[18]. 63 

Here, we develop and analyze a quantitative modeling framework that might allow us to 64 
eventually predict the optimal inoculum dose for a given vaccine and setting. We develop 65 
our modeling framework for live attenuated vaccines using data from two infection 66 
experiments, namely influenza A virus (IAV) and human parainfluenza virus (HPIV). We 67 
further investigate a scenario for an inactivated vaccine. 68 

Influenza A virus remains a serious health concern. While a vaccine exists, it needs to be 69 
reformulated regularly. Even when the vaccine is well-matched to the circulating strain, its 70 
efficacy is not as good as that of other vaccines, especially in the elderly. It has been 71 
suggested that using a higher inoculum dose in vaccines for this population might be 72 
beneficial [19]. Development of a better vaccine that remains protective in the presence of 73 
antigenic drift and that has a higher efficacy remains a priority. 74 
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Human parainfluenza virus (HPIV) is an important cause of lower respiratory tract illness 75 
in children [20–24]. There is currently no licensed vaccine available against HPIV 76 
[11,21,24], despite various attempts to develop such a vaccine [25]. 77 

While the two pathogens we analyze here are important on their own, we consider the 78 
most important contribution of this study to be the development of a conceptual, 79 
quantitative framework that may be used to rationally design vaccines and determine an 80 
optimal inoculum dose for any pathogen. 81 

Materials and Methods 82 

Experimental data 83 

We analyzed data from two previously published studies, one on influenza A virus (IAV) 84 
infections in mice [26] and the other on human parainfluenza virus (HPIV) type 3 infection 85 
in cotton rats [27]. 86 

For the IAV study, groups of mice were infected with 6 different inoculum doses of the 87 
H1N1 PR8 strain of influenza. Geometric mean viral titers were recorded at different times 88 
following the infection with each dose. In addition, lung damage was measured and scored. 89 

For the HPIV study, groups of cotton rats were infected with 5 different doses of HPIV-3. 90 
Geometric mean viral titers were recorded at different times following infection in both 91 
lung and nose. For the highest inoculum dose, the study additionally reported several virus 92 
measurements over the first 96 hours. The study also reported antibody titers 21 days 93 
after infection for the 3 lowest inoculum doses for which virus data was reported. 94 

We used an additional data set to estimate a mapping between innate immune response 95 
strength and morbidity. This data was taken from a previously reported challenge study of 96 
influenza infection in human volunteers [28]. We used the reported values for different 97 
components of the innate response (IFN-a, IL6, IL8 and TNF-a) and total symptom score as 98 
measure of morbidity. 99 

For further experimental details, we refer the reader to the original studies. 100 

Mechanistic dynamical infection model 101 

We formulated and implemented a mechanistic, dynamical model of the infection dynamics 102 
based on a set of ordinary differential equations. The model is based on our previous work, 103 
where we analyzed the relationship between inoculum dose and viral load dynamics [29]. 104 
The model is also similar to many other models that have recently been used to model 105 
acute viral infections (see e.g. [30–33]). 106 

Our model tracks target cells, virus, and certain immune response components. Uninfected 107 
cells, �, become infected by free virus, �, at rate �. Infected cells, �, produce virus at rate � 108 
and die at rate ��. For purposes of comparison with the data, we keep track of dead cells 109 
through an extra compartment, �. 110 
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Free virus infects cells at rate ��, is cleared by antibodies at rate ���  or removed due to other 111 
mechanisms (e.g. mechanical transport) at rate ��. Note that �� and ���  differ from 112 
parameters � and �� to account for experimental units (PFU for virus and titer for 113 
antibody). Since we are modeling short, acute infections, we follow the usual assumption 114 
and ignore growth and death of uninfected target cells [30,31]. 115 

In addition to the basic infection process, we also model components of the innate and 116 
adaptive immune response. We consider a generic innate response, 	, which is produced 117 
and decays at rates ��  and ��  in the absence of an infection. Presence of virus leads to an 118 
increase in the innate response, with growth saturating at a maximum rate 
�. The 119 
maximum level the innate response can reach is given by the saturation parameter 	���. 120 
Since the innate response units are arbitrary, the model is set up such that in the absence of 121 
infection, the innate response is at a steady level of 	 � 1, which leads to �� � ��. We also 122 
fix the parameter representing the decay rate at �� � 1 per day, which is in line with 123 
estimates from an influenza infection analysis in ponies [34]. 124 

The innate response is modeled as having two main mechanisms of action. First, it can 125 
directly counteract the virus by, for instance, reducing virus production rate of infected 126 
cells [35]. In our model, the strength of production suppression is determined by the 127 
parameter � . The second action of the innate response is to induce the adaptive response, 128 
as described next. 129 

For the adaptive response, we focus on B-cells and antibodies, which are the major 130 
correlates of protective immunity for most vaccines, including HPIV and IAV [23,36]. The 131 
dynamics of activated B cells is modeled as increasing in a sigmoidal manner dependent on 132 
both the amount of virus (antigen) and the innate response, with a maximum rate 
	. Since 133 
we are focusing on the short-term dynamics of the system, B-cell decay is ignored. In the 134 
absence of an infection, B-cells are set to an arbitrary level of 1. B-cells produce antibodies 135 
at rate ��. Antibodies decay naturally at rate �� and bind to and remove free virus at rate 136 
��. 137 

The model is implemented as a set of ordinary differential equations given by the following 138 
set of equations: 139 

Uninfected cells  �� � ����
Infected cells  �� � ��� � ���

Dead cells  �� � ���
Virus  �� � �

1 " �	 � � ��� � ��� #� � ����

Innate response  	� � �� � ��	 " �
� " &� 
�'	
�� � 	(

B cells  *� � 	�
	� " &� 
	*

Antibodies  #� � ��* � ��# � ��#�

  '1( 
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Model fitting 140 

The model is fit to the IAV and HPIV data. For IAV the fit is to the virus load and lung 141 
damage data. For HPIV, the fit is to the virus load and antibody data. For each pathogen, we 142 
fit data for all different inoculum doses simultaneously to the model. For each inoculum 143 
dose, -, we estimate the starting value for the virus inoculum, � . All other model 144 
parameters are shared across different inoculum doses. 145 

Model performance is assessed by the sum of squared residuals (SSR). To allow 146 
computation of a single SSR value for the different experimental variables, the contribution 147 
of each variable is non-dimensionalized by dividing by the variance of the data. To give the 148 
different experimental variables comparable importance, we also divide each variable by 149 
the number of data points. This amounts to over-weighting the few data points for lung 150 
damage (AIV) and antibody response (HPIV) and reducing the weight for the more plentiful 151 
viral load data. Mathematically, the expression for the SSR is given by 152 

../ � 0 1
1��

,�

'�,�
 � �,�� (�
2�'��( " 1

1��

'3,�

 � 3,�

� (�
2�'3�(  

Here, � is viral load (on a log scale) and 3 represents either antibodies (for HPIV) or 153 
damage (for IAV), the superscript indicates model (4) or data (�), the sum runs over all 154 
inoculum doses, -, and all time points, 5. 1 indicates the number of data points for either the 155 
virus or the other variable, 2� indicates the variance for that variable. Since both damage 156 
and antibodies (3) are measured in different units in the data and the model, each are 157 
normalized before subtracting and squaring. While this re-scaling is only necessary for the 158 
instances where we compare model and date (lung damage for IAV and antibodies for 159 
HPIV), for consistency between models, we show re-scaled values for both lung damage 160 
and antibodies for both AIV and HPIV. 161 

The model is being fit by varying model parameters to minimize the ../. When doing so, 162 
we take into account left-censored nature of the data. If the reported virus load is at or 163 
below the limit of detection (LOD, which is 0.27 log10 units for IAV and 2 log10 units for 164 
HPIV as reported in the original studies), we treat the difference between model and data 165 
as being the difference between model and LOD if the model prediction is above the data, 166 
and we do not count any difference between model and data for any model prediction 167 
below the LOD data point [37,38]. 168 

Model implementation 169 

All computations were done in the R programming language version 3.4.3 [39]. Fitting was 170 
done using the nloptr optimizer package [40], differential equations were integrated using 171 
the deSolve package [41]. All data and code required to reproduce all results presented 172 
here are supplied as supplementary material. 173 
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Results 174 

Data extraction 175 

The data used for our study was obtained from the original reports as follows. 176 

For the IAV study, we obtained log viral load and lung lesion score expressed in percent 177 
lung damage from table 1 of [26]. The viral kinetics of the highest inoculum dose strongly 178 
hints at survivor bias (see figure 1 of [26]). Specifically, the data suggest that sicker mice, 179 
with presumably higher virus load, were killed and sampled first, while less sick mice, with 180 
presumably lower virus load, were kept alive and sampled later. We, therefore, decided to 181 
exclude the data for the highest inoculum dose from consideration, leaving us with viral 182 
load and percent lung damage data for 5 different inoculum doses. 183 

For the HPIV study, we focused on lung viral load. The data was extracted from figures 1 184 
and 2 of [27] using Engauge Digitizer [42]. Viral load kinetics for the highest inoculum were 185 
measured twice with some overlap in times (24h and 96h). We averaged data for these 186 
times from the 2 experiments. We additionally obtained data on antibody titers for those 187 
inoculum doses for which viral load was reported (the 3 lowest inoculum doses) from 188 
figure 3 of [27]. 189 

For the data linking innate response to symptoms, total symptoms score data was extracted 190 
from figure 3 and innate immune response data from figures 5 and 6 of [28] using Engauge 191 
Digitizer. More details on how this data was used are provided in a later section. 192 

Data extracted from these 3 studies are shown in Figures 1, 2 and 4 (together with the best 193 
fit models, described below), and are also included in the supplementary material. 194 

Model development and fitting 195 

The model we developed is described in detail in the methods section. For each data set, we 196 
fit the model to the viral load data, and either lung damage (IAV) or antibody (HPIV) data. 197 
Details on the fitting approach are provided in the methods section. The model fits and data 198 
for IAV and HPIV are shown in figures 1 and 2 respectively. Parameter values for the best 199 
fits are given in the supplementary material. 200 
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 201 

Figure 1 IAV infection at five different inoculum doses. Data was available for virus load and 202 

cell damage. Kinetics for 6 of the seven model compartments for the best fit model are shown. 203 

Infected cells kinetics very closely follows virus kinetics and is therefore not shown. Dashed 204 

horizontal line indicates the limit of detection for virus load. 205 
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 206 

Figure 2 HPIV infection at five different inoculum doses. Data was available for virus load and 207 

antibody titers. Kinetics for 6 of the seven model compartments for the best fit model are 208 

shown. Infected cells kinetics very closely follow virus kinetics and is therefore not shown. 209 

Dashed horizontal line indicates the limit of detection for virus load. 210 

Quantifying Immune Protection 211 

We want to quantify the amount of protective immunity induced by different inoculum 212 

doses. We focus on the B-cell and antibody component of the adaptive immune response. 213 

Provided antibodies are specific to the pathogen, higher levels of antibodies generally lead 214 

to better protection [43–45]. Recent studies for influenza vaccines [46,47] have shown that 215 

the following function provides a good mapping from antibody titer to the level of 216 

protection from infection: 217 

 

Here, the level of protection, , varies between 0 and 1, with low protection for low levels 218 

of antibody titer, , and maximum protection at high levels. The constants  and  219 

determine the slope of the curve and the level at which protection is at 50% respectively 220 

(see [46] for more details). This functional shape is also consistent with data for other 221 

pathogens [43–45]. Figure 3 illustrates this relationship between antibody levels and 222 

protection graphically. 223 
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 224 

Figure 3 Protection as function of antibody levels (k1 = 1, k2 = log(100)). 225 

Our model represents antibodies in units of numbers of antibodies. In general, 226 

experimental studies report antibody neutralizing titers or similar assay-specific units. For 227 

this reason, and because we have no data for the correlation between antibody titers and 228 

protection for either the HPIV or IAV data we analyze, it is impossible to determine specific 229 

choices for  and  for our study systems. We instead chose values such that the antibody230 

levels considered span the full range from low to high protection levels. Specifically, we set 231 

 and  where  is the range of antibody levels predicted by our model 232 

for different inoculum doses and  is the expected value. This choice is essentially arbitrary233 

and therefore the protection curves we present below are to be understood conceptually. 234 

Quantifying Morbidity 235 

It is still not fully understood how virus and immune response affect host morbidity, i.e. the236 

severity of symptoms. For virus infections, host morbidity can result in virus-induced death237 

of infected cells, as well as immune response mediated pathology. A study of influenza 238 

infection in humans showed that a model in which symptom score was proportional to 239 

innate cytokine levels provided an adequate fit to the data [48]. Another study of influenza 240 

infections used a combination of innate cytokine (interferon) levels and cell death to define241 

morbidity as , where  is the total number of dead cells, and  242 

was chosen to be a sigmoidal mapping of log interferon levels [49]. Similarly, a previous 243 

model for dengue infections assumed that morbidity was proportional to the peak of the 244 

innate response, i.e.  [50]. In the case of vaccines, strong pathological effects 245 

such as the death of a meaningful fraction of target cells do not occur. It therefore seems 246 

most reasonable to express morbidity (strength of symptoms) as a function of the innate 247 

immune response. 248 

To obtain an estimate for a mapping between innate immune response and morbidity, we 249 

use data from a previously reported challenge experiment of influenza infection in human 250 

volunteers [28]. We use the reported values for different components of the local innate 251 

y 

y 

e 
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response (IFN-a, IL6, IL8, and TNF-a) and, after scaling each component to a maximum 252 

value of 1, sum them to obtain an estimate for the total innate response strength. This total 253 

response quantity is again scaled and then mapped to morbidity, measured as total 254 

symptom score. Figure 4 shows the data. 255 

 256 

Figure 4 Data and best fit model for the connection between immune response and symptoms. 257 

Also shown is the best fit of a sigmoidal model that provides a mapping between innate 258 

response and morbidity. The model is given by 259 

 

where  is morbidity as measured by total symptom score, and  is the scaled innate 260 

response. Best fit parameter values are  = 6.5 and  = 0.66. The parameter  was fixed at 261 

36, corresponding to the maximum score possible based on the study protocol [28]. While a262 

simpler linear model would fit the data equally well, it is less biologically reasonable since 263 

it would allow an unbounded increase in symptoms. 264 

From our simulations, we obtain the time course of the innate response, . After rescaling 265 

this quantity, we use equation (3) to compute the time course for morbidity, . Finally, we 266 

take the integral of the morbidity over the duration of the infection to compute total 267 

morbidity as the area under the morbidity curve (MAUC). Since this approach mixes model 268 

simulations based on animal infections with morbidity estimates based on human data, the 269 

resulting morbidity curve should be interpreted in a similar conceptual way as the 270 

protection curve described above. 271 

a 
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Immunity and pathogenesis as function of inoculum 272 

After fitting the dynamical infection model (1) to each data set, we used the best-fit 273 

parameter values and ran simulations for a range of inoculum doses. Several time-series 274 

for the IAV and HPIV model simulations spanning the whole range of simulated inoculum 275 

doses are shown in figures 5 and 6. 276 

 277 

Figure 5 IAV model simulation for a range of inoculum doses. 278 
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 279 

Figure 6 HPIV model simulation for a range of inoculum doses. 280 

From these time-series, the level of protection and morbidity was computed. The model is 281 

simulated for 21 days, predicted antibodies are recorded at the final time. From these 282 

antibody levels, we compute immune protection using equation (2). We also record the 283 

predicted innate immune response, and, after scaling, use equation (3) to compute 284 

morbidity, and by integrating the area under the curve, determine the total amount of 285 

morbidity during the infection. Those results are shown for IAV are shown in figure 7, 286 

figure 8 shows results for HPIV. 287 
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 288 

Figure 7 Inoculum dependent protection and damage for the IAV infection model. 289 

 290 

Figure 8 Inoculum dependent protection and damage for the HPIV infection model. 291 
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An inactivated vaccine model 292 

The model and data above are for replicating pathogens, as such representing live, 293 
attenuated vaccines. Another important category of vaccines are those where the pathogen 294 
is killed and non-replicating. A modification of the above model can be used to simulate 295 
such a vaccine. For such a vaccine, cells do not get productively infected, and one can 296 
remove the variables tracking uninfected and infected cells. The model simplifies to 297 

Antigen  7� � ���7 � ��� #7
Innate response  	� � �� � ��	 " 7

7 " &� 
�'	
�� � 	(

B cells  *� � 	7
	7 " &� 
	*

Antibodies  #� � ��* � ��# � ��#7

 

We were not able to find data in the published literature for antigen (and possibly other 298 
model components) time series for different inoculum doses that would be detailed enough 299 
to allow model fitting. We therefore instead chose arbitrary values for model parameters 300 
that produced reasonable dynamics and explored the impact of inoculum/antigen dose on 301 
protection and morbidity for such a generic model. Figure 9 shows simulated time-series 302 
for different inoculum doses and figure 10 shows the resulting predicted immune 303 
protection and morbidity. 304 
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 305 

Figure 9 Model for non-replicating vaccine. Model parameters were set to , 306 

, , , , , , , , 307 

. Initial conditions are F = 1, B = 1, A = 0 and varying values for antigen load. 308 

 309 

Figure 10 Inoculum dependent protection and damage for the inactivated vaccine model. 310 
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Optimal Inoculum dose illustration 311 

Once immune protection and morbidity as a function of inoculum dose are predicted by the312 

model, one can potentially determine optimal inoculum dose choices. The optimal amount 313 

depends on the main goals of the vaccine formulation. One could, for instance, choose a 314 

minimum acceptable level of immune protection or maximum acceptable level of 315 

morbidity, and determine the inoculum dose for those criteria. Another possibility is to 316 

compute and maximize a quantity that is a compound of immune protection and morbidity,317 

with specific weights assigned to protection and morbidity. We illustrate this idea 318 

conceptually by looking at a very simple quantity, namely the ratio of immune protection to319 

morbidity (as defined by the area under the curve), P/M. Figure 11 shows this quantity for 320 

the IAV and HPIV infections as well as for the inactivated vaccine. 321 

 322 

Figure 11 Ratio of protection, P, over morbidity, M, for different inoculum doses. 323 

In each case, the amount of inoculum that leads to the highest ratio of P/MAUC occurs at an 324 

intermediate dose. 325 

Discussion 326 

In many situations, a higher inoculum dose of either live attenuated or killed antigen in a 327 

vaccine leads to a stronger immune response and subsequently likely better antibody or T-328 

cell mediated immune protection [51]. However, this does not have to be universally true. 329 

Once inoculum doses increase beyond some threshold, the innate immune response might 330 

be triggered too strongly, which in turn could lead to an impaired adaptive immune 331 

e 

 

o 
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response and thus reduced immune protection. Similarly, while increased inoculum usually 332 
leads to more morbidity and stronger symptoms, this again might not be universal and 333 
depends on the interaction of pathogen and immune response. 334 

In this study, we used a combination of data and models to explore how inoculum dose 335 
impacts immune protection and morbidity. We found that for the examples investigated, 336 
sometimes there is a monotonic or almost monotonic increase of protection and morbidity 337 
as inoculum increases (inactivated vaccine and IAV examples), while other times 338 
protection and morbidity can decline once dose increases beyond some value (HPIV 339 
example). For the illustrative example of an optimal dose based on a simple ratio of 340 
protection to morbidity, all our examples suggest that an intermediate amount of inoculum 341 
dose is optimal. 342 

Our study fits into the recently proposed framework of 343 
Immunostimulation/Immunodynamic (IS/ID) modelling, which has been proposed as a 344 
framework to combine models and data for better vaccine formulation decisions [18], in 345 
analogy to the well-established pharmacokinetic/pharmacodynamic (PK/PD) modelling 346 
approach widely used in drug development [17]. 347 

We believe that using an approach that combines modeling with data can help in the 348 
development of more efficient vaccines. The key toward that goal is the availability and 349 
integration of the right kind of models and data. Since the data we analyzed is a mix of 350 
animal and human data and neither is complete enough to allow the whole modeling 351 
framework to be applied to it, the results presented here are to be considered mainly 352 
conceptually. The ideal type of data tracks antigen or pathogen load and different immune 353 
components over time, as well as morbidity (e.g. through weight loss in mice or symptom 354 
reports in humans) and includes immune protection data through challenge studies. Such 355 
data would need to be collected for several inoculum doses. Integrated with the models we 356 
analyzed here, it could then allow one to predict the impact over a full range of inoculum 357 
doses, including those not experimentally measured. 358 

Being able to predict the expected protection achieved for a given inoculum dose can help 359 
in the design of vaccines in cases when only limited antigen is available, e.g. in emergency 360 
situations [4]. Having information on both immune protection and expected morbidity 361 
allows one to determine an optimal inoculum dose based on the - often conflicting - goals of 362 
high protection and low morbidity. For instance, one could systematically answer 363 
questions such as, “If we require at least 80% immune protection, what would the 364 
minimum amount of inoculum need to be? And what level of morbidity/side-effects would 365 
this induce?” Currently, both modeling and experiments are not yet able to be used in such 366 
a specific manner. However, a tighter integration of experiments with models, and further 367 
model refinement should allow one to use the modeling approach discussed here in the 368 
future to help design vaccines. 369 

Some promising extensions and refinements of the models are inclusion of further 370 
components of the immune response. For instance, given that T-cells are also known to 371 
play an important role in immune protection and are affected by inoculum dose [52,53], it 372 
would be beneficial to extend experimental and modeling studies in the future and 373 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 22, 2018. ; https://doi.org/10.1101/328559doi: bioRxiv preprint 

https://doi.org/10.1101/328559


consider both the B-cell and T-cell components of the adaptive response. Similarly, 374 
provided more detailed data on specific components of the innate response is available, 375 
including those components explicitly in the models might be useful. Another extension 376 
would be to consider stochastic models, which would better be able to capture variation 377 
among patients. This would require individual host data to be available for analysis and 378 
modeling. 379 

To summarize, we developed a modeling framework that might allow a systematic and 380 
quantitative determination of the impact of different inoculum doses on resulting immune 381 
protection and morbidity. We applied this approach to several data sets to illustrate the 382 
general concept and show how it can lead to important insights, e.g. ‘more inoculum does 383 
not always lead to more immune protection’. The modeling and analysis framework 384 
presented here can be applied to data from specific vaccine candidates and help to more 385 
efficiently determine the optimal dose. 386 
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