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Abstract

Motivation: Bioinformatics techniques to analyze time course bulk and single cell omics
data are advancing. The absence of a known ground truth of the dynamics of molecular
changes challenges benchmarking their performance on real data. Realistic simulated
time-course datasets are essential to assess the performance of time course
bioinformatics algorithms.

Results: We develop an R/Bioconductor package CancerInSilico to simulate bulk and
single cell transcriptional data from a known ground truth obtained from mathematical
models of cellular systems. This package contains a general R infrastructure for cell-
based mathematical model, implemented for an off-lattice, cell-center Monte Carlo
mathematical model. We also adapt this model to simulate the impact of growth
suppression by targeted therapeutics in cancer and benchmark simulations against bulk
in vitro experimental data. Sensitivity to parameters is evaluated and used to predict the
relative impact of variation in cellular growth parameters and cell types on tumor
heterogeneity in therapeutic response.

Availability and Implementation: CancerInSilico is implemented in an R/Bioconductor
package by the same name. Applications presented are available from
https://qgithub.com/FertigLab/CancerinSilico-Figures.
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Introduction

Time course bioinformatics analysis techniques are emerging to delineate cellular
composition and pathway activation from longitudinal genomics data [1,2]. However,
benchmarking their performance is challenged by a lack of ground truth of the
processes occurring in those datasets. For example, even relatively simple covariates,
such as cellular density and proliferation rates impact experimental measures at a given
time point, such as therapeutic sensitivity in cancer [3]. The interactions between these
processes will introduce even greater complexity in gene-level dynamics. Simulated
data can enable such benchmarking of bioinformatics analysis methods for omics data.
Statistical methods that utilize expected gene expression profiles from reference
datasets to model the error distribution of bulk and single cell sequencing data are
prominent [4—6]. Yet, there are few time course omics datasets to use as a benchmark
and even fewer with known cellular-molecular dynamics. Therefore, new simulation
systems with known ground truth are needed to benchmark the performance of
emerging time course bioinformatics algorithms for bulk and single cell datasets.

Mathematical models of cellular dynamics are maturing in systems biology and can be
used to track the unmeasurable state of the processes occurring in each cell in complex
biological systems, such as cancer [7—13]. Some models simulate cell growth at a
cellular level, where the population behavior is driven by the laws governing the
individual cells and their interactions [14,15]. To further capture the complexity of
biological systems, numerous multiscale and hybrid models linking cellular signaling to
the equations of the cellular composition are emerging [16—18]. These models often
require numerous parameters to simulate high throughput proteomic and transcriptional
data. Therefore, these models that simulate high throughput data often have similar
complexity to real biological systems. Thus, it is nearly as intractable to benchmark the
performance of time course bioinformatics algorithms against these simulated data as it
is for high throughput time course data generated from biological experiments. Another
challenge to the adoption of mathematical models for bioinformatics benchmarking is a
lack of software implementing them in the R language widely used by the bioinformatics
community. Creating a mathematical model-based simulation of genomics data in R
enables direct application to use these simulations as a ground truth for time-course
bioinformatics techniques for bulk and single cell data.

In this paper, we present a new software package to simulate time course
transcriptional data. The model is implemented in the R/Bioconductor package
CancerInSilico and includes extensions to simulate single cell RNA-seq data. The
underlying mathematical model for cellular growth in this model is an off-lattice, cell-
center Drasdo and HOhme Monte Carlo mathematical model [14]. We develop an
extension to this model that also include a distribution of cellular growth rates and cell
types. We then simulate pathway activity from our new model based upon the simulated
distribution of growth factor, state in the cell cycle, and cellular type. We tailor the
applications of this model to cancer, by further extending the Drasdo and H6hme model
[14] to also include a targeted therapeutic that represses the growth factor signaling
pathway and thereby alters cellular growth rates. Finally, we couple this mathematical
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model with a statistical model from [19] to simulate transcriptional data based upon
simulated pathway activity and curated gene sets [20,21]. We simulate data from
microarrays, RNA-seq, and single cell RNA-seq using established platform-specific
error distribution models [4,19,22]. Finally, we benchmark the resulting cellular behavior
and transcriptional data relative to time course in vitro data of four cancer cell lines
treated with cetuximab. We explore the impact of intra-tumor heterogeneity of growth
rates and cellular composition on the model reflective of growth curves for a head and
neck cancer patient derived xenograft with and without cetuximab treatment. The
package is developed generically, using S4 classes to enable users to readily add
custom cellular behavior and signaling pathways in the simulation of time course
transcriptional data.

Materials and Methods
CancerlInSilico package and cellular growth model

The core cellular growth model in CancerInSilico is an off-lattice, stochastic cell-based
model. The model inputs data from three distinct classes of parameters: (1) cellular
population distributions, (2) cellular properties, and (3) cellular mechanics. Each of the
parameters for these classes is described in detail in Supplemental File. Briefly,
cellular population distributions represent the relative density of cells and experimental
conditions such as cellular synchronization or presence of a boundary. Cellular
properties describe the expected cell cycle length and cell size, whereas cellular
mechanics encode parameters for cellular movement and cellular response to contact
inhibition. The former may be freely set by the user to reflect different cellular types and
therapeutic response, while the latter are fixed from parameterization in previous
studies [14]. CancerInSilico is run through the core function inSilicoCellModel for a
specified run time, and the model outputs the size, shape, and cell cycle state for each
simulated cell (Figure 1). The implementation in the CancerIinSilico model simulates
cellular growth in two dimensions. The code provides an R class structure called
CellModel that generalizes to all classes of cell-based models and can be readily
extended to model three-dimensional tumor growth. Users may develop their own code
based upon this framework implement alternative modeling strategies for any of these
components of the model, including notably cellular division and cellular mechanics.
New models encoded with this class structure can directly utilize functions from
CancerInSilico to run the simulation, visualize cells, and simulate omics data from other
mathematical models. In our case, we utilize this infrastructure to add cancer-specific
extensions to the model in Drasdo and Ho6hme [14] such as therapeutic effect and
multiple cellular types. All simulations presented here use the CancerlnSilico
Bioconductor package version 2.0. The code to reproduce these simulations is available
from https://github.com/FertigLab/CancerInSilico-Figures.

Pathway simulation

The connection between the cell model and the gene expression simulation happens
through user defined pathways that are then associated with gene expression changes
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in a corresponding set of genes annotated to that pathway (Figure 1). We define an
intermediate variable (P) that is a continuous value between zero and one that records
how active each biological pathway is within each modeled cell. For this study, we
model four pathways related the phase transition from G to S and G to M, growth factor
signaling, and contact inhibition. For the G to M and G to S pathways, cells are either 0
or 1 at the current time point depending on if they transitioned between cell cycles within
a specified time window from the current time. In this simulation, the transition to S
phase occurs when the cell is half its maximum size and transition to M phase when the
cell divides. Activity in the growth factor signaling pathway is assumed to be
proportional to the expected cell cycle length of each cell, which differs from the true cell
cycle length that occurs in the stochastic simulation. Specifically, every cell in the
simulation has an inherent expected growth rate that is based on its cell type. This is an
intrinsic property of each cell, and the distribution of these growth rates is an input
parameter to the model. We scale the expected growth rates by assuming they are
exponentially distributed with a mean length of 48 hours. This scaling ensures that
simulations with different distributions of growth rates are directly comparable, for
example enabling comparison of simulated omics data from treated and untreated cells,
without the introduction of artificial maximum or minimum cell division times. The
pathway activity for growth genes is a negative exponential function of this inherent
growth rate. The contact inhibition activity is defined by the “local density” of the cell,
which is the proportion of area within 50% of the minimum cell radius of the reference
cell that is occupied by other cells.

Simulating gene expression data

Once pathways are simulated, gene expression data is simulated based upon
annotated gene sets for each pathway (Figure 1) generalizing methods developed
previously [19]. Unless otherwise specified, the gene set for G to S is obtained from the
E2F pathways in the Hallmark and PID pathways from MSigDB [21], G to M from PID
PIBKCI_AKT, TNF, TGFBR, and RB1 pathways in MSigDB, contact inhibition gene set
from the KEGG Hippo pathway and targets of the TEF family transcription factors from
TRANSFAC professional 2014 version [20], and growth factor signaling gene set from
targets downstream obtained from TRANSFAC curated to the EGFR signaling network
previously [23].

Each gene has a pre-specified expression range (Gmin to Gmax), determined either
from a reference dataset or set according to a specified distribution. If a gene is
annotated to only one pathway with activity P, then its expression value is given as G =
Gmin + P*(Gmax — Gmin). The effect of cell type is also modeled as a pathway whose
activity is binary for each cell, with a gene set specific to that cell type. If a gene is
regulated by multiple pathways, its expression is determined by combining all pathways
using a user-defined function. By default, gene expression is set to be the maximum
expression of that gene across all pathways. Additional genes unaffected by any
pathway are also simulated with a pre-specified gene expression value. In bulk data, P
is determined by computing the average value for pathway activity in a random set of N
sampled cells, whereas in single cell data the value of P for each of the N sampled cells
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is used directly. Technical error is then simulated in all genes appropriate to the
measurement platform. A normal error model is used to simulate log transformed
microarray data and negative binomial error model adapted from the code for LIMMA
voom [22] is used to simulate bulk RNA-sequencing data. Technical noise for simulated
single cell RNA-sequencing data are generated using the error and drop out models
from Splatter [4]. T-SNE plots are generated with the R package Rtsne.

Cell proliferation and microarray gene expression analysis of BXPC-3 cells

For cell proliferation, BXPC-3 cells were seeded at a density of 6000 cells per well in 96-
well plates and treated the next day with varying concentration of cetuximab (0.01, 0.1,
1, 10, and 100 pg/ml). Cell viability was measured at indicated time points using GF-
AFC substrate (Promega, Madison, WI) according to the manufacturer’s protocol.

For gene expression analysis, BXPC-3 cells were cultured in DMEM with 2% FBS and
seeded at a density of 10”5 cells per well in 12-well plates after starving (DMEM with
0.2% FBS). 10pg/ml cetuximab was added the next day. Cell samples were taken out at
indicated time points and stored in RNAlater (Qiagen, Germantown, MD). Total RNA
was isolated from cells pellets and extracted using the RNeasy plus Mini Kit (Qiagen,
Valencia, CA) according to the manufacturer’s instructions. After the extraction, RNA
concentration and purity (OD260/280) were measured using the NanoDrop ND-1000
spectrophotometer (Thermo Fischer Scientific, Waltham, MA), and the RNA integrity
number (RIN) was determined using an Agilent 2100 Bioanalyzer Instrument (Agilent,
Santa Clara, CA). Gene expression profiling was performed using the Illumina
HumanHT-12 v4 Expression BeadChip platform containing 47,000 probes covering
RefSeqg and Unigene annotated genes (lllumina Inc., San Diego, CA). 495ng total RNA
was labeled using the lllumina TotalPrep-96 RNA Amplification Kit (Ambion, Austin, TX).
Briefly, the protocol features a first- and second-strand reverse transcription step,
followed by a single in vitro transcription (IVT) amplification that incorporates biotin-
labeled nucleotides to generate biotinylated cRNA. The purified cRNA is then quantified
and the fragment size was determined using an Agilent 2100 Bioanalyzer Instrument
(Agilent, Santa Clara, CA). Then, 750ng of labeled biotinylated cRNA probe was
hybridized overnight to the Illlumina HumanHT-12 v4 Expression BeadChip. The
hybridization, washing, and scanning were performed according to the manufacturer’s
instructions.

The BeadChips were scanned using a HiScanSQ System (Illumina, San Diego, CA).
The microarray images were registered and extracted automatically during the scan
using the manufacturer’s default settings. Data are cyclic loess normalized with LIMMA
[24] and available from GEO (GSE114375). Data for probes annotated to a single gene
and technical replicate samples are averaged to obtain a single measurement per gene
and experimental condition for visualization in heatmaps with the R package gplots.

Cell proliferation and RNA-seq gene expression analysis of HNSCC cell lines
SCC25, UM-SCC-1 and UM-SCC-6
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An additional set of experiments were performed to measure cetuximab sensitivity and
gene expression with RNA-seq on a set of head and neck squamous cell carcinoma
(HNSCC) cell lines containing SCC25, UM-SCC-1, and UM-SCC-6. Cell line authenticity
was confirmed using the GenePrint 10 (Promega) for short tandem repeat (STR) profile.
SCC25 and UM-SCC-1 cells were grown in Dulbecco’s Modified Eagle’s Medium
(DMEM) supplemented with 10% FBS and 0.4ug/mL (SCC25) or 1.0ug/mL
hydrocortisone. UM-SCC-6 cells were cultured in DMEM high glucose supplemented
with 10% and 1X NEAA. All cells were maintained at 37°C in a humidified incubator with
5% CO..

For cetuximab treatment and proliferation assay, 12,500 cells (SCC25) or 25,000 (UM-
SCC-1 and UM-SCC-6) were plated in quintuplicates in 6-well plates. Cetuximab
(Bristol-Myers Squibb, Princeton, NJ) was purchased from Johns Hopkins Pharmacy.
All cell lines were treated with cetuximab (100nM) or PBS (untreated control) for 5 days
starting 24 hours after seeding. Media containing cetuximab or PBS was changed every
day. Proliferation was measured using alamarBlue Cell Viability assay (Thermo
Scientific), as described by the manufacturer. Briefly, 10% sample volume of
alamarBlue reagent was added to each well and fluorescence (excitation 544nm,
emission 590nm) was measured after 4 hours of incubation at 37°C. A media only well
was used as blank control.

RNA isolation and sequencing were performed for the SCC25, UM-SCC-1 and UM-
SCC-6 cells for each day under cetuximab or PBS treatment at the Johns Hopkins
Medical Institutions (JHMI) Deep Sequencing & Microarray Core Facility. Total RNA
was isolated from at least 1000 cells using the TRIzol Reagent (Invitrogen) according to
manufacturer’s instructions. The RNA concentration was determined by the
spectrophotometer Nanodrop (Thermo Fisher Scientific, Waltham, MA) and quality was
assessed using the 2100 Bioanalyzer (Agilent, Santa Clara, CA) system. An RNA
Integrity Number (RIN) of 7.0 was considered as the minimum to be used in the
subsequent steps for RNA-seq. Library preparation was performed using the TrueSeq
Stranded Total RNAseq Poly Al Gold Kit (lllumina, San Diego, CA), according to
manufacturer’'s recommendations, followed by mRNA enrichment using poly(A)
enrichment for ribosomal RNA (rRNA) removal. Sequencing was performed using the
HiSeq platform (lllumina) for 2X100bp sequencing. Reads were aligned to hg19 with
salmon [25]. Gene-level counts were calculated with the R/Bioconductor package
tximport [26] and rlog normalized with DESeq2 [27] for visualization. All RNA-seq data
from this study are available from GEO (GSE114375).

HNSCC Patient—Derived Xenograft (PDX)

Tumor tissues measuring approximately 2x2 mm were collected from surgically
resected HNSCC patients under the auspices of a tissue bank protocol approved by
Johns Hopkins University Institutional Review Board. All animal studies and care were
approved by the Institutional Animal Care and Use Committee of the Johns Hopkins
University. Following HNSCC tumor resection, de-identified patient samples were
implanted into athymic nude mice (F1) and passaged to F2 mice at the Johns Hopkins


https://doi.org/10.1101/328807
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/328807; this version posted June 28, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

University Tissue Core (IACUC #: MO011M210). Dr. Chung's laboratory was given
excised tumors from F2 mice to propagate for treatment experiments (F3 mice) under
the IACUC protocol MO13M114. Briefly, athymic nude mice (Crl: NU-Foxnlnu, 4—6
weeks old; 20 g; Harlan Laboratories, Indianapolis, IN) were anesthetized using 5%
isofluorane and a small 2mm incision was made in the flank. Tumor tissue measuring
approximately 2x2 mm was implanted under the skin and the wound closed with sterile
surgical clips and analgesic was administered. Animals were monitored for tumor
growth twice a week and tumor volume calculated using the formula (length x width?)/2.
Tumors were allowed to reach a volume of 200 mm? before starting treatment with
therapeutic agents. Animals were euthanized when tumor volume reached 1500 mm? or
they had lost >25% of their pre-implant body weight. Euthanasia was performed by
CO; inhalation and tumors were collected for further analysis.

Results

Parameter sensitivity analysis demonstrates that untreated cells from a single
cell type are expectedly most sensitive to presence of a boundary, cellular
density, and cell cycle length

We first perform parameter sensitivity analysis of our default model, which uses core
parameters of the Drasdo and Hohme model [14] and models a single cell without
treatment. This baseline simulation enables us to benchmark the performance of the
model under conditions in which the population dynamics are readily interpretable and
predictable. We perform a complete sensitivity analysis for all input parameters
(described in the Supplemental File). The presence of a boundary, density, and cell
cycle length are the set observed to have the greatest impact on qualitative model
performance (Figure 2).

We implement the Drasdo and HOhme model [14] to simulate cancer cell growth in
conditions with and without a boundary to model constrained in vitro and unconstrained
in vivo growth, respectively. Presence of a boundary models the difference between
whole population growth in a dish and local population growth within a region that
enables unconstrained growth. Without a boundary, cells initially grow exponentially and
then growth rates decrease below exponential due to contact inhibition. In contrast,
cellular growth in the presence of a boundary is logistic (Figure 2a). In both cases, the
effective growth rate of the number of cells is inversely proportional to the expected cell
cycle length parameter. The total number of cells is also inversely proportional to the
expected cell length parameter in cases without a boundary. In the case with the
boundary, decreasing the expected cell cycle length increases the rate at which the
maximum number of cells is reached. Total cellular density is capped in simulations with
and without a boundary (Figure 2b). The maximum density is lower in simulations
without a boundary than those that have one. In the unbounded case, the model has a
higher probability of cellular expansion to low density regions than dividing cells within
high density regions thereby controlling cellular density. The bounded simulations do
not have that option and so they must continue to divide and pack in a denser
formation.
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The cell-based model also includes mechanical parameters that have been tuned to
optimize model performance previously [14]. These parameters impact the technical
architecture of the software and are not directly measurable experimentally. We perform
additional sensitivity analysis for these parameters to assess their impact on model
behaviors. We observe that changes to the technical parameters produce artificial
effects in the model that mirror sensitivity to interpretable, cellular parameters. For
example, changing the Monte Carlo probability thresholds decreases cellular growth in
a similar manner to increasing cell cycle length (Supplemental Figure 1). We note that
changing the physical, measurable parameters can be performed directly from
experimental data with similar outcomes. Therefore, it is optimal to alter cellular growth
parameters directly and retain well-tuned technical parameters for simulation in the
software.

Modeling growth inhibition by targeted therapeutics

We extend the model to incorporate targeted therapeutics that block oncogenic
pathways. We simulate their effect by assuming that they decrease cellular growth rates
in cancer cells, which has been reported as the mechanism of action of FDA approved
growth factor receptor inhibitors such as the epidermal growth factor receptor (EGFR)
inhibitor, cetuximab. These therapeutic effects are encoded in our model by increasing
the length of cell cycle when the drug is present to simulate the delay in proliferation
that they cause. The code enables users to input a distribution of impacts on cell cycle
lengths in the cellular population. This distribution enables therapeutics to impact the
growth rate of each cell differently. Drugs may also be introduced to the population at a
specified simulation time to simulate cancer cellular growth prior to treatment. Because
we model therapeutic efficacy through cell cycle length, a simulation that treats cancer
cells from the initial time point is equivalent to a simulation of untreated cells with an
altered initial expected cell cycle length in our model.

To test our model, we compare growth rates of simulated cells with a boundary to in
vitro growth rates observed in two different experiments. Biological parameters from
CancerInSilico are tuned to minimize the sum of squares error of the measured growth
curve relative to the simulated growth curve in the untreated case. In the treated case,
only the expected cell cycle length was changed, keeping all other parameters constant
from the untreated simulations. We observe that increasing the length of the cell cycle
as a surrogate for therapeutic concentration accurately models the growth rates that are
observed in the in vitro experiments. The growth curves from the BxPC-3 cell line were
fit for controls and treatment with 10 pg/ml and 100 pg/ml of cetuximab using the same
parameters and tuning only the expected cell cycle length to simulate the impact of
treatment (Figure 3a). In the second experiment, the model parameters were tuned to
fit the growth curves of the SCC1, SCC6, and SCC25 cell lines in PBS controls (Figure
3b) and treatment with 100nM of cetuximab was fit by increasing only the expected cell
cycle length (Figure 3c).
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Modeling pathway interactions enables simulated time-course gene expression
data to mirror real gene expression data

CancerlnSilico uses the cellular states in the mathematical model as the basis to
simulate gene expression data (Figure 4). Specifically, the model assumes that there
are pathways that are activated at each time point corresponding to: (1) the percentage
of cells in G to S, (2) the percentage that have successfully completed division, (3) the
local density of cells (“contact inhibition”), and (4) expected length of the cell cycle
(“activation growth factor pathway”). The modeled effect of drug changes only the
expected length of the cell cycle, yet this change will also impact the state of the cell
cycle indirectly due to interdependencies of model parameters (Figure 1). Pathway
activity is modeled as a value between zero and one. The pathway is zero if it is not
active in any cell and one if it is active in all cells, with intermediate values depending on
the pathway (Supplemental Figure 2). Pathway values are used to simulate gene
expression in target genes from bulk data with a generalization of previously described
methods [21]. We apply this model to simulate gene expression data from the fitted
simulations described in the previous section (Figure 3). For the BxPC-3 cell line,
microarray data was simulated for the PBS and 100 pg/ml experiments (Supplemental
Figure 3). For the SCC1, SCC6, and SCC25 cell lines, bulk RNA-seq data was
generated for both the treated and untreated experiments (Supplemental Figures 4-6).
The default transcriptional data simulated with CancerInSilico has a sharper separation
of cellular signaling pathways than the real gene expression data (Figure 4a,b,
Supplemental Figures 5,6), specifically in the G to S pathway. We note that the BxPC-
3 cell line experiments are performed with microarray and synchronized, whereas the
SCC1, SCC6, and SCC25 cell lines were performed with RNA-sequencing and are not
synchronized. The default, simulated gene expression data appears to have more cell
synchronization consistent with the BxPC-3 data than in the real data for the other cell
lines.

The discrepancy between real and simulated data likely arises from one of three
sources: (1) incomplete annotations of gene sets to pathway activity, (2) insufficient
variation in the cell cycle length of cells in the modeled population, or (3) incomplete
modeling of the interactions between the modeled pathways. Assessing the accuracy of
gene sets is beyond the scope of this study. The impact of both (2) and (3) on the
gualitative behavior of simulated gene expression data can be explored
computationally. To minimize the effect of cell synchronization, an exponential
distribution was introduced for the expected cell cycle length. This provided additional
variance between the individual cell cycles and the resulting gene expression data was
smoother (Supplemental Figures 3-6). This increase in smoothness better models the
gualitative gene expression changes in the unsynchronized cell lines than the
synchronized BxPC-3 cell line.

Interactions between pathways will further have a significant impact on the simulated
data. Notably, changes to the growth factor receptor signaling pathway are expected to
impact cellular growth. In this case, the genes in the gene set annotated to the growth
factor receptor signaling would also be associated with pathway activity inthe Gto S
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and G to M transitions. To simulate this interaction, we assign the genes annotated to
the growth factor to G to S and also to G to M (Figure 4c,d, Supplemenatl Figures 3-
6). In these simulations, the increase in variation of cell cycle length was simulated only
for the SCC1, SCC6, and SCC25 cell lines to minimize cell cycle synchronization
consistent with the experimental design. Modeling such pathway overlap reduced the
effect of the therapeutic on transcription and the separation of the cell signaling
pathways so that the simulated data more closely reflects the qualitative behavior of the
real expression data. Together, these results suggest that both heterogeneity in the
cellular population and gene set overlap may be critical parameters to vary when testing
the performance of bioinformatics algorithms based upon the simulated data. This
model more accurately simulates the dynamics of genes that are activated than those
that are repressed, suggesting that alterative models will be essential to benchmark the
performance of algorithms to model repressive processes.

Heterogeneity in therapeutic response arises from simulating multiple cell types

Tumors and cancer cell lines are mixtures of distinct cell types. In the case of tumors,
this may include diverse sets of cells with diverse growth properties that will impact
tumor growth. CancerlnSilico enables us to test the impact of cellular heterogeneity as
modeled by heterogeneity in the cellular properties of a cell type. We recall that each
cell in our simulations has an expected growth rate. CancerlInSilico allows users to
sample the values for these growth rates from a distribution. Increasing the variance of
expected growth rates provides one means to model increased intra-tumor
heterogeneity. However, a set of 200 simulations with mean expected cell cycle length
of 24 hours and standard deviation of 1 hour has only modestly lower variation of
simulated cellular behavior than does a comparable set of simulations with standard
deviation of expected cell cycle length of 10 hours (Figure 5a,b).

Another mechanism that CancerinSilico can use to model heterogeneity is to label each
cell as being from a distinct cell type. The model encodes a set of parameter
distributions that is specific to each modelled cell type. We apply this framework to
model two distinct cell types, one with an expected cell cycle length of 12 hours and
standard deviation of 4 hours (type A) and one with a mean cell cycle length of 36 hours
and standard deviation of 4 hours (type B). We observe that varying the initial proportion
of cells of each type across simulations has a greater impact on heterogeneity of
simulated cell behavior than is observed by varying expected cell cycle length alone
(Figure 5c,d). Qualitatively, we observe similar variation in growth curves of a head and
neck squamous cell carcinoma patient derived xenograft model, suggesting that
replicates of this biological model were seeded with different initial subsets of cell types
from the heterogeneous primary tumor (Figure 5f).

CancerInSilico also encodes an option to simulate single cell RNA-sequencing data to
generate omics data that reflects the heterogeneity of the sample population. This
simulation models the “pathway” activity and corresponding gene expression changes
for each cell with a negative binomial error model and dropout model adapted from
Splatter [4]. The model then randomly samples a pre-specified number of cells. We
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apply this technique to simulate single cell RNA-sequencing data from the simulation
with a population of cells equally distributed between the two types described above
(Figure 6). Each cell type is labeled as a pathway with binary values for activity to
activate a gene set that corresponds to cellular identity. Because these cell types are
computational, we define this gene signature by splitting the set of genes in the growth
factor receptor pathway equally between the two cell types. We note that these genes
are only used as identifiers to define a signature and are not associated with a particular
functional cell type. Therefore, analysis of these simulated data can serve to benchmark
the ability to separate cellular identity and not specific gene function. In this simulated
single-cell RNA-seq data, we observe strong separation between cell types (Figure 6a)
and time (Figure 6b) and observe a mixture between cell cycle phases (Figure 6c).

Discussion

We develop a new R/Bioconductor package CancerlInSilico that extends the
mathematical model from Drasdo and Hohme [14] to simulate treatment with growth
factor receptor inhibitors, cellular-level variation in model parameters, and multiple cell
types. We demonstrate that our new model mirrors real in vitro cancer cells with and
without cetuximab treatment and in vivo growth of a patient derived xenograft tumor
model. Coupling this mathematical model with statistical models of technical noise and
expression changes in gene sets annotated to cell signaling pathways [4,19,22] enables
simulation of in vitro time course omics data. The modeling of individual cells in this
system also enables simulation of time course, single cell RNA-sequencing data. The
outputs of both bulk and single-cell transcriptional data can readily be input into
simulation tools such as Polyester [5] or flux simulator [6] to model reads from high-
throughput sequencing data. Thus, this package provides software that can generate
simulated time course omics data that can be used to benchmark the performance of
methods for time course bioinformatics analysis from a known ground truth that is
lacking in real data.

Currently, CancerlnSilico, has implemented an off-lattice cell-based model based on
previous work [14]. Simulating single-cell gene expression requires cell-level information
and a cell-based model is the most natural way to achieve this. An off-lattice model
provides detailed geometric information about cell size and shape, which is important
for pathways that are affected by the geometry of the cell population, i.e. contact
inhibition. Tracing each individual cell also readily enables simulation of a distribution of
model parameters for each cell and multiple cell types. Modeling cellular growth as a
distribution, rather than a single parameter, enabled accurate modeling of the
transcriptional changes in cell cycle pathways observed in real in vitro RNA-seq gene
expression data from non-synchronized cells. However, introducing further variation by
modeling multiple cell types was essential to model the wide range of growth curves
from multiple replicates of the same patient derived xenograft model. This modeling
result demonstrates that the initial population of tumor cells may have a critical impact
on long-term in vivo behavior, motivating study with single cell rather than bulk
technologies.
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The flexibility of the off-lattice model comes at the price of computation time. Efficient
algorithms and data structures work more naturally with lattice-based models of tumor
growth [12]. A lattice-based model will significantly alter the geometry of the cell
population and thereby significantly alter the simulated omics data. It is essential to
compare these differences relative to real in vitro and in vivo data in future work.
Moreover, the R/Biconductor framework for CancerInSilico is designed to accommodate
multiple types of cell models including these lattice-based models. In the future, this will
allow us to analyze how sensitive simulated gene expression data are to the choice of
mathematical model. Moreover, such future work will also enable simulations of gene
expression data based upon the cellular dynamics simulated from the model that is
most appropriate a specific biological system.

The statistical models used to simulate gene expression data from pathway activity in
CancerInSilico mirror the process by which omics tools estimate that activity. Namely,
pathways are assumed to activate discrete sets of genes annotated to a common
function based upon the modeled cellular state. Default parameters for the model yield
omics profiles with strong separation between signaling pathways that are greatly
simplified relative to those observed in real data. Therefore, applying omics algorithms
to these default simulations may result in under estimation of the accuracy of their
performance for real time course data. Mathematical models of gene regulatory
networks have been developed to model the dynamics of regulatory networks that lead
to transcriptional changes [28,29]. Hybrid, multi-scale approaches that combine these
network-based models with the cellular-scale models more accurately model the
complexity of system-wide dynamics [16—18] and are a promising area for future work to
simulate time course omics data. However, the complexity of these gene regulatory
models and extensive parameterization will limit the straightforward validation of omics
algorithms that is possible from the simplified statistical models employed in
CancerlnSilico. Moreover, we find that including interactions between cell signaling
pathways by merely overlapping gene sets and increasing modeled technical noise
enables the statistical model in CancerInSilico to accurately simulate the qualitative
behavior of time course gene expression from in vitro microarray and RNA-seq data
with and without cetuximab treatment. Thus, we recommend benchmarking time-course
omics data on simulated data generated from a wide range of these parameter values
to fully assess their performance. In the RNA-seq data, the model more accurately the
gualitative transcriptional dynamics of genes which are activated over time than those
that are repressed. Future work is needed to develop additional statistical models to
model these repressive processes, which are critical to the function of real biological
systems.

The primary goal of this study was to benchmark the performance of CancerinSilico as
a simulation system rather employ simulations to discover novel biology from this
model. The ability to model real omics data only by incorporating overlap between the
growth factor receptor and cellular growth pathways is consistent with complex cross-
talk between cellular signaling pathways in biological systems. For example, our own
data have shown that complex feedback mechanisms activate the growth factor
receptors after their inhibition with cetuximab [30]. Taken together, these observations
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demonstrate the challenges in annotating gene sets to a single and independent
biological function. Still, each of these biological processes occurs at distinct temporal
scales. Therefore, increasing the number of time points available for omics data will
enhance our ability to resolve these processes as we observed in time course data from
cetuximab resistance [31]. Tools to assess optimal time points for such measurements,
such as the Time Point Selection (TPS) method [32], are critical to enable optimal
analysis. Once these data have been collected, accurate delineation of molecular
processes for precision medicine will require bioinformatics techniques that are able to
account for usage of genes in multiple biological processes.
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List of Figures

Figure 1. Overview of gene expression simulation with CancerInSilico. The model
inputs a set of parameters that represent the distribution of the initial cellular population,
behavior of each cell, and mechanical parameters for the off-lattice, cell based model.
These parameters are then used as the basis to simulate cellular growth as a function
of time. A statistical model is used to estimate pathway activity from the properties of
each cell and geometric distribution of cells at each time point from the mathematical
model. Finally, these pathway values are used as the basis to simulate single cell (left)
and bulk (right) gene expression data for members of gene sets annotated to each
simulated pathway.

Figure 2. Model sensitivity to expected cell cycle length and initial cellular
density. (a) Number of cells as a function time simulated for varying expected cell cycle
length in simulations with and without a boundary as indicated in the figure legend. (b)
Population density as a function of time simulated for varying initial cellular density in
simulations with and without a boundary as indicated in the figure legend.

Figure 3. Comparison of simulated and in vitro cellular growth with and without
cetuximab treatment. (a) Simulated growth curves (lines) and in vitro growth (dots) for
BxPC-3 cells treated with 10 pg/ml or 100 pug/ml of cetuximab and PBS controls. (b)
Simulated growth curves (lines) and in vitro growth (dots) for three head and neck
cancer cell lines, SCC1, SCC25, and SCC6 in PBS controls. (c) As for (b) in cells
treated with with 100 nM of cetuximab.

Figure 4. Comparison of simulated and in vitro gene expression for cetuximab
treated cells and PBS controls. (a) Heatmap of microarry gene expression data for
BxPC-3 cells in 100 pg/ml cetuximab and untreated controls treated daily for a period of
5 days. Cells were synchronized 24 hours prior to starting treatment at time 0. (b)
Heatmap of RNA-seq gene expression data for SCC1 cells in 100 nM cetuximab and
untreated controls treated daily for a period of 5 days without synchronization. (c)
Simulated gene expression data for BXPC-3. In this simulation, cells annotated to the
growth factor receptor pathway are also assigned to the G to M and G to S pathways to
model pathway interactions. (d) As for (c) for SCC1 cells. In this simulation, an
exponential model is used to introduce variation in the expected cell cycle length to
model the lack synchronization of cells in vitro.

Figure 5. Comparison of simulated cell growth with multiple cell types and in vivo
tumor growth of a patient derived xenograft model. (a) Cellular growth over time in a
set of 200 simulations containing a single cell type with expected cell cycle length of 24
hours and standard deviation of 1 hour. (b) As for (a) with a standard deviation of 10
hours. (c) Cellular growth over time in a simulation containing a two cell types, called A
and B. Cell type A has an expected cell cycle length of 12 hours and standard deviation
of 4 hours and cell type B has an expected cell cycle length of 36 hours and standard
deviation of 4 hours. Plots represent 40 simulations with initial proportion of cells of type
A selected from a uniform between 0.45 and 0.55. (d) As for (c) with initial proportion of
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cells of type A selected from a uniform between 0 and 1. (e) Proportion of cells of type A
in the initial population vs proportional of cells of type A in the final population at 168
hours. (f) Tumor volume of triplicates for a single patient derived xenograft model.

Figure 6. T-SNE of simulated time course single cell RNA-sequencing data for a
population with cells of types A and B. Points colored by (a) cell type, (b) time, and
(c) cell cycle phase.
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Figure 2

A Sensitivity to growth rate and boundary presence B Boundary presence effects maximum population density
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Figure 4
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Figure 5
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A Single-cell RNA-seq simulation by cell type B Single-cell RNA-seq simulation by time
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