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Abstract	
	
Genetic	 interactions	 mediate	 the	 emergence	 of	 phenotype	 from	 genotype.	 Systematic	

survey	of	genetic	interactions	in	yeast	showed	that	genes	operating	in	the	same	biological	

process	have	highly	correlated	genetic	 interaction	profiles,	and	this	observation	has	been	

exploited	 to	 infer	 gene	 function	 in	 model	 organisms.	 Systematic	 surveys	 of	 digenic	

perturbations	 in	human	 cells	 are	 also	highly	 informative,	 but	 are	not	 scalable,	 even	with	

CRISPR-mediated	methods.	As	an	alternative,	we	developed	an	indirect	method	of	deriving	

functional	 interactions.	 We	 show	 that	 genes	 having	 correlated	 knockout	 fitness	 profiles	

across	 diverse,	 non-isogenic	 cell	 lines	 are	 analogous	 to	 genes	 having	 correlated	 genetic	

interaction	 profiles	 across	 isogenic	 query	 strains,	 and	 similarly	 implies	 shared	 biological	

function.	We	 constructed	 a	 network	 of	 genes	with	 correlated	 fitness	 profiles	 across	 400	

CRISPR	 knockout	 screens	 in	 cancer	 cell	 lines	 into	 a	 “coessentiality	 network,”	with	 up	 to	

500-fold	enrichment	for	co-functional	gene	pairs,	enabling	strong	inference	of	human	gene	

function.	Modules	in	the	network	are	connected	in	a	layered	web	that	gives	insight	into	the	

hierarchical	organization	of	the	cell.	
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Introduction	

	

Genetic	 interactions	govern	the	translation	of	genotype	to	phenotype	at	every	 level,	 from	

the	 function	 of	 subcellular	molecular	machines	 to	 the	 emergence	 of	 complex	 organismal	

traits.	 In	 the	 budding	 yeast	Saccharomyces	cerevisiae,	 systematic	 genetic	 deletion	 studies	

showed	 that	 only	 ~1,100	 of	 its	 ~6,000	 genes	 (~20%)	 were	 required	 for	 growth	 under	

laboratory	 conditions	 (Giaever	 et	 al.,	 2002).	 A	 systematic	 survey	 of	 digenic	 knockouts,	

however,	yielded	hundreds	of	 thousands	of	gene	pairs	whose	double	knockout	 induced	a	

fitness	phenotype	significantly	more	severe	(synergistic	genetic	interactions)	or	less	severe	

(suppressor	interactions)	than	expected	from	each	gene’s	single	mutant	fitness	(Costanzo	

et	al.,	2010,	2016;	Tong	et	al.,	2001),	with	triple-mutant	screens	adding	yet	another	layer	of	

complexity	 (Kuzmin	et	 al.,	 2018).	When	 trying	 to	decipher	 the	genetic	 contribution	 to	as	

simple	a	phenotype	as	fitness,	then,	there	are	vastly	more	candidate	explanations	involving	

genetic	 interactions	 than	 monogenic	 fitness	 effects.	 Moreover,	 the	 impact	 of	 each	 gene	

variant	 not	 only	 depends	 on	 the	 sum	of	 all	 other	 genetic	 variants	 in	 the	 cell,	 but	 also	 is	

strongly	influenced	by	the	cell’s	environment	(Bandyopadhyay	et	al.,	2010;	Hillenmeyer	et	

al.,	2008).	

	

Patterns	 of	 genetic	 interaction	 are	 deeply	 informative.	 Genetic	 interactions	 frequently	

occur	 either	 within	 members	 of	 the	 same	 pathway	 or	 process	 (“within	 pathway	

interactions”)	or	between	members	of	parallel	pathways	(“between	pathway	interactions”)	

(Kelley	 and	 Ideker,	 2005).	 When	 assayed	 systematically,	 the	 result	 is	 that	 genes	 that	

operate	 in	 the	 same	biological	 process	 tend	 to	 interact	 genetically	with	 the	 same	 sets	 of	

other	 genes	 in	 discrete,	 related	 pathways,	 culminating	 in	 highly	 correlated	 genetic	

interaction	profiles	across	a	diverse	panel	of	genetic	backgrounds	or	“query	strains.”	This	

observation	has	been	exploited	extensively	to	infer	gene	function	in	model	organisms	and,	

on	a	smaller	scale,	in	human	cells	based	on	similarity	of	genetic	interaction	profiles	(Lehner	

et	 al.,	 2006;	Horn	 et	 al.,	 2011;	Bassik	 et	 al.,	 2013;	Kampmann	 et	 al.,	 2013;	Roguev	 et	 al.,	

2013;	 Costanzo	 et	 al.,	 2016).	 Therefore,	 beyond	 the	 specific	 interactions	 themselves,	 a	

gene’s	 pattern	 of	 fitness	 phenotypes	 across	 a	 diverse	 set	 of	 backgrounds	 can	 inform	our	

knowledge	of	that	gene’s	function.	
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Translating	 these	 concepts	 into	 human	 cells	 has	 proved	 biologically	 and	 technically	

challenging.	The	S.	cerevisiae	genome	has	less	than	one-third	the	number	of	protein	coding	

genes	as	humans,	and,	despite	the	quantum	leap	in	technology	that	the	CRISPR/Cas	system	

offers	to	mammalian	forward	genetics,	yeast	remains	far	simpler	to	perturb	reliably	in	the	

lab.	Several	groups	have	applied	digenic	perturbation	technologies,	using	both	shRNA	and	

CRISPR,	 to	 find	 cancer	 genotype-specific	 synthetic	 lethals	 for	 drug	 targeting	 (Han	 et	 al.,	

2017;	Najm	et	al.,	2018;	Sage	et	al.,	2017;	Shen	et	al.,	2017;	Wong	et	al.,	2016);	(Du	et	al.,	

2017)	and	to	identify	genetic	interactions	that	enhance	or	suppress	phenotypes	related	to	

drug	and	 toxin	 resistance	 (Bassik	 et	 al.,	 2013;	 Jost	 et	 al.,	 2017;	Roguev	et	 al.,	 2013).	The	

current	state	of	the	art	in	CRISPR-mediated	gene	perturbation	relies	on	observations	from	

three	independent	guide	RNA	(gRNA)	targeting	each	gene,	or	nine	pairwise	perturbations	

for	each	gene	pair,	plus	non-targeting	or	other	negative	controls.	The	largest	such	mapping	

to	 date	 puts	 the	 scale	 of	 the	 problem	 in	 stark	 terms:	Han	 et	al.	 use	 a	 library	 of	 490,000	

gRNA	 doublets	 –	 seven	 times	 larger	 than	 a	 latest	 generation	whole-genome,	 single-gene	

knockout	library	–	to	query	all	pairs	of	207	target	genes,	or	~0.01%	of	all	gene	pairs	in	the	

human	genome	(Han	et	al.,	2017).	

	

An	additional	dimension	of	the	scale	problem	is	that	of	backgrounds.	Whereas	one	strain	of	

yeast	was	systematically	assayed	in	fixed	media	and	environmental	conditions	to	create	a	

reference	 genetic	 interaction	 network,	 no	 such	 reference	 cell	 exists	 for	 humans.	 Indeed	

first-generation	whole-genome	CRISPR	screens	in	cancer	cell	 lines	demonstrated	that	one	

of	the	features	associated	with	the	hugely	increased	sensitivity	of	CRISPR	over	shRNA	(Hart	

et	al.,	2014,	2015)	was	the	ability	to	resolve	tissue-	and	genetic-driven	differences	in	gene	

essentiality,	 as	 well	 as	 the	 unexpected	 variation	 in	 gene	 essentiality	 in	 cell	 lines	 with	

ostensibly	similar	genetic	backgrounds	(Hart	et	al.,	2015;	Wang	et	al.,	2014).	

	

Nevertheless,	 small-scale,	 targeted	 genetic	 interaction	 screens	 in	 human	 cells	 using	 both	

shRNA	and	CRISPR	showed	that	the	architecture	of	the	genetic	interaction	network	holds	

true	 across	 species.	 Positive	 and	 negative	 genetic	 interactions	 within	 pathways	 and	

between	related	biological	processes	yield	a	correlation	network	with	the	same	properties:	
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genes	with	similar	profiles	of	genetic	interaction	across	different	backgrounds	are	often	in	

the	 same	 process	 or	 complex,	 providing	 a	 strong	 basis	 for	 inference	 of	 gene	 function	

(Bassik	et	al.,	2013,	2013;	Horn	et	al.,	2011;	Kampmann	et	al.,	2013,	2014;	Roguev	et	al.,	

2013).	 Since	 digenic	 perturbation	 screens	 are	 difficult	 to	 scale,	 we	 considered	 whether	

indirect	methods	of	determining	functional	genomic	information	might	be	effective.	Whole-

genome	 CRISPR	 knockout	 screens	 have	 been	 performed	 in	 over	 400	 cancer	 and	

immortalized	 cell	 lines,	 with	 the	 bulk	 coming	 from	 Project	 Achilles	 using	 standardized	

protocols	and	reagents	(Aguirre	et	al.,	2016;	Meyers	et	al.,	2017;	Tsherniak	et	al.,	2017).	We	

hypothesized	 that	 genes	 having	 correlated	 knockout	 fitness	 profiles	 across	 diverse	 cell	

lines	 would	 be	 analogous	 genes	 having	 correlated	 genetic	 interaction	 profiles	 across	

specified	query	backgrounds	in	the	same	cells,	and	would	similarly	imply	shared	biological	

function.	 We	 constructed	 a	 network	 of	 genes	 with	 correlated	 essentiality	 scores	 into	 a	

“coessentiality	network,”	 from	which	we	 identified	clusters	of	genes	with	high	 functional	

coherence.	 The	 network	 provides	 powerful	 insight	 into	 functional	 genomics,	 cancer	

targeting,	 and	 the	 capabilities	 and	 limitations	 of	 CRISPR-mediated	 genetic	 screening	 in	

human	cell	lines.	

	

Results	&	Discussion	

	

We	considered	CRISPR	and	shRNA	whole-genome	screen	data	from	multiple	libraries	and	

laboratories	 (Avana	 (Doench	 et	 al.,	 2014;	 Meyers	 et	 al.,	 2017),	 GeCKOv2	 (Aguirre	 et	 al.,	

2016),	 TKO	 (Hart	 et	 al.,	 2015,	 2017;	 Steinhart	 et	 al.,	 2017),	 Sabatini	 (Wang	 et	 al.,	 2014,	

2017)	the	Moffat	shRNA	library	(Koh	et	al.,	2012;	Marcotte	et	al.,	2012,	2016;	Medrano	et	

al.,	2017))	and	other	large	data	sets	(McDonald	et	al.,	2017;	Tsherniak	et	al.,	2017)	(Figure	

1a	and	Supplementary	Table	1).	 From	raw	read	count	data,	we	used	 the	BAGEL	pipeline	

(described	in	(Hart	and	Moffat,	2016)	and	improved	here;	see	Supplementary	Methods)	to	

generate	 Bayes	 Factors	 for	 each	 gene	 in	 each	 cell	 line.	 We	 removed	 nontargeting	 and	

nonhuman	 gene	 controls	 and	 quantile	 normalized	 each	 data	 set,	 yielding	 an	 essentiality	

score	where	a	positive	value	indicates	a	strong	knockout	fitness	defect	and	a	negative	value	

generally	 implies	 no	 phenotype	 (see	 Supplemental	 Methods	 for	 details).	 Each	 gene	

therefore	has	an	“essentiality	profile”	of	its	scores	across	the	screens	in	that	data	set.	
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For	each	data	set,	we	ranked	gene	pairs	by	correlated	essentiality	profiles	and	measured	

the	 enrichment	 for	 co-functional	 pairs	 (see	 Methods).	 Data	 from	 Meyers	 et	 al,	 where	

CRISPR	knockout	screens	were	conducted	using	the	Avana	library	in	342	cancer	cell	lines,	

showed	the	strongest	enrichment	for	co-functional	gene	pairs	(Figure	1b),	likely	due	to	the	

relatively	high	quality	of	the	screens	(Supplementary	Figure	1)	as	well	as	the	lineage	and	

genetic	diversity	of	the	cells	being	screened.	In	contrast,	screens	from	Wang	et	al.	(Wang	et	

al.,	 2014,	 2017)	were	 equally	high	quality	but	were	performed	only	 in	17	AML	 cell	 lines	

with	correspondingly	 limited	diversity.	To	further	 increase	the	co-functionality	signal,	we	

removed	 screens	with	 poor	 performance	 and	 only	 considered	 genes	 that	were	 hits	 in	 at	

least	3	of	the	remaining	screens;	filtering	resulted	in	an	additional	twofold	enrichment	for	

co-functional	 gene	pairs	 (Figure	1b	 and	Supplementary	Figure	1).	The	 filtered	data	 from	

Meyers	et	al.	(Meyers	et	al.,	2017)	(n=276	cell	 lines;	5,387	genes;	hereafter	“Avana	data”)	

was	used	for	all	subsequent	analysis.	We	selected	gene	pairs	with	a	Bonferroni-corrected	P-

value	 <	 0.05	 and	 combined	 them	 into	 a	 network,	 the	 Cancer	 Coessentiality	 Network,	

containing	 3,327	 genes	 connected	 by	 68,641	 edges	 (Figure	 1c).	 The	 network	 is	 highly	

modular,	 with	 clusters	 showing	 strong	 functional	 coherence,	 similar	 to	 the	 networks	

directly	 inferred	 from	correlated	 yeast	 genetic	 interaction	profiles.(Costanzo	 et	 al.,	 2010,	

2016)	

	

Essential	genes	specific	to	oncogenic	contexts	

	

The	data	underlying	the	Cancer	Coessentiality	Network	is	derived	from	well-characterized	

cancer	 cell	 lines	 from	 30+	 lineages,	 representing	 the	major	 oncogenic	mutation	 profiles	

common	to	those	cancers.	Many	clusters	 in	the	network	can	therefore	be	associated	with	

specific	tissues	and	cancer-relevant	genotypes.	By	testing	cluster-level	essentiality	profiles	

for	tissue	specificity	(see	Supplementary	Methods),	we	identified	a	number	of	clusters	that	

correspond	to	tissue	specific	cancers	(Figure	2a),	which	in	turn	contain	the	characteristic	

oncogenes.	For	example,	Cluster	14	(Figure	2b)	consists	of	BRAF	and	related	genes	that	are	

highly	specific	to	BRAF-mutated	melanoma	cells	(P<10-12;	Figure	2c).	The	cluster	contains	

other	 elements	 of	 the	MAP	 kinase	 pathway	 (MAP2K1,	MAPK1	 ,	 DUSP4),	 indicating	 their	
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essentiality	 in	 BRAF-mutant	 cells,	 supporting	 efforts	 to	 incorporate	 ERK	 inhibitors	 into	

combinatorial	therapies	to	overcome	resistance	to	targeted	BRAF	treatments	(Smalley	and	

Smalley,	 2018).	 This	 example	 highlights	 the	 utility	 of	 this	 indirect	 approach	 to	 identify	

synthetic	 lethal	 interactions:	 genes	 co-essential	 with	 oncogenes	 are	 synthetic	 lethals.	

Beyond	the	downstream	elements	of	the	MAPK	pathway	itself,	the	BRAF/melanoma	cluster	

also	 contains	 the	 transcription	 factors	 (TFs)	 Melanogenesis	 Associated	 Transcription	

Factor	 (MITF);	 two	 developmental	 Sry-related	 box	 (Sox)	 genes,	 SOX9	 and	 SOX10;	 and	

mesenchymal	marker	ZEB2,	indicative	of	the	non-epithelial	origin	of	melanocyte	cells	and	

providing	insight	into	the	genetic	requirements	for	tissue	differentiation	in	this	lineage.	

	

Similar	 observations	 hold	 for	 other	 tissue-specific	 oncogenes.	 	 Cluster	 17,	 essential	 in	

lymphoid	 cell	 lines	 (P<10-7),	 contains	 oncogene	 FLI1	 and	 tissue-specific	 transcription	

factor	MYB	(Figure	2d-e),	and	cluster	38	is	enriched	for	ovarian	cancer	cells	(P<10-7)	and	

carries	lineage-specific	TF	PAX8,	previously	shown	to	be	essential	in	these	cells	(Cheung	et	

al.,	2011)	(Figure	2f-g).	Cluster	75,	essential	in	colorectal	cancer	cells	(P<10-9),	contains	β-
catenin	(CTNNB1)	and	transcription	factor	partner	TCF7L2	(Figure	2h-i);	both	are	linked	to	

E2	ubiquitin	 ligase	UBE2Z,	which	mediates	UBA6-specific	 suppression	of	EMT	 (Liu	et	 al.,	

2017),	 indicating	 a	 functional	 linkage	 with	 β-catenin	 signaling.	 Additional	 tissue-	 and	
oncogene-driven	clusters	delineating	breast	cancer	subtypes,	joint	cyclin/cyclin-dependent	

kinase	 (CDK)	 dependencies,	 candidate	 KRAS	 synthetic	 lethals,	 and	 glioblastoma-specific	

essential	genes	are	shown	in	Supplementary	Figure	2.	

	

Neuroblastoma	 cells	 require	 MYCN,	 the	 neuroblastoma-specific	 paralog	 of	 the	 MYC	

oncogene	(Huang	and	Weiss,	2013),	as	well	as	nervous	system	developmental	transcription	

factor	 SOX11	 (Potzner	 et	 al.,	 2010)	 (Figure	 2j).	 Interestingly,	 MYC	 is	 highly	 essential	 in	

virtually	 all	 non-neuroblastoma	 cell	 lines,	 resulting	 in	 a	 relatively	 uncommon	

anticorrelation	 in	 essentiality	 profiles	 (r=-0.49;	 P<10-17;	 Figure	 2k).	 While	 this	 negative	

correlation	 is	 driven	 by	 mutual	 exclusivity	 in	 tissue	 essentiality,	 we	 also	 observe	

anticorrelation	 in	 tumor	 suppressors	 and	 their	 repressors	 in	 the	 same	 cells.	 CRISPR	

knockout	 of	 tumor	 suppressors	 in	 cells	 carrying	 wildtype	 alleles	 frequently	 results	 in	

increased	growth	 rate,	which	manifests	 as	 extreme	negative	BF	 scores	with	our	updated	
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BAGEL	algorithm	(see	Supplementary	Methods).	TP53	has	these	extreme	negative	values	in	

melanoma	cells	and	others	with	unmutated	genes,	resulting	in	strong	anticorrelation	with	

TP53	suppressors	MDM2	(r=-0.86,	P<10-81),	MDM4	(r=-0.61,	P<10-28),	and	PPM1D	(r=-0.72,	

P<10-44)	(Figure	2l-m).			

	

While	 TP53	 shows	 the	 characteristic	 extreme	 negative	 essentiality	 score	 of	 a	 tumor	

suppressor	 gene	 in	 wildtype	 backgrounds,	 surprisingly,	 it	 causes	 a	 growth	 defect	 when	

knocked	out	 in	 three	cell	 lines:	HCT1143	breast	 cancer,	PC14	 lung	cancer,	 and	NB4	AML	

cells	 (Supplementary	 Figure	 3a).	 All	 three	 carry	 the	 R248Q	 oncogenic	mutation;	 in	 fact,	

R248Q	is	weakly	predictive	of	TP53	essentiality	generally,	and	strongly	predictive	when	it	

is	 the	 only	 P53	mutation	 detected	 (Supplementary	 Figure	 3b).	 Nor	 is	 this	 the	 only	 case	

where	 a	 tumor	 suppressor	 in	 one	 background	 is	 an	 essential	 gene	 in	 another:	 the	 von	

Hippel-Landau	 tumor	 suppressor	 gene	 VHL	 shows	 no	 phenotype	 in	 renal	 cancer	 cells,	

where	the	gene	is	nearly	universally	deleted,	but	is	essential	specifically	in	BTFC-909	renal	

carcinoma	cells	which	lack	the	characteristic	Chr3	copy	loss	(Sinha	et	al.,	2017).	In	contrast,	

VHL	shows	a	fitness	defect	when	knockout	out	in	most	other	backgrounds	(Supplementary	

Figure	3c).	The	essentiality	profile	 for	VHL	is	strongly	correlated	with	EGLN1	(commonly	

called	 PHD2),	 an	 oxygen	 sensor	 that	 hydroxylates	 hypoxia	 response	 genes	 HIF1A	 and	

HIF2A,	 marking	 them	 for	 degradation	 by	 the	 VHL	 complex	 in	 normoxic	 environments	

(Berra	et	al.,	2003).	EGLN1	essentiality	is	overrepresented	in	melanoma	cells	(P<10-4,	rank-

sum	test;	essential	in	14	of	22	skin	cancer	cell	lines).	

	

A	high-precision	functional	interaction	map	of	human	genes	

	

These	 examples	 indicate	 the	 breadth	 and	 precision	 of	 the	 coessentiality	 network,	 but	

represent	results	 from	hypothesis-guided	queries.	 In	an	effort	 to	 learn	novel	associations	

from	 the	 data,	 we	 tested	 each	 cluster	 for	 its	 correlation	 with	 cell	 lineage	 as	 well	 as	

correlation	 with	 gene	 expression,	 mutation,	 and	 copy	 number	 amplification	 of	 all	 genes	

both	 inside	 and	 outside	 the	 cluster	 to	 identify	 underlying	 molecular	 genetic	 drivers	 of	

modular,	emergent	essentiality.	We	identified	270	genes	in	30	clusters	whose	essentiality	

profiles	strongly	correlated	with	their	own	copy	number	profiles	but	not	their	expression	
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profiles	(Figure	3a).	As	copy	number	amplification	is	a	known	source	of	 false	positives	 in	

CRISPR	screens,	we	labeled	these	clusters	as	amplification	artifacts.	An	additional	56	genes	

in	 11	 clusters	 showed	 significant	 association	 with	 both	 copy	 number	 and	 expression	

profiles.	 These	 clusters	 notably	 include	KRAS	 amplifications	 in	 pancreatic	 and	 colorectal	

cancer	 (Cluster	276),	ERBB2	amplifications	 in	breast	and	other	cancers	 (Cluster	52),	and	

CCNE1	overexpression/RB1	mutation.	(Cluster	101),	consistent	with	well-studied	patterns	

of	oncogenesis.	

	

Given	the	underlying	data,	it	is	perhaps	not	surprising	that	oncogenic	signatures	are	clearly	

evident	in	the	coessentiality	network.	However,	the	vast	majority	of	the	network	structure	

does	not	appear	 to	be	driven	by	 tissue	 specificity	or	mutational	 signatures.	The	network	

contains	 information	 complementary	 to	 existing	 functional	 (Figure	 3b)	 and	 physical	

(Figure	3c)	 interaction	networks,	 and	 the	network	 	derived	 from	Avana	data	exhibits	 far	

greater	 coverage	 than	 equivalent	 networks	 from	 the	 GeCKOv2	 subset	 of	 Project	 Achilles	

(Aguirre	 et	 al.,	 2016)	 or	 Wang	 (Wang	 et	 al.,	 2017)	 AML-specific	 data	 (Figure	 3d).	

Nevertheless,	 the	 remaining	 network	modules	 show	 strong	 functional	 coherence	 (Figure	

3a).	 Coessentiality	 often	 proves	 a	 stronger	 predictor	 of	 complex	 membership	 than	

coexpression	 (Figure	 3e),	 and	 this	 signature	 is	 reflected	 in	 the	 network	 clusters	 we	

identified.	 Indeed	 53	 clusters,	 comprised	 of	 1,422	 genes,	 show	 enrichment	 for	 CORUM-

annotated	 protein	 complexes	 at	 P-value	 <	 10-6,	 and	 fitness	 profiles	 have	 been	 used	 to	

implicate	additional	members	of	protein	complexes	(Pan	et	al.).	However,	 this	holds	only	

for	 genes	 whose	 knockout	 fitness	 defects	 vary	 across	 cell	 lines;	 coessentiality	 of	 core	

essential	genes	is	poorly	predictive	of	co-complex	membership	(Supplementary	Figure	4).	

All	 53	 CORUM-annotated	 clusters,	 plus	 an	 additional	 44	 clusters	 containing	 413	 genes	

(totaling	 97	 network	 modules	 with	 1,835	 genes),	 show	 enrichment	 for	 GO	 biological	

process,	 cellular	 component,	 KEGG	 pathway,	 or	 Reactome	 pathway	 annotations	 at	 a	

similarly	 strict	 threshold.	 (All	 network	 cluster	 annotations	 can	 be	 found	 in	 the	 master	

annotation	file,	Supplementary	Table	7).	In	addition,	we	evaluated	the	relative	performance	

of	 the	 coessentiality	 network	 by	measuring	 its	 ability	 to	 recover	 cancer	 gene	 sets	 using	

DisGeNET	 (Huang	 et	 al.,	 2018).	The	 coessentiality	network	 ranks	 comparably	with	other	

large	 functional	 networks	 (Figure	 3g),	 while	 starting	 from	 a	 much	 smaller	 data	 set,	
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suggesting	 that	 the	 coessentiality	 network	 explains	 not	 only	 protein	 complexes	 but	 also	

cancer	 pathways	 including	 interactions	 between	 protein	 complexes	 and	 signaling	

transduction.	

	

Epistatic	 interactions	 frequently	 underlie	 covariation	 in	 fitness	 profiles	 (Phillips,	 2008).	

Cluster	 2	 is	 highly	 enriched	 for	 genes	 involved	 in	 the	 mitochondrial	 electron	 transport	

chain,	 including	30	of	48	genes	encoding	subunits	of	NADH	dehydrogenase	complex	(ETC	

Complex	 I;	P<10-42)	plus	additional	 subunits	of	all	other	ETC	complexes.	The	cluster	also	

contains	49	of	51	subunits	of	the	mitochondrial	large	ribosomal	subunit	(P<10-87),	23	of	25	

members	 of	 the	 small	 subunit	 (P<10-39),	 plus	 20	mitochondrion-specific	 tRNA	 synthases	

(P<10-20).	 This	 mitochondrial	 translation	 machinery	 is	 required	 for	 the	 synthesis	 of	

proteins	 in	 the	 ETC	 complexes.	 These	 genes’	 inclusion	 in	 this	 cluster,	 where	 their	

essentiality	 profiles	 are	 correlated	 with	 those	 of	 the	 complexes	 they	 support,	 reflects	 a	

fundamental	 feature	 of	 saturating	 genetic	 screens:	 the	 essentiality	 of	 a	 given	 enzyme	 or	

biological	 process	 is	matched	by	 the	 essentiality	 of	 the	 cellular	 components	 required	 for	

the	biogenesis	and	maintenance	of	that	process.	

	

We	 observe	 numerous	 additional	 instances	 of	 such	 epistatic	 interactions	 that	 highlight	

functional	 relationships.	 For	 example,	 glutathione	 peroxidase	 gene	 GPX4	 shows	 highly	

variable	essentiality	across	cell	lines	(Figure	4a).	GPX4	is	a	selenoprotein	that	contains	the	

cysteine	 analog	 selenocysteine	 (Sec),	 the	 “21st	 amino	 acid,”	 at	 its	 active	 site.	 Coessential	

with	 GPX4	 are	 all	 the	 genes	 required	 for	 conversion	 of	 serine-conjugated	 tRNASer	 to	

selenocysteine-conjugated	 tRNASec	 (PSTK,	 SEPHS2,	 SEPSECS),	 as	 well	 as	 selenocysteine-

specific	elongation	factor	EEFSEC,	which	guides	Sec-tRNASec	to	specific	UGA	codons.	(Figure	

4b)	 (Schoenmakers	et	al.,	2016).	Cellular	dependence	on	GPX4	was	recently	shown	to	be	

associated	with	mesenchymal	state	(Viswanathan	et	al.,	2017).	Our	analysis	corroborates	

this	 finding:	 we	 show	 that	 GPX4	 essentiality	 is	 higher	 in	 cells	 expressing	 mesenchymal	

marker	ZEB1	(P<10-5;	Figure	4c).	In	our	global	analysis,	however,	GPX4	sensitivity	is	more	

highly	 correlated	with	 the	 expression	 level	 of	 GPX2,	 another	member	 of	 the	 glutathione	

peroxidase	family	(Figure	4d).	

	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 23, 2018. ; https://doi.org/10.1101/328880doi: bioRxiv preprint 

https://doi.org/10.1101/328880
http://creativecommons.org/licenses/by/4.0/


	 10	

Similarly,	a	pair	of	genes,	ACOX1	and	HSD17B4,	which	encode	three	of	the	four	enzymatic	

steps	in	peroxisomal	fatty	acid	B-oxidation	(FAO),	are	found	in	a	cluster	with	ten	PEX	genes	

involved	 in	peroxisome	biogenesis,	maintenance,	 and	membrane	 transport	 (Figure	5a-b).	

The	cluster	shows	a	discrete	pattern	of	essentiality,	preferentially	in	lung	cells	(essential	in	

6/42	 lung	cancer	 lines	 in	 the	Avana	data;	Figure	5c)	but	also	appearing	 intermittently	 in	

other	 lineages.	The	cluster	 is	not	otherwise	significantly	associated	with	mutational,	copy	

number,	or	 lineage	features.	The	emergent	dependence	on	peroxisomal	FAO	is	associated	

with	overexpression	of	18	genes	at	P-value	<	10-4	(See	Methods	and	Supp	Table	X);	two	of	

these	include	ACOXL,	a	largely	uncharacterized	gene	similar	to	ACOX1,	and	ELOVL7,	which	

catalyzes	 the	 rate-limiting	 step	 involved	 in	 long-chain	 fatty	 acid	 elongation.	Notably,	 this	

cluster	is	intact	in	the	network	generated	from	Aguirre	et	al.	(Aguirre	et	al.,	2016)(Figure	

5d),	though	it	preferentially	arises	in	pancreatic	cells	rather	than	lung	cells.	

	

A	network	of	interactions	between	biological	processes	

	

While	 individual	 clusters	 show	 high	 functional	 coherence,	 the	 network	 of	 connections	

between	 clusters	 offers	 a	 unique	window	 into	 process-level	 interactions	 in	 human	 cells.	

The	 peroxisomal	 FAO	 cluster	 is	 strongly	 connected	 to	 another	 functionally	 coherent	

module	containing	12	genes,	 ten	of	which	are	 tightly	connected	 to	other	members	of	 the	

cluster	(Figure	5a).	Those	ten	include	seven	genes	whose	proteins	reside	in	the	ER,	five	of	

which	 regulate	 cholesterol	 biosynthesis	 via	 posttranslational	 modification	 of	 sterol	

regulator	 element	 binding	 proteins	 (SREBPs).	 The	 remaining	 three	 genes,	 DHRS7B,	

TMEM41A,	 and	 C12orf49,	 are	 largely	 or	 completely	 uncharacterized;	 their	 strong	

association	 with	 other	 genes	 in	 this	 cluster	 implicates	 a	 role	 in	 the	 SREBP	 maturation	

pathway.	Both	the	peroxisomal	FAO	cluster	and	the	SREBP	maturation	cluster	are	strongly	

linked	 with	 a	 module	 containing	 RAB18,	 a	 RAS-related	 GTPase	 involved	 in	 Golgi-to-ER	

retrograde	 transport,	 as	 well	 as	 its	 associated	 GAP	 (RAB3GAP1,	 RAB3GAP2)	 and	 GEF	

(TBC1D120)	(Feldmann	et	al.,	2017).	

	

A	 similar	 network	 of	 modules	 describes	 the	 regulation	 of	 the	 mechanistic	 Target	 of	

Rapamycin	 (mTOR),	 in	 particular	 its	 detection	 of	 amino	 acid	 levels.	 Figure	 6	 shows	 the	
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relationships	between	a	series	of	network	modules	describing	the	core	mTOR	pathway	and	

several	 regulatory	 modules.	 The	 mTOR	 cluster	 includes	 mTORC1/2	 subunits	 MTOR,	

MLST8,	MAPKAP1,	and	RICTOR	(mTORC1-specific	subunit	RAPTOR	is	never	essential	and	

therefore	absent	from	the	network);	canonical	mTORC1/mTORC2	regulatory	and	signaling	

components	PDPK1,	AKT1,	and	PIK3CB;	plus	G-protein	subunit	GNB2,	previously	shown	to	

physically	 interact	 with	 mTOR	 in	 response	 to	 serum	 stimulation	 (Robles-Molina	 et	 al.,	

2014).	Canonical	inhibition	of	mTOR	by	the	TSC1/TSC2	heterodimer	–	the	TSC1-TSC2	link	

is	the	top-ranked	correlation	in	the	entire	dataset,	with	rho=0.93	(P<10-117)	–	is	reflected	in	

the	anticorrelation	of	fitness	profiles	connecting	the	TSC1/2	cluster	and	the	mTOR	cluster.	

	

MTOR	response	to	cellular	amino	acid	levels	is	modulated	by	an	alternative	pathway	that	

functions	at	 the	 lysosomal	membrane	(Bar-Peled	and	Sabatini,	2014).	We	 identify	a	 large	

cluster	containing	several	genes	involved	in	lysosomal	protein	and	transport,	including	the	

HOPS	complex	(Balderhaar	and	Ungermann,	2013;	Jiang	et	al.,	2014)	and	the	VPS26/29/35	

retromer	complex	(Hierro	et	al.,	2007;	Seaman,	2012).	This	strongly	connected	cluster	also	

contains	the	Rag	GTPases	RagA	(RRAGA)	and	RagC	(RRAGC)	that	transmit	information	on	

amino	acid	abundance	to	mTORC1	(Bar-Peled	and	Sabatini,	2014).	The	Rag	GTPases	are	in	

turn	activated	by	 the	Ragulator	 complex	 (Bar-Peled	et	al.,	 2012;	Sancak	et	al.,	 2010)	and	

folliculin	(FLCN)		(Mu	et	al.,	2017),	also	members	of	the	cluster.	The	GATOR-1	complex	is	a	

nonessential	 suppressor	 of	 essential	 Rag	 GTPase	 activity	 (Bar-Peled	 et	 al.,	 2013)	 and	 is	

therefore	 absent	 from	 our	 network,	 but	 essential	 suppression	 of	 GATOR-1	 by	 GATOR-2	

(Bar-Peled	et	al.,	2013;	Wei	et	al.,	2014)	is	reflected	by	the	strong	linkage	of	the	GATOR-2	

complex	to	both	the	Ragulator	and	mTOR	complexes.	

	

Within	the	MTOR	meta-cluster,	we	further	 identify	a	complex	containing	three	regulators	

of	protein	phosphatase	2A	(LCMT1,	TIPRL,	PTPA),	whose	strong	connectivity	to	the	TSC1/2	

complex	may	suggest	a	regulatory	role	 for	PP2A	 in	MTOR	signaling.	PP2A	has	previously	

been	posited	to	be	an	activator	of	TSC1/2	upstream	of	MTOR	(Vereshchagina	et	al.,	2008);	

the	 coessentiality	 network	 suggests	 specific	 PP2A	 regulators	 that	 may	 mediate	 this	

regulation.	
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A	 third	 example	 of	 the	 process-level	 interactions	 in	 cells	 demonstrates	 the	 hierarchy	 of	

operations	 required	 for	 posttranslational	 maturation	 of	 cell	 surface	 receptors.	 Several	

clusters	 in	our	network	describe	the	ER-associated	glycosylation	pathways	(Figure	7a-b),	

including	 synthesis	 of	 lipid-linked	 sugars	 via	 the	 dolichol-phosphate-mannose	 (DPM)	

pathway	 (Ashida	 et	 al.,	 2006;	 Maeda	 and	 Kinoshita,	 2008)	 and	 extension	 via	 the	

mannosyltransferase	family.	Glycan	chains	are	transferred	to	asparagine	residues	of	target	

proteins	 via	 the	 N-oligosaccharyltransferase	 (OST)	 complex.	 Nascent	 polypeptide	 chains	

are	glycosylated	as	they	are	cotranslationally	translocated	into	the	ER,	a	process	facilitated	

by	signal	sequence	receptor	dimer	SSR1/SSR2,	and	ER-specific	Hsp90	chaperone	HSP90B1	

facilitates	proper	folding.	The	OST	complex	and	its	functional	partners	are	represented	in	a	

single	 large	 complex	 (Figure	 7a).	 Both	 DPM	 and	 OST	 are	 highly	 connected	 to	 the	 large	

complex	 encoding	 GPI	 anchor	 synthesis;	 DPM	 is	 required	 for	 GPI	 anchor	 production	

(Kinoshita	and	Inoue,	2000;	Watanabe	et	al.,	1998)	before	transfer	to	target	proteins.	

	

The	variety	of	oncogenic	drivers	among	the	cell	lines	underlying	this	network	give	rise	to	

background-specific	 dependencies,	 including	 a	 variety	 of	 mutated	 and/or	 amplified	

receptor	tyrosine	kinases	(RTKs)	with	specific,	and	mutually	exclusive,	essentiality	profiles.		

Insulin-like	growth	factor	receptor	IGF1R	is	one	such	RTK,	which	appears	in	a	cluster	with	

receptor-specific	downstream	signaling	proteins	insulin-receptor	substrate	1	and	2	(IRS1,	

IRS2).	IGF1R	is	a	highly	N-glycosylated	RTK	and	the	IGF1R	complex	is	tightly	connected	to	

the	 OST	 complex	 in	 our	 network.	 EGFR,	 also	 highly	 glycosylated	 (Kaszuba	 et	 al.,	 2015),	

appears	in	its	own	cluster	with	signaling	adapter	protein	SHC1	and	is	also	linked	to	the	OST	

complex	 (Figure	 7a)	 despite	 being	 mutually	 exclusive	 with	 IGF1R	 (Supp	 Figure	 2).	

Interestingly,	 EGFR	 is	 more	 strongly	 connected	 with	 a	 separate	 complex	 involved	 in	

glycosphingolipid	 biosynthesis	 (that	 is	 itself	 linked	 to	 the	 OST	 complex).	 Prior	 work	

suggests	 that	 membrane	 glycolipid	 composition	 can	 strongly	 influence	 EGFR	

autophosphorylation	 and	 signaling	 (Coskun	 et	 al.,	 2011).	 In	 contrast,	 fibroblast	 growth	

factor	 receptor	 FGFR1	 is	 absent	 from	 this	meta-network	 but	 is	 strongly	 associated	with	

heparin	sulfate	biosynthesis	(Supp	Fig	2);	HS	is	a	known	mediator	of	FGF	receptor-ligand	

interaction	(Wu	et	al.,	2003).	
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Conclusions	

	

Systematic	 genetic	 interaction	 screens	 in	 yeast	 revealed	 that	 most	 genetic	 interactions	

occur	 either	within	 a	 biological	 pathway	 or	 between	 related	 pathways.	We	 demonstrate	

that	single-gene	 fitness	profiles	across	screens	 in	genetically	diverse	human	cell	 lines	are	

analogous	to	genetic	interaction	screens	across	defined	isogenic	query	strains.	Importantly,	

as	with	model	organisms,	human	genes	with	correlated	fitness	profiles	are	highly	likely	to	

participate	 in	 the	 same	 biological	 process.	 We	 take	 advantage	 of	 this	 fundamental	

architectural	 feature	 of	 genetic	 networks	 to	 create	 a	 functional	 interaction	 map	 of	

bioprocesses	 that	 demonstrates	 information	 flow	 through	 a	 human	 cell.	 The	 network	

predicts	 gene	 function	 and	 provides	 a	 view	 of	 process-level	 interactions	 in	 human	 cells,	

allowing	a	level	of	abstraction	beyond	the	gene-centric	approach	frequently	employed.	

	

The	network	is	derived	from	the	emergent	essentiality	of	defined	biological	processes	and	

the	genes	required	to	execute	them.	We	show	that	this	approach	significantly	expands	our	

knowledge	 beyond	 current	 networks	 of	 comparable	 design	 (e.g.	 STRING,	 HumanNet).	 A	

critical	 next	 step	will	 be	 to	 understand	 the	 underlying	 context	 that	 drives	 the	 emergent	

essentiality	of	specific	bioprocesses	in	specific	backgrounds.	The	health	implications	of	this	

question	 are	 profound.	 In	 cancer,	 to	 understand	 the	 causal	 basis	 of	 modular	 emergent	

essentiality	 is	 to	 identify	 matched	 pairs	 of	 biomarkers	 (the	 causal	 basis)	 and	 precision	

targets	(the	essential	pathway)	for	personalized	chemotherapeutic	treatment.	Additionally,	

lineage-specific	 essential	 processes	 could	 provide	 explanatory	 power	 for	 germline	

mutations	causing	tissue-specific	disease	presentation,	in	cancer	as	well	as	other	diseases.	

	

Expanding	the	coverage	of	the	network	will	require	different	screening	approaches.	Fitness	

screens	 in	cancer	cell	 lines	 in	rich	media	will	miss	cellular	dependencies	that	are	present	

only	under	stress	conditions.	In	yeast	(Hillenmeyer	et	al.,	2008)	and	nematodes	(Ramani	et	

al.,	 2012),	 these	 context-dependent	 fitness	 effects	 comprise	 the	majority	 of	 genes	 in	 the	

genome.	 Increasing	 the	 coverage	 of	 the	 genetic	 interaction	 network	 beyond	 the	 ~3,000	

genes	whose	fitness	profiles	covary	across	human	cancer	cell	lines	will	require	screening	in	
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different	nutrients	and	perturbagens,	as	well	as	sampling	the	effects	of	genetic	mutations	

outside	 common	 cancer	 genotypes.	 Nevertheless,	 the	 indirect	 approach	 to	 identifying	

genetic	 interactions	 from	monogenic	 perturbation	 studies	 is	 demonstrably	 effective,	 and	

offers	 a	 powerful	 tool	 for	 navigating	 the	 network	 of	 connections	 between	 cellular	

bioprocesses.	The	coessentiality	network	used	in	this	study	can	be	viewed	interactively	at	

https://pickles-hartlab.shinyapps.io/cyto_app/	and	downloaded	at	the	NDEx	project.	

	

	

Methods	

	

See	Supplementary	Data	for	a	complete	description	of	methods	used	in	this	study.	
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Figure	Legends	
	
Figure	1.	 	The	coessentiality	network.	 	(A)	CRISPR	and	shRNA	screens	analyzed	for	this	

study.	 (B)	 Measuring	 functional	 enrichment.	 For	 each	 data	 set,	 pairwise	 correlations	 of	

knockout/knockdown	 fitness	 profiles	 were	 ranked,	 binned	 (n=1000),	 and	 measured	 for	

enrichment	 for	 shared	 KEGG	 terms.	 Data	 from	 Meyers	 et	 al	 (“Avana	 data”)	 carries	

significantly	 more	 functional	 information	 than	 other	 data	 sets.	 (C)	 The	 Cancer	

Coessentiality	 Network,	 derived	 from	 Avana	 data,	 contains	 3,483	 genes	 connected	 by	

68,813	 edges.	 Selected	modules,	 derived	 by	 an	 unbiased	 clustering	 algorithm	 and	 color-

coded,	demonstrate	the	functional	coherence	of	the	network.	

	

Figure	2.	Cancer-specific	features	of	the	network.	(A)	Clusters	of	genes	were	evaluated	

for	 tissue	 specificity	 (size	 of	 circles)	 and	 differential	 mRNA	 expression	 of	 genes	 in	 the	

cluster	 (color	 of	 circles).	 (B)	 Cluster	 14	 (BRAF	 cluster);	 nodes	 are	 genes	 in	 cluster	 and	

edges	reflect	strength	of	correlation	of	fitness	profile.	(C)	Heatmap	of	essentiality	profiles	of	

genes	in	BRAF	cluster,	ranked	by	median	essentiality	score.	Gene	essentiality	in	the	cluster	

is	 associated	with	PBRAF	mutation	 (P<10-23)	 and	 sensitivity	 to	BRAF	 inhibitor	PLX-4720	

(P<10-7).	 (D,E)	 Network	 and	 heatmap	 of	 MYB-related	 cluster.	 (F,G)	 PAX8-associated	

cluster.	(H,I)	B-catenin	cluster.	(J)	MYCN	neuroblastoma	cluster	is	anticorrelated	with	MYC.	

(K)	MYC,	MYCN	essentiality	is	mutually	exclusive.	(L)	MDM2	cluster	heatmap	is	associated	

with	TP53	mutation	status	(P<10-13)	and	sensitivity	 to	Nutlin-3a	(P<10-14).	 (M)	MDM2	vs	

TP53	essentiality.	TP53	essentiality	scores	<	-50	indicate	tumor	suppressor	role.	

	

Figure	3.	Beyond	cancer:	characterization	of	the	coessentiality	network.		(A)	Number	

of	 clusters	 (top)	 and	 total	 genes	 in	 clusters	 (bottom)	 showing	 strong	 association	 with	

annotated	protein	 complexes,	 biological	 function,	 tissue	 specificity,	 amplification-induced	

CRISPR	 artifacts,	 and	 differential	 expression	 of	 genes	 .	 (B,C,D)	 Comparing	 the	 Avana	

coessentiality	 network	 to	 other	 functional	 (B),	 	 protein-protein	 (C),	 and	 coessentiality	

networks	 (D)	 shows	 the	 unique	 information	 contained	 in	 our	 network.	 (F)	 For	 some	

protein	complexes,	coessentiality	is	a	better	predictor	of	co-complex	membership	than	co-
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expression.	 (G)	 The	 coessentiality	 network	 is	 a	 powerful	 predictor	 of	 cancer	 pathways	

(Huang	et	al.)	compared	to	other	databases	and	networks	(lower	rank	is	better).	

	

Figure	 4.	 GPX4	 cluster.	 	 (A)	 Glutathione	 peroxidase	 GPX4,	 a	 selenoprotein,	 is	 strongly	

clustered	 with	 genes	 involved	 in	 the	 selenocysteine	 conversion	 pathway	 (B).	 (C)	 Entire	

GPX4	cluster	shows	marked	differential	essentiality	in	glioblastoma	cell	 lines.	(D)	Cellular	

requirement	for	GPX4	is	associated	with	ZEB1	expression,	as	previously	reported,	but	(E)	

GPX2	expression	is	more	strongly	predictive.	

	

Figure	5.	Peroxisomal	beta-oxidation.		(A)	A	large	group	of	peroxisome-associated	genes	

(orange)	 is	 connected	 by	 high-correlation	 edges	 in	 the	 nework	 (blue).	 This	 cluster	 is	

connected	by	less	stringent	edges	(Benjamini	adjusted	P-value	<	0.01;	gray	edges)	to	other	

clusters	containing	sterol	regulatory	genes	(green	nodes)	and	the	RAB18	GTPase	(purple	

nodes).	(B)	The	PEX	cluster	contains	12	genes,	 including	2	enzymes	involved	in	fatty	acid	

oxidation	 and	 10	 peroxisome	 biogenesis	 and	maintenance	 genes.	 (C)	 The	 PEX	 cluster	 is	

emergently	 essential	 in	 a	 subset	 of	 lung	 cancer	 cell	 lines	 in	 the	Avana	data,	 and	 (D)	 in	 a	

subset	of	pancreatic	cancer	cell	lines	in	the	GeCKO	data.	

	

Figure	6.	mTORC	pathway	 regulation.	 	(A)	The	mTORC1/2	complexes	are	regulated	by	

the	canonical	TSC1/2	pathway,	but	amino	acid	sensing	is	done	via	the	Ragulator	complex	at	

the	lysosome.	(B)	Clusters	in	the	coessentiality	network	represent	components	involved	in	

mTORC	 regulation,	 and	 edges	 between	 clusters	 are	 consistent	 with	 information	 flow	

through	the	regulatory	network.	(Red	edges	indicate	negative	correlation).	

	

Figure	 7.	 Glycosylation	 of	 cell	 surface	 receptors.	 (A)	 Pathways	 involved	 in	 protein	

glycosylation	 and	 GPI	 anchor	 biosynthesis	 in	 the	 ER.	 (B)	 A	 network	 of	 clusters	 around	

glycosylation	 tracks	 the	biogenesis	 and	 elongation	of	 carbohydrate	 trees	 (DPM	synthase,	

mannosyltransferases,	 glucosyltransferases)	 to	 their	 transfer	 to	 target	 proteins	 via	 N-

linked	glycosylation	by	 the	OST	 complex.	 Cell	 surface	 glycoproteins	EGFR	and	 IGF1R	are	

both	strongly	liked	to	the	OST	complex	despite	their	essentiality	being	mutually	exclusive	

in	cell	lines.	 	
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Figure	3	
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Figure	7	
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