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Abstract 
Electron cryo-microscopy (cryoEM) is now a powerful tool in determining atomic 
structures of biological macromolecules under nearly natural conditions. The major 
task of single-particle cryoEM is to estimate a set of parameters for each input particle 
image to reconstruct the three-dimensional structure of the macromolecules. As future 
large-scale applications require increasingly higher resolution and automation, robust 
high-dimensional parameter estimation algorithms need to be developed in the presence 
of various image qualities. In this paper, we introduced a particle-filter algorithm for 
cryoEM, which was a sequential Monte Carlo method for robust and fast high-
dimensional parameter estimation. The cryoEM parameter estimation problem was 
described by a probability density function of the estimated parameters. The particle 
filter uses a set of random and weighted support points to represent such a probability 
density function. The statistical properties of the support points not only enhance the 
parameter estimation with self-adaptive accuracy but also provide the belief of 
estimated parameters, which is essential for the reconstruction phase. The 
implementation of these features showed strong tolerance to bad particles and enabled 
robust defocus refinement, demonstrated by the remarkable resolution improvement at 
the atomic level.   
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Introduction 
Electron cryo-microscopy（cryoEM）is inaugurating a new era for structural biology 
by its capabilities to reveal atomic-resolution structures of biological samples under 
nearly natural conditions1-3. The cryoEM technologies are getting great attentions from 
both biologists and pharmaceutical companies, and leading to the construction of many 
cryoEM facilities in recent years. The recent achievements of cryoEM benefit from a 
series of technical breakthroughs since 20134-6. The efforts on direct electron detector 
technologies, especially the electron counting, enabled efficient recording of atomic-
resolution signals7-10. In the meantime, the development of computing algorithms, from 
motion correction to three-dimensional (3D) reconstruction and classification, are 
getting rapid progresses to obtain more accurate structural information hidden in strong 
noises of low-dose cryoEM images than ever8,11-16.  

The increasing demand for general applicability and high throughput at atomic-
resolution level is boosting new challenges for current cryoEM computing technologies. 
The general applicability often means high accuracy and robustness for datasets with 
various qualities. The application of a Bayesian-likelihood approach has shown 
advantages for the applicability, which introduced a statistical model to guide the 
iterative alignment processing in 3D reconstruction14,17-19. In each alignment step the 
orientation parameters including rotation and translation were estimated for the best 
matches evaluated by the likelihood of the experimental image against one or multiple 
given 3D references. The global goal of 3D reconstruction is to maximize the overall 
likelihood according to the Bayes rule. This statistical model makes the cryoEM 3D 
reconstruction more robust and automated than traditional methods. However, the high-
dimensional parameter estimation is still a tricky but key factor in obtaining reliable 
results. The failure in reconstruction or classification, as well as issues like low 
resolution and over refinement, is usually caused by a bad parameter estimation, which 
has been recognized as an issue in traditional approaches. Moreover, the parameter 
estimation occupies a large portion of computing time in the entire processing, making 
it be a major target of computing acceleration. For some cases, extending the parameter 
estimation to higher-dimensional settings is necessary to obtain atomic-resolution 
reconstruction. However, it remains a challenge for both algorithm development and 
computing acceleration.  

Owing to the importance of parameter estimation, many algorithms have been 
developed for cryoEM. The gridding and gradient algorithms, and a mixture of them, 
are popular in many published software. The gridding method is usually robust but with 
limited accuracy and high computing cost. Optimized versions of the gridding 
algorithm were thus developed, for example, an adaptive gridding algorithm with 
combination of coarse and fine grids used in RELION14. The gradient algorithms are 
well established in many fields to obtain fast computing performance. However, the 
robustness in global optimization and high-dimensional parameter estimation is always 
concerned. Therefore, the gradient algorithms were usually used for fast local parameter 
estimation, such as the conjunction gradient algorithm in FREALIGN20. Other more 
complicated algorithms are being considered. Recently, cryoSPARC implemented a 
stochastic gradient descent algorithm to obtain fast low-resolution model initialization, 
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and combined a branch-and-bound algorithm to get rapid parameter estimation for high 
resolution15. However, current algorithms mostly focus on finding the best parameters, 
and lack of per-parameter evaluation of the estimation error. These also influence the 
robustness of high-dimensional parameter estimation.  

Here, we implemented a particle-filter algorithm for single-particle cryoEM, which 
used statistical inference methods to find the complete solution of cryoEM parameter 
estimation. The particle-filter algorithm has been used to obtain optimal Bayesian 
estimation for nonlinear/non-Gaussian tracking problems21-23. It is a sequential Monte 
Carlo method, and uses random support points with weights to represent probability 
density function (PDF) of the parameter estimations. For cryoEM, the parameter 
estimation in the 3D alignment step can be described by a PDF that represents the belief 
of the estimated parameters. We designed a specialized particle-filter algorithm which 
estimated this PDF based on the likelihood function (LF) by a series of support points, 
and implemented it in the Bayesian approach14,18 for cryoEM 3D reconstruction. In the 
following, we applied the particle filter in four subspaces of the rotation, translation, 
defocus and structural state (3D classification). Then, we optimized the particle-filter 
algorithm and developed two weighting algorithms to improve the robustness of the 3D 
reconstruction. The current implementation highlights the self-adaptive adjustment for 
estimation accuracy, the tolerance to bad particles and the defocus refinement. The 
performance of the algorithm was demonstrated by the remarkable improvement in 
resolution of 3D reconstructions of several testing samples. These features make the 
particle-filter algorithm to serve as a novel framework of parameter estimation for 
future automation and large-scale application of cryoEM.  
 
Results 
A particle-filter algorithm for cryoEM parameter estimation  
The alignment step in cryoEM 3D reconstruction is to estimate a set of high-
dimensional parameters including orientations for each particle image. The 
measurement for the orientation parameters (the rotation and translation) has been 
formulated as the likelihood of an experimental image against a 3D reference of the 
target macromolecule14. Considering a high-dimensional parameter space consisting of 
three Euler rotation angles, two in-plane x-y translations, as well as some other 
parameters to describe the sample heterogeneity and imaging conditions, the 
measurements through this parameter space constitute a high-dimensional LF. The 
parameter estimation procedure, such as the classic gridding and gradient algorithms, 
can be modeled to search for the maximum likelihood, given by noisy and partial 
observations. Moreover, the LF contains more information which has not been fully 
exploited in classic cryoEM algorithms. The distribution of the likelihood, also known 
as the PDF of the parameter estimation, can be used to indicate the belief of the 
estimated parameters. The statistical information from the PDF provides a complete 
solution to the estimation problem, such as the measure of the accuracy at the single 
molecule particle level, and helps to achieve robust estimation in the high-dimensional 
space.   
  We implemented a specialized particle-filter algorithm to estimate the PDF used 
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for cryoEM parameter estimation (see Method). The particle-filter algorithm performs 
estimation on the LF (Fig. 1a) by a set of random support points with associated weights 
(Fig. 1b). The distribution of the support points represents the PDF of the parameter 
estimation. In the beginning, a given number of the random support points are 
uniformly distributed in the entire parameter space for a good coverage to the whole LF 
for global search, called scanning phase (gray points in Fig. 1b). Then, a series of 
iterative phases are performed to gradually concentrate the random support points to 
the global optimum (colored points in Fig. 1b). In each phase, those sampling points 
located at higher likelihood regions will be assigned with higher weights and rapidly 
reallocated to more support points in this region (referred to as resampling process, see 
Method and Appendix I) in the following iterative phases. After obtaining rough 
estimations for the parameters in the global search, the local search is performed. The 
similar procedure is carried out as the global search but in a smaller region rather than 
the entire LF. This particle-filter algorithm can be used on any complicated high-
dimensional LF with excellent robustness. We performed ab initio 3D reconstruction 
with an ellipsoid as the initial model for a dataset of the cyclic-nucleotide-gated (CNG) 
channel24 to test the algorithm, and the reconstruction correctly converged (the density 
maps in Fig. 1a). Meantime, the robustness of the particle-filter algorithm also provided 
the capability to optimize the defocus parameters together with the orientation 
parameters, which revealed the Z-height distribution of particles in the ice (discussed 
later). 
 The structural state was considered as a classification parameter, corresponding to 
multiple 3D structures (see Method). Different from the rotation, translation and 
defocus, the structural-state parameter is discrete in our current algorithm, and the 
number of support points is set to be equal to the number of classes. We tested the 3D 
classification of the CNG datasets using the ellipsoid above as the initial model, and 
observed the classes losing part of the densities in the trans-membrane region of the 
CNG channel (Suppl. Fig. 1a), which agreed with our previous observation. This result 
confirmed the robustness of the particle filter in 3D classification from a simple initial 
model. 
 The initialization and the resampling of the particle filter needs sampling points 
with uniform or a certain distribution of the rotation parameters. This is a very difficult 
task using the Euler-angle system. Alternatively, we used the unit quaternion to describe 
the rotation operations in the implementation of the particle filter (see Method). 
   
Optimize the number of support points for fast and robust parameter estimation 
The particle-filter algorithm uses a set of random support points to perform iterative 
updates based on the LF. As the number of total support points is directly proportional 
to the computing cost, it is necessary to optimize the number of support points to obtain 
fast computing performance. However, the selection of the number of supporting points 
depends on the complexity of the LF. Too few points will reduce the coverage to the LF 
and may lead to the local optimum. Optimizing the number of support points needs to 
balance the robustness and the computing performance.  

In current implementation, the particle filter was applied to four subspaces, 
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including the rotation, x-y translation, defocus, and structural state. The total number 
of support points is the product of those in all subspaces. Except for the structural-state 
subspace whose number of support points is equal to the number of classes, we 
evaluated the influences of different numbers of support points in other three subspaces. 
The Fourier Shell Correlation (FSC) curves were used as a criterion. If the parameter 
estimations on most particles go wrong or fall into the local optimum owing to too few 
support points, the resolution or the FSC curve of a 3D reconstruction is expected to 
become worse.  

The LF in the rotation subspace has the most complicated form with many peaks 
(Fig. 1a), so that a large number of support points are put on the rotation subspace. In 
global search, our tests showed that ~10,000 support points can give a good coverage 
to the rotation subspace in the scanning phase (Fig. 1b). If considering the symmetry of 
the molecule particles, the number of support points can be reduced by the number of 
symmetric operations. After the first iterative phase, the support points usually will be 
rapidly concentrated to the regions near the global optimum. Hence, ~100 points are 
enough in the following iterative phases (Suppl. Fig. 2a). In local search, the estimation 
is always limited in a small region, and ~100 points are empirically enough for the 
rotation subspace (Fig. 2a and Suppl. Fig. 2a). The LF in the translation and defocus 
subspace has a simple single-peak shape (Fig. 2b and c), and hence the number of 
support points can be much less than that for the rotation. For a translation estimation 
within 25-pixel radius, ~70 support points are typically enough in the scanning phase. 
And then with the rapidly converged points, the number can be further reduced to ~9 
(Fig. 2b and Suppl. Fig. 2b). For defocus, rough values with astigmatism should already 
be available, such as that from CTFFind325. In current implementation, only local 
defocus search without considering astigmatism is performed. ~9 support points can 
give the correct result (Fig. 2c). Therefore, except for the scanning phase in global 
search, later phases of the parameter estimation require only a small number of support 
points for providing a correct estimation, which are typically ~125, ~9 and ~9 points 
for the rotation, x-y translations and defocus dimension, respectively.  
 
Self-adaptive accuracy for parameter estimation 
The parameter estimation accuracy is important for the obtainable resolution in 3D 
reconstruction, which varies with the image quality in terms of the signal-to-noise ratio. 
In the grid algorithm, a finer grid always yields more accurate estimation, but tends to 
increase unnecessary computations when the reference model is in low resolution. 
Therefore, some prior knowledge is needed to achieve a balance between parameter 
accuracy and computing cost. The particle filter shows advantage in such problems by 
self-adaptive adjustment for parameter estimation accuracy.  
 If an estimation of a parameter has a large confidence, the local LF around this 
parameter exhibits as a high and sharp peak. The support points on the peak will obtain 
high weights (proportional to the likelihood, see Method), and concentrate dense points 
to its adjacent region (Fig. 2 and Suppl. Fig. 3a) by the resampling procedure. The dense 
support points provide fine coverage for this peak area to achieve accurate estimation. 
Otherwise, the LF is flat, which often happens at the low-resolution stage of the first 
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several rounds of 3D reconstruction (Fig. 1a), or when the particle image does not 
match well with the 3D reference. Consequently, the support points will be distributed 
in a large area and even on multiple peaks (Suppl. Fig. 3b), which provides a coverage 
to a large region but with low sampling accuracy. This brings advantages of searching 
more regions to increase the possibility of finding the global optimum.  

When the particle filter uses a fixed number of support points, the computation cost 
can be kept constant. In such cases, higher estimation accuracy can be achieved by 
optimizing the distribution of the random support points.   
   
Improve tolerance to bad particles by particle grading and distribution weighting 

Identifying and removing bad particles to improve the resolution of 3D 
reconstruction is a difficult and time-consuming task. The major problem is that it is 
difficult to define the “bad” particles in a quantitative way. A possible characteristic of 
a bad particle is the lower “stability” during parameter estimation than that of the good 
particles, whose parameters are sensitive to any changes of noises or 3D references. 
This characteristic has been used to find the bad particles, such as a random-phase 3D 
classification method26 to count the frequency of a particle jumping between different 
3D classes. However, so far there isn’t a simple and quantitative way to perform such 
estimation. As discussed in the previous section about the self-adaptive accuracy, the 
distribution of support points varied with the confidence of the parameter estimation. 
The low stability may be described by the low confidence here. Therefore, estimating 
the distribution of support points provides a statistical way to quantify the estimation 
confidence. Accordingly, we implemented two methods to utilize this information to 
adjust the contribution of each particle to the reconstruction (see Method). First, the 
reciprocal of the standard deviation of the support point distribution was used as a 
weighting factor for each particle image used in the reconstruction, named particle 
grading. Second, each particle image was inserted into the reconstruction for N times 
(empirically, N = 100 in our current implementation) with parameters following the 
distribution obtained from support points, named distribution weighting. If the 
distribution is wide, the contribution of the particle image is equivalent to be diluted, 
vice versa. Therefore, the second method is an inexplicit weighting algorithm.  

To test the weighting algorithms, we used three high-resolution datasets, the 
proteasome27 (Entry code: 10025) and β-galactosidase28 (Entry code: 10061) from 
EMPIAR29, and the CNG dataset from our previous work24. In the published results, 
the initial datasets were subjected to a series of screening processes including 2D or 3D 
classifications to remove “bad” particles. And only less than 50% particles were 
selected and used in the final reconstruction. This ratio might be much lower, even 
5~10%, in some cases. Now our particle grading and distribution weighting can 
automatically deal with the “bad” particles so that no additional efforts are needed to 
filter bad particles. After the particle picking, we only performed a simple 2D 
classification to remove some wrong particles, ~10% of the initial particles, which were 
mostly ice contaminations picked by automated particle picking. Then, 211,826 CNG 
particles, 112,412 proteasome particles and 89,857 β-galactosidase particles, simply 
called dirty datasets, were directly subjected to 3D refinement using the particle-filter 
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algorithm. As a control, we also calculated the 3D reconstructions from the particles 
selected in the published works, simply called clean datasets, 87,149 CNG particles, 
49,954 proteasome particles and 38,965 β-galactosidase particles.  

As expected, the FSC curves of two dirty datasets (solid lines) of proteasome (blue 
curve) and β-galactosidase (red curves) show much better resolutions than the 
corresponding clean ones (dashdotted lines) (Fig. 3a). The significantly improvement 
of the map quality confirmed the resolutions (the second and third rows of Fig. 3c). 
Some aromatic rings in β-galactosidase show clearer holes in the center than both the 
clean dataset and the published map (EMDB entry code: 2984) (Suppl. Fig. 4). 
Especially, the Phe35 in β subunit of the proteasome showed a hole in its aromatic ring 
(Fig. 3c), which demonstrated the resolution improvement of almost half angstrom 
from 2.8 Å of the EMDB map (EMDB entry code: 6278). These results indicate that 
many good particles were removed together with the bad ones during the screening 
processes in the published works. By our particle filter algorithm, the bad particles were 
automatically set with low contribution to the final reconstructions, and hence more 
good particles can be used to improve the resolution. Therefore, the grading and 
distribution weighting improved the tolerance to bad particles. To further investigate 
the contribution from the particle grading itself, we performed 3D refinement with and 
without particle grading (defocus refinement was disabled for this test) for the dirty 
datasets. The FSC curves (Fig. 3b) with particle grading (dashed lines) showed 
improvements relative to those without grading (dotted lines), which demonstrated the 
contribution of the particle grading. The contribution of distribution weighting wasn’t 
compared, because it was part of the reconstruction and cannot be turned off.  

For the CNG dataset, we performed the same tests as those for the other two 
datasets, but no significant improvement was observed. On the other hand, the bad 
particles in the dirty dataset also didn’t cause degradation of the resolution, and we can 
even see some subtle improvements in the map of the dirty dataset (the third column of 
Fig. 3c). In our current and previous works, it was observed that some CNG complexes 
had a flexible subunit. Therefore, the flexibility of CNG complex might limit the 
obtainable resolution.  

 
Defocus refinement for accurate Z height measurement of macromolecules in ice 
layer 
Protein particles may have different Z heights (assuming the incident beam is along Z 
axis) in the same ice layer of cryoEM grid, which results in varied defocus for particles 
in the same micrograph. The defocus variation can be as large as several hundreds of 
angstroms due to thick ice or stage tilt, and introduce significant phase error to high-
frequency signals during the correction for contrast transfer function (CTF). Therefore, 
determining accurate defocus parameter is essential for obtaining atomic resolution 
better than 3 Å. Benefiting from the robustness and good computing performance of 
the proposed particle-filter algorithm, we are able to extend the parameter estimation to 
the defocus based on the signal from each single particle.  

We tested defocus refinement using the three datasets of CNG channel, proteasome 
and β-galactosidase. Both the proteasome and β-galactosidase showed remarkable 
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improvements in resolution indicated by FSC shifts of 0.1~0.2 Å to 2 Å resolution (Fig. 
3b). The density maps were also significantly improved, which was illustrated by the 
clearer holes in some aromatic rings (the third and fourth rows of Fig. 3c). This result 
confirmed that high-frequency signals are more sensitive to the phase error due to the 
inaccurate defocus value. For the CNG dataset, we didn’t see improvement of 
resolution with and without defocus refinement (green solid and green dash line, 
respectively, in Fig. 3b). A possible reason is that the reconstruction at the resolution 
around 3.5 Å is not sensitive to the phase error. And it is also possible that the ice of the 
CNG sample is thin and flat, and hence there is no large defocus variation. 

Especially, the proteasome dataset shows the largest improvement from 2.53 Å to 
2.35 Å with defocus refinement. To investigate the possible reason, we did a 3D plot 
for the particle positions of each proteasome particle, where the Z coordinates are the 
relative defocus variation from the defocus measured by the whole micrograph (Fig. 
4a-c). We observed that most particles distributed in a thin layer of 160~300 Å thickness 
(Fig. 5d). And most micrographs have a large tilt of 1o ~8o (Fig. 4d). The defocus 
difference from a corner to another can be more than 400 Å for a 5o tilt. Therefore, such 
large sample tilt may explain the remarkable improvement after defocus refinement. 
Moreover, we found that a quadric surface gave a better fitting to the particle positions 
than a plane, which might indicate that the ice layer was slightly curved (Fig. 4c). Such 
a result also agrees with the observations of ice deformation under electron radiation11,30.  
 
Discussion 
The current cryoEM technologies have made atomic resolution more and more 
obtainable than ever. However, the requirements for large-scale applications of higher 
resolution better than 3 Å are still challenging for future cryoEM technologies. Many 
bottlenecks, such as low-quality samples, dependence on user experiences and 
measurement errors in imaging parameters, still exist. Under this background, we 
implemented a specialized particle-filter algorithm to improve the robustness and 
accuracy of the single-particle 3D reconstruction. The particle filter, a statistical 
inference method, has demonstrated superior accuracy and robustness with affordable 
computations in many engineering applications23. The basic idea of particle filters is to 
use a series of support points with corresponding weights to represent complex 
probability distributions. In the case of cryoEM 3D reconstruction, we used the support 
points to represent the PDF of estimated parameters constructed on the LF in the high-
dimensional parameter space. By optimizing the particle filter in the cryoEM parameter 
space, involving three subspaces of the rotation, xy-translation and defocus, we were 
able to achieve low-complexity but accurate parameter estimation for atomic-resolution 
3D reconstruction. The application on 3D classification initialized from a simple 
ellipsoid model also proved the robustness of our particle-filter algorithm. The 
performance of this particle-filter algorithm was then demonstrated by significantly 
improved resolutions for two datasets of proteasome27 and β-galactosidase28 over the 
published results (Suppl. Fig. 5). Especially, we pushed the resolution of the proteasome 
dataset to ~1.1x physical Nyquist frequency. This also demonstrated that our particle-
filter implementation is able to reveal the super-resolution signal beyond the physical 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 23, 2018. ; https://doi.org/10.1101/329169doi: bioRxiv preprint 

https://doi.org/10.1101/329169


 10 / 29 
 

Nyquist frequency of K2 counting camera (Gatan Company) through accurate 3D 
parameter estimation.  
 The particle-filter algorithm provided an effective metric for the confidence of 
parameter estimates, which is quantified by the standard deviation of the distribution of 
the support points. This confidence is actually comparable among different particles, 
and hence can be used for identifying bad particles. This is a unique function benefiting 
from the statistical method used in particle filters. We utilized this information through 
two weighting algorithms, the particle grading and distribution weighting. The tests on 
the three datasets show excellent tolerance to bad particles, so that no extra processing, 
such as recursive 2D and 3D classification, is needed to remove bad particles. The 3D 
classification has been intensively used in a trial-and-error way to find and remove bad 
particles in many published works. Such classification processes strongly depend on 
user experiences and available computing resources, and often do not work well for the 
beginner. The particle grading and distribution weighting not only provide a solution 
for this kind of problems by reducing extra processing to push the resolution, but also 
enhance the robustness of the 3D reconstruction. Together with self-adaptive accuracy, 
the particle grading and distribution weighting also make the 3D reconstruction 
procedure more automated.  
 For the efforts to push the resolution to the atomic level, the defocus variation must 
be fully considered. In the resolution range better than 3 Å, the oscillation of the CTF 
becomes severe. Small errors in the defocus value can cause large phase errors in 3D 
reconstruction of high-frequency signals. Therefore, the defocus change caused by Z 
height variation of particles in thick or tilted ice must be precisely determined for each 
particle image. Programs, such as CTFTilt25, have been used to measure the sample tilt 
on the whole micrograph. A recently published software package GCTF enabled the 
determination for local defocus31. But all these software is based on the Thon ring signal 
from both particles and surrounding ice, which cannot handle the per-particle Z height 
change in the ice. The robustness of high-dimensional parameter estimation by particle 
filters enabled the defocus refinement together with other parameters, and our tests 
showed significant resolution improvement for the reconstruction in the resolution 
range better than 3 Å.  
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Method 
Particle filter algorithm 
For single-particle cryoEM 3D alignment, the core step is to determine a set of, possibly 
high-dimensional, parameters 푥 = {휙, 푡, 휁, 휇 … }  for each particle image, where 휙 
stands for the rotation, 푡 stands for the translation in the image plane, 휁 stands for the 
defocus or the particle position along incident beam, 휇  stands for a underlying 
structural state, and other parameters in the cryoEM system can also be considered. In 
the present work, we will focus on determining the first four sets of parameters, i.e., 
rotation, translation, defocus and structural state for 3D classification. The 
corresponding method can also be extended to the determination of more parameters.  

With the attempt to improve the robustness for high-dimensional parameter 
estimation, we expressed the belief of parameter 푥 by its PDF, 푝(푥|휒, 푉), where 휒 
stands for the experimental particle image, and V stands for the 3D reference. If the 3D 
classification is performed, V will contains a set of underlying reference structures. 
Such probabilistic description not only gives the estimation of 푥 , but also has the 
advantage in obtaining the estimation error of 푥 for each experimental image against 
the given 3D reference.   
 We next introduced a particle-filter algorithm21-23 to estimate 푝(푥|휒, 푉) . The 
particle filter is a Monte Carlo method representing the required posterior PDF by a set 
of random support points with associated weights. In our cryoEM implementation, the 
particle-filter algorithm aims to construct a PDF, 푞(푥|휒, 푉), represented by a set of 푁 
random support points {푥 }  in the high-dimensional cryoEM parameter space, to 
approximate 푝(푥|휒, 푉) . The distribution 푞(푥|휒, 푉)  was usually called importance 
density in the engineering applications of the particle filter21.  

A brief introduction for the implemented algorithm is as follows. 
The particle filter undergoes a series of iterative phases to reach 

 lim
→

푞( )(푥|휒, 푉) → 푝(푥|휒, 푉) ,                  (1) 

where 푘 is the iterative number, and 푞( )(푥|휒, 푉) is the evaluated PDF from previous 
푘 − 1 iterations. In the first iterative phase, 푞( )(푥|휒, 푉) is usually initialized as a 
uniform distribution. Then, q(푥|휒, 푉)  propagates as update from 푞( )(푥|휒, 푉)  to 
푞( )(푥|휒, 푉) to reach a precise estimation of 푝(푥|휒, 푉). 
 In the beginning of kth iterative phase, we assume that 푞( )(푥|휒, 푉) is known and 
represent it by N support points {푥 }  as  

푞( )(푥|휒, 푉) =
1
푁 훿 푥 − 푥 ,                                         (2) 

where 훿 is Dirac function and  is the normalization factor. The difference between 

푞( )(푥|휒, 푉) and 푝(푥|휒, 푉) on the support points {푥 }  is formulated as  

휔 =
푝 푥 휒, 푉

푞( )(푥 |휒, 푉) 
                                                    (3) 

which is also referred to as associated weight of support point 푥 . When 푞( )(푥|휒, 푉) 
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tends to 푝(푥|휒, 푉), 휔  will tend to 1. Therefore, {휔 }  can guide us to generate 
a new set of supporting points {푥 }  which represents a new distribution 
푞( )(푥|휒, 푉) with the better approximation to 푝(푥|휒, 푉). To implement Eq. (3), we 
considered the Bayes’ theorem and got 

푝 푥 휒, 푉 ∝ 푝 휒 푥 , 푉 푝 푥 푉 ,                                        (4) 

where 푝 휒 푥 , 푉  was the likelihood14 between experimental image 휒  and the 

projection of V with parameters 푥 , and we chose the prior to be 

푝 푥 푉 = 푞( ) 푥 휒, 푉 .                                               (5) 

By substituting Eq. (4) and (5) into Eq. (3), the weight can be shown to be 

휔 ∝
푝 휒 푥 , 푉 푞( ) 푥 휒, 푉

푞( ) 푥 휒, 푉
 

= 푝 휒 푥 , 푉 .                                                                    (6) 

The normalized weight is used so that ∑ 휔 = 푁, and hence 

휔 = 푁
푝 휒 푥 , 푉

∑ 푝 휒 푥 , 푉
 .                                                     (7) 

By now we obtain a set of support points associated with weights, {푥 , 휔 } , 
which approximates 푝(푥|휒, 푉) in kth iterative phase. 
 Then, we introduced a procedure called resampling to generate a new set of N 
support points {푥 , 1}  with equal weights from {푥 , 휔 } . The basic idea 
is to concentrate the support points to the points with high weights. Therefore, if a 
support point in {푥 }  has a high weight, it will be divided into multiple 
resampled support points, while the points with small weights will be eliminated. In the 
end, the total number of support points is kept unchanged. A pseudo-code description 
of the resampling procedure is given in Appendix I. The newly generated support points 
{푥 }  represent the updated distribution function in (k + 1)th iterative phase as   

푞( )(푥|휒, 푉) =
1
푁 훿 푥 − 푥 ,                                     (8) 

 From Eq. (2) to (8), we developed a particle-filter algorithm specialized for 
cryoEM parameter estimation. A pseudo code is also provided in Appendix II to 
describe the detailed computing procedure of the particle-filter algorithm.  
 As a summary to the algorithm, the particle filter achieves the approximation to 
푝(푥|휒, 푉) by iteratively updating a discrete distribution represented by a set of support 
points. The updating procedure is guided by the associated weights of support points in 
each iterative phase. As described in Eq. (6), it is seen that these weights actually 
perform measurements on the likelihood function 푓(푥) = 푝(휒|푥, 푉) in the cryoEM 
parameter space. 
 The parameter space of 푥 includes four subspaces in current implementation, i.e., 
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rotation, translation, defocus and structural state, each of which has different physical 
meaning from others. Therefore, we performed particle filter in the four subspaces to 
estimate PDFs 푝(휙|휒, 푉) , 푝(푡|휒, 푉) , 푝(휁|휒, 푉)  and 푝(휇|휒, 푉)  for the rotation, 
translation, defocus and structural state, respectively. Currently, 휇  is a discrete 
parameter indicating one of a set of structural states (3D classes). Then, the overall 
parameter estimation for 푥 is approximated by the product of the marginalized PDFs 

푝(푥|휒, 푉) ≈ 푝(휙|휒, 푉)푝(풕|휒, 푉)푝(휁|휒, 푉)푝(휇|휒, 푉).                            (9) 
To achieve Eq. (9) by particle filter, we need to know the likelihood to calculate 

the weights of support points according to Eq. (6) and (7). In the following, we used 
the rotation parameter as an example to derive the likelihood function in the rotation 
subspace. Based on the total probability theorem, the likelihood in the rotation subspace 
can be calculated as follows 

푝(휒|휙, 푉) = 푝(푡, 휁, 휇|휙, 푉)푝(휒|휙, 푡, 휁, 휇, 푉)푑푡푑휁
 

풕, ,
.                               (10) 

Assuming that the four subspaces of the rotation, translation, defocus and structural 
state are independent to each other, the middle items in Eq. (10) can be approximated 
as following 

푝(푡, 휁, 휇|휙, 푉) ≈ 푝(푡|휙, 푉)푝(휁|휙, 푉)푝(휇|휙, 푉) ≈ 푝(푡|푉)푝(휁|푉)푝(휇|푉) .      (11) 
By choosing importance density 푞( )(푥|휒, 푉) to be the prior 푝(푥|푉) as Eq. (5), Eq. 
(11) can be estimated in the kth iterative phase as  

푝(푡, 휁, 휇|휙, 푉) ≈ 푞( )(푡|휒, 푉)푞( )(휁|휒, 푉) 푞( )(휇|휒, 푉).                   (12) 
Substituting Eq. (2) and (12) into Eq. (10), and performing the same derivations for the 
other three parameters, we obtained the likelihood in the discrete form as 

푝 휒 휙 , 푉 =
1

푁 푁 푁 푝 휒 휙 , 푡 , 휁 , 휇 , 푉

푝 휒 푡 , 푉 =
1

푁 푁 푁 푝 휒 휙 , 푡 , 휁 , 휇 , 푉

푝 휒 휁 , 푉 =
1

푁 푁 푁 푝 휒 휙 , 푡 , 휁 , 휇 , 푉

푝 휒 휇 , 푉 =
1

푁 푁 푁 푝 휒 휙 , 푡 , 휁 , 휇 , 푉

,      (13) 

where 푁 ,  푁 ,  푁  and 푁  are the number of support points {휙 } , 

{푡 } , {휁 }  and  {휇 } for rotation, translation and defocus, 

respectively. 
 
Particle grading and distribution weighting 
For a dataset {휒 }  with L particle images, the particle filter is carried out for each 
particle image 휒  to estimate the PDF 푝(푥|휒 , 푉) represented by N support points 
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{푥 } . Then, the 3D reconstruction is calculated as following 

푉 =
∑ 1

휎 ∑ 푃 , , 퐶푇퐹(휁 )퐹푇(휒 )

∑ 1
휎 ∑ 푃 , , 퐶푇퐹 (휁 ) + 휏

,                                (14) 

where 휎  is the standard deviation of support points {푥 } , 
{휙 , 푡 , 휁 , 휇 } = 푥 ∈ {푥 } , 푁  is the number of support points used in 

the reconstruction, FT is Fourier transform, 푃 , ,  is an operation to place the 

Fourier transform of 휒  into the Fourier transform of the 3D reconstruction, 
퐶푇퐹(휁 ) is the contrast transfer function, and 휏 is a Wiener filter factor.  
 Here, we considered two weighting strategies in the 3D reconstruction described 
by Eq. (11), which is derived from 푝(푥|휒 , 푉). First, the reciprocal of the standard 

deviation of support points, , was used as an explicit weighting factor for image 휒 , 

called particle grading. A large 휎  indicates low confidence for the parameter 

estimation. Consequently,  will reduce the contribution of the corresponding particle 

image 휒  to the final reconstruction, and vice versa. In current implementation, 휎  is 
only calculated from the support points of the rotation. Second, 휒  is added into the 
reconstruction for multiple ( 푁 ) times with parameters randomly picked from 
{푥 } . This is an inexplicit weighting strategy, called distribution weighting. The 
idea is that the contribution of 휒  will be diluted when the support points has a wide 
distribution. 푁  is typically set to 100 in current implementation. 
 
Rotation Using Unit Quaternion 
The particle-filter algorithm needs to generate random support points and perform 
statistics for the distribution of the support points in the rotation subspace. This is 
difficult under the Euler angle system which is widely used in cryoEM. Therefore, we 
used unit quaternion to describe 3D rotation.  

By definition, a rotation about the origin is a linear transformation of ℝ  that 
preserves the origin, Euclidean distance and handedness. Once a basis of ℝ  has been 
chosen, rotations can be represented by matrices. Especially, if orthonormal basis of 
ℝ  is chosen, every rotation is described by an orthogonal 3 × 3 matrix with 
determinant 1. The quaternion is used to describe the rotation matrix.  

Quaternion is an expansion of real number system, like complex. However, 
differing from complex number, quaternion has not one, but three imaginary parts, 
referred to as i, j, and k. A quaternion has the form like 풒 = 푤 +  풊푥 +  풋푦 +  풌푧 =
{푤, 푥, 푦, 푧}. 

A point 풗 = {푥 , 푥 , 푥 }  can be described in quaternion system as 풑 =
{0, 푥 , 푥 , 푥 }. A rotation by a unit quaternion is 풒풑풒∗ = {0, 푥 , 푥 , 푥 }  where q is a 
unit quaternion describing rotation with ‖풒‖ = 1, * indicates the conjugation and 
{푥 , 푥 , 푥 } is the rotated point. Moreover, assuming a rotation 풒  is followed by a 
rotation  풒 , then the rotation will be 풒 풒 풑풒∗풒∗ = 풒풑풒∗ , where the rotation 
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quaternion is 풒 = 풒 풒 . 
 
Image processing 
Three datasets were used for the tests. The dataset of cyclic-nucleotide-gated (CNG) 
channel is from our previous work24. The dataset of Thermoplasma acidophilum 20S 
proteasome27 (Entry code: 10025) and β-galactosidase in complex with a cell-permeant 
inhibitor28 (Entry code: 10061) were downloaded from EMPIAR29. All micrographs in 
movie mode are processed by MotionCorr211 for motion correction and generating 
dose-weighted sum images. Relion1.4 was used for particle picking and extraction14. 
CTFFind3 was used for CTF determination25.  
 For the CNG dataset, the coordinates of 211,826 particles selected by 2D 
classification in previous work were used to extract the particles from 2820 
micrographs with box size of 160 pixels, referred to as the dirty dataset. 87,149 particles 
processed by “polishing”12 of Relion1.4 from our previous work24, referred to as the 
clean dataset, were directly used for the further processing. The pixel size used in the 
image processing is 1.32 Å. 
 For the proteasome dataset and the β-galactosidase dataset, 112,412 and 89,857 
particles are respectively selected from 131,319 and 108,226 picked particles by one 
round 2D classification, which is referred to as the dirty datasets. The coordinates of 
49,954 proteasome particles and 41,104 β-galactosidase particles, downloaded from 
EMPIAR, were used to extract particles as the clean dataset. The initial pixel size and 
extracted particle box size are 0.6575 Å and 512 pixels for the proteasome and 0.637 Å 
and 768 pixels for the β-galactosidase, respectively. Finally, these particles were binned 
using the “Fourier cropping” method to 320-pixel box with 1.052 Å pixel size for the 
proteasome and 576-pixel box with 0.8493 Å pixel size for the β-galactosidase. 
 The 3D reconstructions were performed using the dataset generated above by a 
newly developed software implemented with the particle-filter algorithm. The final 
maps are sharpened with the post-processing method used in Relion14. The resolutions 
were measured based on the gold-standard FSC = 0.143 criteria. 
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Figure 

 
Figure 1. Illustration of support points in particle filter and the likelihood functions in 
rotation subspace of the CNG dataset. a) The 3D reconstructions and corresponding 
likelihood functions (the colored maps) in different rounds of 3D reconstruction. For 
the demonstration purpose, the 2D maps of the LFs are drawn by projecting the 3D LFs 
in 3D rotation subspace to the elevation-azimuth plane. Round 4 and 8 are global search 
performed at 53 Å and 15 Å resolution, respectively, and round 18 and 22 are local 
search performed at 3.5 Å resolution. In round 22, the defocus refinement was turned 
on. b) The support points used in the rotation subspace of round 8 and round 18 of a. 
Colors were used to indicate different iterative phases. 
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Figure 2. Supports points in three subspaces. a) the rotation subspace. The support 
points in rotation subspace were plotted in the elevation-azimuth plane by projecting 
all support points in 3D space into this 2D plane. The map of local LF (drawn in the 
same way as that for Fig. 1a) are shown in the background. The smallest cycle indicates 
the range of 1x standard deviation of the plotted support points. The other two cycles 
indicates 1x standard deviation of point distribution in the earlier phases. b) the x-y 
translation subspace. The gray plane is the x-y plane. The peaks are the fitting of 
weights of the support points. The support points in the scanning phase and later phases 
are shown. c) the defocus subspace. The black horizontal line is the defocus axis. The 
colored curves are the fitting of the weights of the support points. The points on the 
colored horizontal lines show the defocus distribution of the support points. Colors were 
used to specify different iterative phases. 
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Figure 3. Resolution comparisons among different processing options for three datasets. 
a) FSC curves of the dirty and clean datasets. b) FSC curves with various options of 
the particle grading and defocus refinement. The grey curves are the FSC curves of the 
clean dataset shown in a. c) Selected side chains with different processing options. See 
Suppl. Fig. 4 and 5 for more comparisons.  
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Figure 4. Z-height distribution of the proteasome particles in the ice. 3D plot of particle 
positions in one typical micrograph is shown in a) stereo view, b) side view along x 
axis and c) top view along z axis. A fitting to a quadric surface (the colored surface) 
showed that 75% particles located in a thin layer (between two blue surfaces) with 4.5o 
tilt angle and ~200 Å thickness. d) histogram of the tilt angles and thicknesses measured 
by quadric surface fitting from all 196 micrographs in the proteasome dataset. 
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Supplementary Figure 1. 3D classification of the CNG dataset. a-d are four classes 
calculated from 211,826 particles after one round of filtering by 2D classification in 
our previous work24. The side view (left) and top view (right) are shown. The model 
with C4 symmetry (PDB entry code: 5h3o) was docked in the maps. The uncovered 
models, pointed by orange arrows, indicate the missing part of the subunit in the 
trans-membrane region of the CNG channel.   
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Supplementary Figure 2. FSC curves of CNG reconstructions with various number of 
support points in a) the rotation subspace and b) x-y translation subspace. The nearly 
identical FSC curves with various number of support points implied that small amount 
of support points can give accurate parameter estimation.  
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Supplementary Figure 3. Support points on different likelihood functions. a) The 
support points distribute on a strong single peak of the LF which was calculated from 
a “good” particle image. b) The support points distribute on multiple strong peaks of 
the LF which was calculated form a “bad” particle images.  
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Supplementary Figure 4. Representative side-chain maps of the β-galactosidase 
reconstruction using various options. 
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Supplementary Figure 5. 3D reconstruction of three datasets. a) the CNG density map, 
b) the proteasome density map and c) the β-galactosidase density map. The left images 
show the whole density maps with the resolution value labeled on the bottom, and the 
right are the representative secondary structures segmented from the maps deposited in 
EMDB and the maps on the left by the particle-filter algorithm.   
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Appendix I 
 
Pseudo code of resampling algorithm 
------------------------------------------------------------------------------------------------------ 
Input: {푥 , 휔 }  
Output: {푥 , 휔 }  

Initialize the cumulative density function (CDF): c1 = 0 
for 2 ≤ 푖 ≤ 푁 do 

Construct CDF: 푐 = 푐 + 휔  
end for 
Start at the bottom of the CDF: i = 1 
Draw a starting point from uniform distribution: 푢 ~핌[0,1] 
for 1 ≤ 푗 ≤ 푁 do 

Move along the CDF: 푢 = 푢 + (푗 − 1) 
while uj > ci do 

i = i + 1 
end while 

end for  

Assign support point: 푥 = 푥   

Assign weight: 휔 = 1 

------------------------------------------------------------------------------------------------------ 
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Appendix II 
 
Pseudo code of the implemented particle-filter algorithm 
------------------------------------------------------------------------------------------------------ 
Input: sampling space 핊, perturbation factor 휀 
Output: filtered support points {푥 } , , minimum support points standard 
deviation 휎 

for 1 ≤ 푖 ≤ 푁 do 
 Initialize support points from uniform distribution: 푥 ~핌(핊) 
 Initialize weights: 휔 = 1 
end for 
for 1 ≤ 푖 ≤ 푁 do 
 Initialize standard deviation: 휎 = ∞, 휎 = ∞ 
end for 
Initialize measure index: 푘 = 1 
repeat 

푘 = 푘 + 1 
휎 = 휎 
푥̅ = 0 
for 1 ≤ 푖 ≤ 푁 do 

 푥̅ = 푥̅ +  

end for 
휎 = 0 
for 1 ≤ 푖 ≤ 푁 do 

 휎 = 휎 + 푥 − 푥̅  

end for 
휔 = 0 
for 1 ≤ 푖 ≤ 푁 do 
 휉 ~ℕ(핊, 0, 휀휎) 
 Perturb support points: 푥 = 푥 +휉  
 Calculate 휔 = 푝(휒|푥 , 푉) 

 휔 = 휔 + 휔  

end for 
for 1 ≤ 푖 ≤ 푁 do 

 Normalize: 휔 =  

end for 
Resample using algorithm in Appendix I 

until 휎 ≥ 휎 
------------------------------------------------------------------------------------------------------ 
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