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1 Abstract

Non-coding RNA molecules contribute to cellular function through diverse roles,
including genome regulation, DNA and RNA repair, RNA splicing, catalysis, protein
synthesis, and intracellular transportation [1, 2]. The mechanisms of these actions can
only be fully understood in terms of native secondary and tertiary structures. When
provided with a sufficient number of homologous sequences, the gold standard for
secondary structure prediction continues to be comparative analysis [3]. Alternatively,
the prevailing computational approach to secondary structure is through the Gibbs
(thermal) equilibrium, by Monte Carlo sampling or approximating the minimum free
energy (MFE) configuration [4, 5]. Aside from the necessary approximations, an
enduring debate concerns the biological relevance of equilibrium configurations [6–9].
Here we adopt a kinetic perspective and argue that the existence of reliable folding on
biologically relevant time scales suggests an intra-molecular statistical relationship
between secondary and primary structures: as compared with other locations,
nucleotide sequences in and around secondary-structure stems will have fewer
Watson-Crick matches that are inconsistent with the native structure. An “ambiguity
index”, one for each pair of molecule and presumed secondary structure, measures the
prevalence of false matches and hence the tendency to form metastable structures
incompatible with native structures. The ambiguity index statistically separates an
ensemble of RNA molecules that operate as single entities (Group I and II Introns) from
an ensemble that operates as protein-RNA complexes (SRP and tmRNAs), and
ensembles of secondary structures determined by comparative analysis from ones based
on thermal equilibrium. We find lower average ambiguity in single-entity RNA’s than
protein-RNA complexes, and, among single-entity RNA’s, lower ambiguity with
comparative analyses than equilibrium analyses. Both comparisons are supported by
exact and highly significant hypothesis tests. These experiments, motivated by a
hypothesized mechanism of folding, and the first of their kind, are consistent with
folding to metastable but not necessarily equilibrium structures.

2 Author summary

Recent discoveries indicate that, in addition to being a messenger between DNA and
protein, RNA molecules assume a wide range of biological functions. For biological
macromolecules, structure is function. Experimental determination of RNA structures is
still time-consuming, and computational approaches are of great importance. The
prevailing computational approach tries to find the structure with the minimum energy,
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yet the relevance of this minimum energy structure as the native structure is still hotly
debated. In this paper, we adopt a kinetic perspective, and argue that more emphasis
should be placed on the folding process when trying to develop computational methods
for RNA structure prediction. We present some statistical analyses using the primary
and secondary data (sequence and base-pairs data) of RNA molecules, based on the
concept of “local ambiguity”, i.e. the molecule’s tendency to “make a mistake” at a
certain location when forming secondary structures. Our results show the deficiencies of
the minimum energy approach, and demonstrate the importance of considering the
kinetics as well as protein-RNA interactions in developing computational approaches for
RNA secondary structure prediction.

3 Introduction 1

RNA has long been at the center of molecular biology. However, discoveries in recent 2

decades suggest that RNA molecules take on a wide range of biological roles, in addition 3

to functioning as a messenger between DNA and protein. These non-coding RNA 4

molecules contribute to cellular function through diverse roles, including genome 5

regulation, DNA and RNA repair, RNA splicing, catalysis, protein synthesis, and 6

intracellular transportation [1, 2]. To understand the mechanisms of these actions, 7

emphasis has to be placed on the native secondary and tertiary structures of these RNA 8

molecules. Despite the recent increase in our knowledge of RNA tertiary structure, 9

RNA secondary structure is still of considerable importance, and is a useful abstraction 10

in understanding the functions of non-coding RNA molecules [7]. 11

Because of the time-consuming nature of experimental determination of RNA 12

structures, a considerable amount of work has been put into computational prediction of 13

RNA structures. For secondary structure prediction, when provided with a sufficient 14

number of homologous sequences, the gold standard continues to be comparative 15

analysis [3]. Alternatively, the prevailing computational approach to secondary structure 16

is through the Gibbs (thermal) equilibrium, by Monte Carlo sampling or approximating 17

the minimum free energy (MFE) configuration [4, 5]. Aside from the necessary 18

approximations, an enduring debate concerns the biological relevance of equilibrium 19

configurations [6]. People have long argued that, when it comes to structure prediction 20

for macromolecules, we need to consider the kinetics in addition to the 21

thermodynamics [7–9]. 22

In this paper, we adopt a kinetic perspective and argue that the existence of reliable 23

folding on biologically relevant time scales suggests an intra-molecular statistical 24

relationship between secondary and primary structures. Our basic intuition is that, 25

adopting the kinetic perspective, it should be harder for the molecule to make mistakes 26

at locations that participate in the secondary structure. Otherwise the molecule would 27

tend to get stuck in incorrect metastable states, and won’t be able to fold correctly on a 28

biologically relevant time scale. 29

In addition to this basic intuition, experimental literature [10–13] has long suggested 30

that the stem-formation in RNA molecules is a two-step process. When forming a stem, 31

we usually have a nucleation step, where we form a few consecutive base pairs at a 32

nucleation point, followed by a fast zipping step. It seems especially intuitive that it 33

should be harder for the molecule to make mistakes at these nucleation points, which 34

are among the locations that participate in the secondary structure. 35

To present statistical evidence supporting the above hypotheses, we introduce the 36

idea of the local ambiguity, with the goal of quantifying the possibility for the molecule 37

to “make a mistake” at a particular location in the process of forming secondary 38

structures. In our definition, for a particular location, we identify a nucleotide segment 39

at this location, go through all the viable pairing candidate segments of this segment, 40
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and use the number of candidate segments that are complementary to this segment as 41

the measure of local ambiguity at this location. 42

Because of our definition of the local ambiguity, when we talk about a location 43

within a molecule, we are really talking about the segment that corresponds to this 44

location. Referring to the secondary structure, it’s clear that we have three different 45

kinds of locations: 46

Single: Locations where all nucleotides in the segments are unpaired in the secondary 47

structure 48

Double: Locations where all nucleotides in the segments are paired in the secondary 49

structure 50

Transitional : Locations where some nucleotides in the segments are paired, while 51

others are unpaired in the secondary structure 52

where double and transitional locations participate in the secondary structure, while 53

single locations don’t. 54

The goal of this paper is to verify our basic intuition, by looking at the differences in 55

terms of local ambiguity between locations that participate in the secondary structure 56

and the locations that don’t, and to establish an intra-molecular statistical relationship 57

between secondary and primary structures. This is achieved by some exploratory 58

analysis as well as two sets of exact and highly significant hypothesis tests, which unveil 59

fascinating results on the local ambiguities in different regions of the RNA molecules, 60

the possible mechanistic differences in the structure formation of single-entity RNAs 61

and protein-RNA complexes, as well as the subtle differences between the comparative 62

analysis approach and the minimum free energy approach for RNA secondary structure 63

prediction. 64

These experiments, motivated by a hypothesized mechanism of folding, and the first 65

of their kind, are simple in the sense that they involve only RNA primary and secondary 66

structure data (i.e. nucleotide sequences and base pairs) and elementary counting 67

statistics, yet they yield significant insight into the folding of non-coding RNA molecules, 68

and are consistent with folding to metastable but not necessarily equilibrium structures. 69

The rest of the paper is organized as follows: in the next section, we are going to 70

make some basic notations and definitions, before presenting some exploratory analysis, 71

as well as the two sets of exact hypothesis tests. Then we are going to move on to the 72

final conclusion, before detailing vairous materials and methods used in the paper. 73

4 Results and Discussions 74

4.1 Basic Notations and Definitions 75

For a given RNA molecule, we are going to consider its primary and secondary 76

structures data. Assume the length of the molecule is N , we denote the primary 77

structure data by 78

p = (p1, p2, · · · , pN ),where pi ∈ {A,G,C,U}, i = 1, · · · , N (1)

and the secondary structure data by 79

s = {(j, k) : 1 ≤ j < k ≤ N, a base pair exists between the jth and the kth nucleotides}
(2)

With the above notations, we can make the definition of the local ambiguity precise. 80

In this paper, we are going to consider segments of length 4. Assume the length of an 81
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RNA molecule is N , then we are going to consider N − 3 locations in this molecule. 82

The segment at location i is given by 83

Pi = (Pi,1, · · · , Pi,4) = (pi, pi+1, · · · , pi+3), i = 1, 2, · · · , N − 3 (3)

When trying to determine the local ambiguity of a location, we need to take into 84

account that it’s usually considered impossible for RNA to form a hairpin loop that 85

contains less than 3 nucleotides. As a result, we define the set of viable pairing 86

candidate segments for location i to be 87

Ai = {Pj : 1 ≤ j ≤ i− 7 or i+ 7 ≤ j ≤ N − 3} (4)

In this paper, we are only going to consider Watson-Crick base pairs. As a result, 88

two segments Pi and Pj are said to be complementary if 89

∀1 ≤ k ≤ 4, (Pi,k, Pj,5−k) ∈ {(A,U), (U,A), (G,C), (C,G)} (5)

Using the above definitions, we define the local ambiguity function

a(p) = (a1(p), · · · , aN−3(p))

by 90

ai(p) = |{P ∈ Ai : P and Pi are complementary}|, i = 1, · · · , N − 3 (6)

where | · | gives us the cardinality of the set, and ai(p) gives us the local ambiguity of 91

the molecule with primary structure p at location i. 92

Finally, to formally state the idea of labelling different locations using secondary 93

structure data, consider a molecule of length N with secondary structure s. Define the 94

double-stranded indicator function b(s) = (b1(s), · · · , bN (s)) to be 95

bi(s) =

{
1, if ∃j ∈ {1, · · · , i− 1, i+ 1, · · · , N}, s.t. (i, j) ∈ s or (j, i) ∈ s
0, otherwise

, i = 1, · · · , N

(7)
where bi(s) indicates whether the ith nucleotide is paired or not in the secondary
structure s. Further define the paired nucleotides function

f(s) = (f1(s), · · · , fN−3(s))

to be 96

fi(s) =
i+3∑
j=i

bi(s), i = 1, · · · , N − 3, (8)

where fi(s) is the number of paired nucleotides in the segment at location i. Then we 97

have 98

location i is


single if fi(s) = 0

double if fi(s) = 4

transitional if 0 < fi(s) < 4

, i = 1, 2, · · · , N − 3 (9)

4.2 Some Exploratory Analysis 99

In this section, we are going to present some experimental results where we try to verify 100

our basic intuition by comparing the local ambiguities in different kinds of regions. A 101

natural thing to do is to use permutation tests. Here, the data points are the local 102

ambiguities we get from the primary structure data, and the labels are the three 103

different kinds of regions we get from the secondary structure data. 104
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When comparing the local ambiguities in two different regions, a naive permutation 105

test would directly permute the local ambiguities while keeping the labels intact. There 106

are some obvious issues with this naive approach. The most important issue is that, by 107

employing this naive approach, we are essentially ignoring the ordering/neighborhood 108

information in the local ambiguities data. From our definition of the local ambiguities, 109

it’s clear that local ambiguities at nearby locations are correlated, and we should take 110

this correlation information into account when permutating the labels. 111

Because of these reasons, we employ a different method when permuting the local 112

ambiguities. Instead of directly (and naively) permuting the local ambiguities, we are 113

going to first permute the primary structure data while maintaining the frequencies of 114

segments of length 4, using what we call a Markov shuffling method, and then 115

re-evaluate the local ambiguities at each location. Since the frequencies of segments of 116

length 4 are maintained, by permuting the primary structure data and re-evaluating the 117

local ambiguities, we essentially achieve a permutation of the local ambiguities which 118

takes into account the correlation information (it’s exactly a permutation of the local 119

ambiguities when we take all possible segments to be viable pairing candidates, but even 120

if we restrict ourselves to some set of viable pairing candidates, it’s still very close to an 121

exact permutation of the local ambiguities). 122

Note that, by employing the Markov shuffling method, while we solve the problem of 123

taking into account the correlation information, we don’t really have a clearly 124

enunciated hypothesis. This stems from the fact that we don’t have a very good 125

interpretation of the sequences we get when permuting the primary structure data using 126

the Markov shuffling method. In particular, we can’t interpret these sequences as 127

primary structures for surrogate molecues, as these sequences are not consistent with 128

secondary structure that goes with the original primary structure. If we can have an 129

efficient way of permuting the local ambiguities while maintaining the secondary 130

structures, or if we can determine the secondary structures of the permuted sequences 131

reliably, we would solve this problem. Unfortunately, neither of these is realistic, and 132

consequently, the results in this section can only serve as some exploratory analysis. 133

Nevertheless, it turns out this analysis yields great insight into the statistical behaviour 134

of the local ambiguities in different kinds of regions for different kinds of RNA 135

molecules, and provides us with the motivation for the definition of the “ambiguity 136

index” and the design of the formal hypothesis tests. 137

More details of the Markov shuffling method would be given in the materials and 138

methods section. For now, it suffices to assume that for any k, we have a kth order 139

Markov shuffling algorithmMk, which takes a sequence p as input, and gives a 140

randomly shuffled sequenceMk(p), where the frequencies of segments of length k are 141

preserved, as output. 142

4.2.1 The Problem of Bias 143

For the exploratory analysis, the natural thing to do is to make pariwise comparisons 144

among the three different kinds of regions. However, caution is needed here because of 145

certain inherent bias in the definition of local ambiguity. 146

For the double region, by definition, the segment at a double location would have at 147

least one complementary segment within the molecule. As a result, it’s easy to imagine 148

the double region being consistently more ambiguous than the single and transitional 149

regions. 150

Following a similar reasoning, it’s not hard to see that there’s a bias of the opposite 151

direction in single regions. If it’s possible for a particular stem to extend, it would 152

almost certainly make the extension. As a result, the two segments within the single 153

regions at the opposite end (either the two inner ends or the two outer ends) of the 154
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same stem won’t be complementary to each other, thus lowering the ambiguity of the 155

single regions. This is a very small bias, but it’s a bias nonetheless. 156

The above discussion indicates that, for the purpose of verifying our intuition, the
only meaningful comparison would be to see if the transitional region is less ambiguous
than the single region. This motivates us to define a central statistic in our work, which
we call the “ambiguity index”. For an RNA molecule of length N , with primary
structure p and secondary structure s, define

ctrani =

{
1, if location i is transitional

0, otherwise
, i = 1, · · · , N − 3 (10)

csinglei =

{
1, if location i is single

0, otherwise
, i = 1, · · · , N − 3 (11)

The “ambiguity index” is then given by 157

d(p, s) =

∑N−1
j=0 aj(p)c

tran
j (s)∑N−1

j=0 ctranj (s)
−
∑N−1
j=0 aj(p)c

single
j (s)∑N−1

j=0 csinglej (s)
(12)

In the following sections, we are going to present some experimental results from 158

permutation-tests-like analysis based on the Markov shuffling method. We present two 159

groups of results, one where we do the permutations on an individual molecule level, and 160

the other where we do the permutations on a group level. We only include the results 161

for the comparison of transitional and single regions, but for the sake of completeness, 162

we also carry out experiments for the comparison of single and double regions, and of 163

transitional and double regions, and include the results in the support information. 164

4.2.2 Permutating Individual Molecules 165

The first experiment we are going to do involves permuting individual molecules. The 166

basic idea is, we are going to use the Markov shuffling method to permute the primary 167

structure data of individual molecules, and re-evaluate the local ambiguities at different 168

locations. We then compare the mean local ambiguities in different kinds of regions, 169

and derive a pseudo-p-value for each molecule. We are going to calculate some simple 170

summary statistics for different groups of RNAs. 171

Formally, assume we have a group of RNA molecules of length N (m), with primary 172

structures p(m) = p(m,0) and secondary structures s(m), m = 1, · · · ,M . For each 173

molecule, we are going to generate K random Markov shuffles 174

p(m,1), · · · , p(m,K),m = 1, · · · ,M (13)

using the Markov shuffling algorithmMr. 175

We want to test the hypothesis that the mean local ambiguity for transitional is 176

lower than that for single. The obvious statistic we are going to use is 177

d(p(m,k), s(m)), k = 0, 1, · · · ,K (14)

Our pseudo-null-hypothesis would be that there’s no difference in terms of mean 178

local ambiguity between transitional and single. This is a one-sided 179

pseudo-hypothesis-test, and the pseudo-p-value is given by 180

qind(p
(m), s(m),K) =

1 +
∑K
k=1 χ{d(p(m,k),s(m))≤d(p(m,0),s(m))}

1 +K
(15)
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In this section, given a significance level α, we are going to report a simple summary 181

statistic for a group of M RNA molecules 182∑M
m=1 χ{qind(p(m),s(m),K)<α}

M
(16)

which is the percentage of pseudo-hypothesis-tests that are significant at level α. 183

4.2.3 Permutating a Group of Molecules 184

We can do a similar experiment, where, instead of permuting individual molecules, we 185

are going to permute a group of molecules. The basic idea is, given a group of molecules, 186

for each permutation, we are going to apply the Markov shuffling algorithm to each 187

individual molecules, and count the number of “permuted molecules” where mean 188

ambiguity for transitional is less than that for single. This count would serve as our 189

statistic in the pseudo-hypothesis-test. 190

Formally, again assume we have a group of RNA molecules of length N (m), with 191

primary structures p(m) = p(m,0) and secondary structures s(m), m = 1, · · · ,M . Define 192

the set of primary-secondary-structure-tuples to be 193

P = P(0) = {(p(m,0), s(m)),m = 1, · · · ,M} (17)

We are going to generate K random Markov shuffles of this group 194

P(k) = {(p(m,k), s(m)),m = 1, · · · ,M}, k = 1, · · · ,K (18)

We again want to test the hypothesis that the mean local ambiguity for transitional 195

is lower than that for single. The statistic we are going to use this time would be 196

g(P(k)) =
M∑
m=1

χ{d(p(m,k),s(m))<0}, k = 0, 1, · · · ,K (19)

Our pseudo-null-hypothesis would be that there’s no difference in terms of mean 197

local ambiguity between transitional and single. This is again a one-sided 198

pseudo-hypothesis-test, and the pseudo-p-value is given by 199

qgrp(P,K) =
1 +

∑K
k=1 χ{g(P(k))≥g(P(0))}

1 +K
(20)

4.2.4 Hyper-parameters and Experimental Results 200

We ran the experiments for 4 different groups of RNA molecules (Group I Introns, 201

Group II Introns, SRP RNAs and tmRNAs). In our experiments, we used 202

hyper-parameters 203

K = 104, α = 0.05 (21)

For secondary structures, we used both the comparative analysis structures and the 204

minimum free energy structures. 205

The M values, the percentages of significant (at level α) pseudo-hypothesis tests 206

(denoted “Percentage”) when permuting individual molecules, and the pseudo-p-values 207

of the pseudo-hypothesis-tests (denoted “p-value”) when permuting a group of molecues 208

for the 4 groups of RNA molecules are reported. The results are reported in Table 1. 209
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M Percentage p-value

Comparative Analysis

Group I Introns 116 0.31896552 0.00009999
Group II Introns 37 0.67567568 0.00009999

SRP RNAs 832 0.02163462 1.00000000
tmRNAs 462 0.14502165 0.98420158

Minimum Free Energy

Group I Introns 116 0.20689655 0.07029297
Group II Introns 37 0.54054054 0.00009999

SRP RNAs 832 0.03004808 1.00000000
tmRNAs 462 0.15800866 0.70602940

Table 1. Exploratory Analysis Results

4.3 Discussions on the Exploratory Analysis Results 210

4.3.1 Observations 211

For the p-values from permuting the molecules on a group level, the observation is that, 212

when we look at the comparison transitional v.s. single, we see different results. For the 213

comparative analysis structures, the comparison is significant for Group I Introns and 214

Group II Introns, but not significant for SRP RNAs and tmRNAs, while for the 215

minimum free energy structures, the comparison is only significant for Group II Introns, 216

although it comes very close to being significant for the Group I Introns. 217

We also included the percentages of significant (at α = 0.05 level) pseudo-hypothesis 218

tests when we permute individual molecules. These results should be used only as a 219

reference. As we can see from the results, in general, the percentages are negatively 220

correlated with the p-values. 221

Note that we included the M values in the results, and these M values don’t agree 222

with the numbers of molecules in different groups from the dataset we are using. This is 223

because of some implementation details (mainly that we ignore those molecules where 224

we don’t have unique Markov shuffles), which would be explained in more detail in the 225

materials and methods section. 226

4.3.2 Motivation for Formal Hypothesis Tests 227

For the comparison of transitional and single regions, the different results we get on 228

different groups of RNA molecules and different kinds of secondary structures are highly 229

interesting, and suggest the possibility of using this comparison to distinguish different 230

kinds of RNA molecules and the two different kinds of secondary structures. 231

The first interesting thing that’s worth exploring further is the different results on 232

different kinds of RNA molecules. It seems the 4 groups of RNA molecules are natually 233

divided into two larger groups, with one group containing the Group I Introns and 234

Group II Introns, and the other group containing the SRP RNAs and tmRNAs. Further 235

inspection of these two larger groups reveals the obvious difference between them: 236

Group I Introns and Group II Introns operate as single-entity RNAs, while SRP RNAs 237

and tmRNAs belong to certain protein-RNA complexes. This difference suggest we 238

might be able to statistically separate these two larger groups of RNAs using the 239

“ambiguity index”. 240

The second interesting thing that’s worth exploring is the difference between 241

comparative analysis structures and minimum free energy structures. Our basic 242

intuition in this paper is that kinetics should play a much more important role in the 243

computational prediction of RNA secondary structures, and it might not be biologically 244

plausible to try to find the minimum free energy structures. To this end, we want to 245

look at whether there’s any qualitative difference between the gold standard of 246
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secondary structure prediction, the comparative analysis methods, and the minimum 247

free energy method. The different degrees of significance (as shown by the p-values), as 248

well as the different percentages of significant pseudo-hypothesis tests at the individual 249

molecule level suggest we might be able to use the “ambiguity index” to statistically 250

distinguish these two secondary structure prediction methods. 251

These two things motivate two corresponding sets of formal hypothesis tests, which 252

we present next. 253

4.4 Formal Hypothesis Tests 254

4.4.1 Single-entity RNAs v.s. Protein-RNA complexes 255

The first formal hypothesis test we are going to do is to see if we can use the “ambiguity 256

index” to statistically separate the RNA molecules that operate as single-entity RNAs 257

from those that belong to protein-RNA complexes. The statistical tool here is still 258

permutation tests. 259

Formally, the null hypothesis we are going to test would be: 260

H0: There’s no difference in terms of “ambiguity index” between 261

single-entity RNAs and protein-RNA complexes 262

The results from the exploratory analysis suggest that the ambiguity indices of 263

single-entity RNAs tend to be smaller than those in protein-RNA complexes. Motivated 264

by this, we are going to conduct a one-sided hypothesis test, in which we consider the 265

simplest possible aspect of the “ambiguity index”, the sign of the “ambiguity index”. 266

The alternative hypothesis is thus given by 267

H1: The ambiguity indices are more often negative for 268

single-entity RNAs than for protein-RNA complexes 269

Assume we have M1 single-entity RNAs with primary structures p(1,m), secondary 270

structures s(1,m), and M2 RNAs as part of protein-RNA complexes with primary 271

structures p(2,m), secondary structures s(2,m). The test statistic we are going to use is 272∑M1

m=1 χ{d(p(1,m),s(1,m))<0}

M1
−
∑M2

m=1 χ{d(p(2,m),s(2,m))<0}

M2
(22)

It’s not hard to see that, employing a permutation test where we permute the labels of 273

single-entity RNAs and protein-RNA complexes, we can calculate the p-value exactly. 274

Define 275

nt =

Mt∑
m=1

χ{d(p(t,m),s(t,m))<0}, t = 1, 2 (23)

We have the one-sided p-value is given by 276

min{n1+n2,M1}∑
n=n1

(
n1+n2

n

)(
M−n1−n2

M1−n
)(

M
M1

) (24)

We ran the experiments using the 4 groups of RNA molecules. In our terminology, 277

the Group I Introns and Group II Introns are single-entity RNAs, while the SRP RNAs 278

and tmRNAs belong to protein-RNA complexes. As a result, we have 279

M = 1539,M1 = 153 and M2 = 1386. For the secondary structures, we again use both 280

the comparative analysis structures and the minimum free energy structures. The 281

values of n1,M1, n2 and M2, as well as the p-values for the two different kinds of 282

secondary structures are summarized in Table 2. 283
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n1 M1 n2 M2 p-value

Comparative Analysis 114 153 536 1369 4.143753e-17
Minimum Free Energy 96 153 511 1369 1.484907e-09

Table 2. Single-entity RNAs v.s. Protein-RNA complexes

4.4.2 Comparative analysis v.s. Minimum Free Energy Methods 284

From the results in the last section, we can see that the “ambiguity index” can 285

statistically seperate the single-entity RNAs from protein-RNA complexes, but the 286

separation works for both the comparative analysis structures, and the minimum free 287

energy structures. To zero in on the differences in terms of the “ambiguity index” 288

between these methods, we conduct a further hypothesis test within the group of 289

single-entity RNAs and the group of protein-RNA complexes. 290

Our null hypothesis is 291

H0: There’s no difference in terms of “ambiguity index” between 292

comparative analysis structures and minimum free energy 293

structures within the group of RNAs. 294

We again conduct a one-sided hypothesis test, with the alternative hypothesis 295

H1: The “ambiguity indices” are lower for comparative analysis structures 296

than for minimum free energy structures within the group of RNAs 297

Assume we have a group of M RNAs, with primary structures p(m), comparative 298

analysis secondary structures s
(m)
comp, and minimum free energy secondary structures 299

s
(m)
MFE, m = 1, · · · ,M . The test statistic we are going to use is 300

n0 =
M∑
m=1

χ{d(p(m),s
(m)
comp)<d(p(m),s

(m)
MFE)} (25)

Employing a permutation test where we permute the labels of comparative analysis 301

structures and minimum free energy structures, the test statistic follows a Binomial 302

distribution B(M, 0.5), and the exact p-value is given by
∑M
n=n0

(Mn )
2n . 303

We ran the experiments for both the group of single-entity RNAs, and the group of 304

protein-RNA complexes. The M values, the n0 statistics and the p-values for the two 305

groups of RNAs are reported in Table 3. 306

n0 M p-value

Single-entity RNAs 98 153 0.000318
Protein-RNAs complexes 690 1369 0.393482

Table 3. Comparative Analysis v.s. Minimum Free Energy Methods

4.5 Discussions on the Formal Hypothesis Tests Results 307

From the above results, we can see that we verified a lot of the suspicions we had in the 308

discussions of the exploratory analysis results. We demonstrated that we can indeed 309

statistically seperate single-entity RNAs from protein-RNA complexes, using the 310

“ambiguity index”. We can also statistically seperate the comparative analysis structures 311

from the minimum free energy structures for single-entity RNAs, using the “ambiguity 312

index”, but we can’t achieve this when we look at protein-RNA complexes. 313

PLOS 10/15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/329698doi: bioRxiv preprint 

https://doi.org/10.1101/329698
http://creativecommons.org/licenses/by/4.0/


These results suggest a potentially significant difference between the structure 314

formation mechanisms on single-entity RNAs and protein-RNA complexes, and a 315

qualitative difference between the comparative analysis methods and the minimum free 316

energy methods when applied to single-entity RNAs. 317

4.6 Conclusion 318

First, from the experiments and the results in this paper, “local ambiguity” clearly 319

emerges as a useful concept in the statistical analysis of RNA primary and secondary 320

structure data and the folding process of RNA molecules. 321

Based on “local ambiguity”, an “ambiguity index”, one for each pair of molecule and 322

presumed secondary structure, measures the prevalence of false matches and hence the 323

tendency to form metastable structures incompatible with native structures. The 324

ambiguity index statistically separates an ensemble of RNA molecules that operate as 325

single entities (Group I and II Introns) from an ensemble that operates as protein-RNA 326

complexes (SRP and tmRNAs), and ensembles of secondary structures determined by 327

comparative analysis from ones based on thermal equilibrium. We find lower average 328

ambiguity in single-entity RNA’s than protein-RNA complexes, and, among 329

single-entity RNA’s, lower ambiguity with comparative analyses than equilibrium 330

analyses. These results demonstrate possible mechanistic differences in the structure 331

formation of single-entity RNAs, where kinetics play a more important role, and 332

protein-RNA complexes, where the protein-RNA interactions have significant impacts 333

on the folding process, and a qualitative difference between the comparative analysis 334

approach and the minimum free energy approach in the case where kinetics are 335

important (in this paper, for single-entity RNAs). 336

These empirical evidence points to the importance of carefully considering the 337

impacts of kinetics and protein-RNA interactions on the folding process of non-coding 338

RNA molecules, and argues against the naive application of thermal equilibrium based 339

approaches for RNA secondary structure prediction. 340

5 Materials and methods 341

5.1 Datasets 342

In this paper, we used secondary structures data from comparative analysis for 4 343

different kinds of RNA molecules: Group I Introns and Group II Introns, from the 344

comparative RNA website [14], SRP RNAs from SRPDB (Signal Recognition Particle 345

Database) [15], and tmRNAs from tmRDB (tmRNA database) [15]. Refer to the 346

corresponding papers and the websites for more details on how the comparative analysis 347

was done. 348

To get the Group I Introns and Group II Introns comparative analysis secondary 349

structures data, go to Section 3C (Mass Data Retrieval, 350

http://www.rna.icmb.utexas.edu/DAT/3C/Structure/index.php) of the website, 351

and download all the secondary structures data (in bpseq format) for Group I Introns 352

and Group II Introns. 353

To get the SRP RNAs comparative analysis secondary structures data, go to the 354

SRP RNA page (https://rth.dk/resources/rnp/SRPDB/srprna.html) of the 355

SRPDB website, and select get all SRP RNA secondary structures. 356

To get the tmRNAs comparative analysis secondary structures data, go to the 357

tmRNA page (http://www.ag.auburn.edu/mirror/tmRDB/rna/tmrna.html) of the 358

tmRDB website, and select get all ct files. 359
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5.2 Markov shuffling 360

Randomly shuffled sequences are routinely used in sequence analysis to evaluate the 361

statistical significance of a biological sequence. In this paper, we are using what we call 362

a Markov shuffling method, which is based on the Euler Algorithm [16–18]. The basic 363

idea is to generate uniform random k-let-preserving sequences. In this paper, we used an 364

efficient and flexible implementation of the Euler algorithm, called uShuffle [19]. Refer 365

to the papers for more details on the Euler algorithm and the implementation details. 366

5.3 Minimum Free Energy Methods for Secondary Structure 367

Prediction 368

Exact dynamic programming algorithms based on carefully measured thermodynamic 369

parameters are still the prevalent methods for RNA secondary structures prediction. 370

There exist a large number of software packages for the energy minization 371

process [20–26]. In this paper, we used the ViennaRNA package [20] to obtain the 372

minimum free energy secondary structures for our statistical analysis. Refer to the 373

paper and their website (https://www.tbi.univie.ac.at/RNA/) for more details on 374

this package. 375

5.4 Reproducing the Results 376

The main results in this paper are summarized in Tables 1, 2, 3, 4 and 5. These 377

experimental results are easily reproducible. To reproduce these 5 tables, follow the 378

instructions at https://github.com/StannisZhou/rna_statistics. 379

Note that the above git repository already contains all the comparative analysis 380

structures data for the 4 different kinds of RNA molecules considered in this paper. 381

However, the readers should feel free to download the data from the original sources, 382

and even adapt the code to apply the same analysis procedures to other kinds of RNA 383

molecules. 384

When trying to reproduce the results, the readers should also note that the Markov 385

shuffling procedure is quite computationally intensive, and might take a while to finish 386

when trying to get a large number of shuffles. 387

5.5 Implementation Details 388

We also need to make a few comments regarding some implementation details. The 389

main thing involved is cleaning up the data, and making sure we have good power in 390

our hypothesis tests. 391

• When processing the data, we ignored molecules for which we have nucleotides 392

other than A, G, C, U, and molecules for which we don’t have any base pairs. 393

• When doing the Markov shuffling, we ignored molecules for which we don’t have 394

unique shuffles. These are mostly relatively short molecules. 395

• When comparing the local ambiguities in different regions of the RNA molecules, 396

we ignored molecules for which we have empty regions (i.e. at least one of single, 397

double and transitional is empty). 398

Because of these small details, the number of molecules used in the analysis (as 399

reported in Table 4, Table 5, Table 2 and Table 3) is smaller than the actual number of 400

molecules we have in the datasets. 401
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6 Acknowledgments 402

7 Appendix 403

7.1 Complete Exploratory Analysis Results 404

For the sake of completeness, in this section, we present detailed comparisons of the 405

local ambiguity among the three different kinds of regions. The basic setup is the same, 406

but instead of making only the comparison between transitional and single, we make 407

three different comparisons: 408

• double v.s. single 409

• transitional v.s. single (Denoted tran v.s. single) 410

• transitional v.s. double (Denoted tran v.s. double) 411

For these comparisons, again remember that here we are conducting one-sided 412

pseudo-hypothesis tests, and the order matters. We are operating under the assumption 413

that the first kind of region is less ambiguous than the second kind of region. 414

The M values, the percentages of significant (at level α) pseudo-hypothesis tests 415

(denoted “Percentage”) when permuting individual molecules, and the pseudo-p-values 416

of the pseudo-hypothesis-tests (denoted “p-value”) when permuting a group of molecues 417

for the 4 groups of RNA molecules are reported. The results for comparative analysis 418

structures are reported in Table 4, and the results for Minimum Free Energy structures 419

are reported in Table 5. 420

M Percentage p-value

Group I Introns
double v.s. single 116 0.05172414 1.00000000
tran v.s. single 116 0.31896552 0.00009999
tran v.s. double 116 0.59482759 0.00009999

Group II Introns
double v.s. single 37 0.48648649 0.05609439
tran v.s. single 37 0.67567568 0.00009999
tran v.s. double 37 0.35135135 0.00089991

SRP RNAs
double v.s. single 832 0.00721154 1.00000000
tran v.s. single 832 0.02163462 1.00000000
tran v.s. double 832 0.56490385 0.00009999

tmRNAs
double v.s. single 462 0.02380952 1.00000000
tran v.s. single 462 0.14502165 0.98420158
tran v.s. double 462 0.66883117 0.00009999

Table 4. Exploratory Analysis Results for Comparative Analysis Method

For the p-values from permuting the molecules on a group level, we’ve already talked 421

aobut the different results for the comparison between transitional and single. Besides 422

that, the main observation is that, when it involves the double regions, the results are 423

very consistent. We have, at the 0.05 level, the transitional regions are consistently less 424

ambiguous than the double regions, while the double regions are never significantly less 425

ambiguous than the single regions. The only case where double comes close to being 426

significantly less ambiguous than single is for the Group II Introns with the comparative 427

analysis structures. But even that is not significant at a 0.05 level. This demonstrates 428

the effects of the inherent bias for local ambiguity. 429

The percentages of significant (at α = 0.05 level) pseudo-hypothesis tests when we 430

permute individual molecules are also included, but again should be used only as a 431
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M Percentage p-value

Group I Introns
double v.s. single 116 0.08620690 1.00000000
tran v.s. single 116 0.20689655 0.07029297
tran v.s. double 116 0.77586207 0.00009999

Group II Introns
double v.s. single 37 0.21621622 0.89061094
tran v.s. single 37 0.54054054 0.00009999
tran v.s. double 37 0.70270270 0.00009999

SRP RNAs
double v.s. single 832 0.00120192 1.00000000
tran v.s. single 832 0.03004808 1.00000000
tran v.s. double 832 0.68149038 0.00009999

tmRNAs
double v.s. single 462 0.02597403 1.00000000
tran v.s. single 462 0.15800866 0.70602940
tran v.s. double 462 0.71861472 0.00009999

Table 5. Exploratory Analysis Results for Minimum Free Energy Method

reference. As we can see from the results, in general, the percentages are negatively 432

correlated with the p-values. 433
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