Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Base-pair Ambiguity and the Kinetics of RNA Folding

Guangyao Zhou, View ORCID ProfileJackson Loper, Stuart Geman
doi: https://doi.org/10.1101/329698
Guangyao Zhou
1Vicarious AI, Union City, CA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: tczhouguangyao@gmail.com
Jackson Loper
2Data Science Institute, Columbia University, New York, NY, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jackson Loper
Stuart Geman
3Division of Applied Mathematics, Brown University, Providence, RI, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Background A folding RNA molecule encounters multiple opportunities to form non-native yet energetically favorable pairings of nucleotide sequences. Given this forbidding free-energy landscape, mechanisms have evolved that contribute to a directed and efficient folding process, including catalytic proteins and error-detecting chaperones. Among structural RNA molecules we make a distinction between “bound” molecules, which are active as part of ribonucleoprotein (RNP) complexes, and “unbound,” with physiological functions performed without necessarily being bound in RNP complexes. We hypothesized that unbound molecules, lacking the partnering structure of a protein, would be more vulnerable than bound molecules to kinetic traps that compete with native stem structures. We defined an “ambiguity index”—a normalized function of the primary and secondary structure of an individual molecule that measures the number of kinetic traps available to nucleotide sequences that are paired in the native structure, presuming that unbound molecules would have lower indexes. The ambiguity index depends on the purported secondary structure, and was computed under both the comparative (“gold standard”) and an equilibrium-based prediction which approximates the minimum free energy (MFE) structure. Arguing that kinetically accessible metastable structures might be more biologically relevant than thermodynamic equilibrium structures, we also hypothesized that MFE-derived ambiguities would be less effective in separating bound and unbound molecules.

Results We have introduced an intuitive and easily computed function of primary and secondary structures that measures the availability of complementary sequences that could disrupt the formation of native stems on a given molecule—an ambiguity index. Using comparative secondary structures, the ambiguity index is systematically smaller among unbound than bound molecules, as expected. Furthermore, the effect is lost when the presumably more accurate comparative structure is replaced instead by the MFE structure.

Conclusions A statistical analysis of the relationship between the primary and secondary structures of non-coding RNA molecules suggests that stem-disrupting kinetic traps are substantially less prevalent in molecules not participating in RNP complexes. In that this distinction is apparent under the comparative but not the MFE secondary structure, the results highlight a possible deficiency in structure predictions when based upon assumptions of thermodynamic equilibrium.

Footnotes

  • Fix typos

  • https://github.com/StannisZhou/rna_statistics

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted August 06, 2019.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Base-pair Ambiguity and the Kinetics of RNA Folding
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Base-pair Ambiguity and the Kinetics of RNA Folding
Guangyao Zhou, Jackson Loper, Stuart Geman
bioRxiv 329698; doi: https://doi.org/10.1101/329698
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Base-pair Ambiguity and the Kinetics of RNA Folding
Guangyao Zhou, Jackson Loper, Stuart Geman
bioRxiv 329698; doi: https://doi.org/10.1101/329698

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Bioinformatics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4384)
  • Biochemistry (9609)
  • Bioengineering (7103)
  • Bioinformatics (24896)
  • Biophysics (12631)
  • Cancer Biology (9974)
  • Cell Biology (14372)
  • Clinical Trials (138)
  • Developmental Biology (7966)
  • Ecology (12124)
  • Epidemiology (2067)
  • Evolutionary Biology (16002)
  • Genetics (10936)
  • Genomics (14755)
  • Immunology (9880)
  • Microbiology (23697)
  • Molecular Biology (9490)
  • Neuroscience (50924)
  • Paleontology (370)
  • Pathology (1541)
  • Pharmacology and Toxicology (2686)
  • Physiology (4023)
  • Plant Biology (8673)
  • Scientific Communication and Education (1511)
  • Synthetic Biology (2402)
  • Systems Biology (6444)
  • Zoology (1346)