1	
2	
3 4	Native tau structure is disrupted by disease-associated mutations that promote aggregation
5	Kenneth W. Drombosky ¹ , Dailu Chen ¹ , DaNae Woodard ¹ , Levent Sari ^{3,4} , Milo Lin ^{3,4} , Marc I. Diamond ¹ ,
6 7	Lukasz A. Joachimiak ^{1,2,*}
8 9 10	¹ Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX 75235, United States
11 12 13	² Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75235, United States
14 15 16	³ Green Center for Molecular, Computational, and Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75235, United States
17 18 19 20	⁴ Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235, United States
21	* To whom correspondence should be addressed: Lukasz.Joachimiak@utsouthwestern.edu
22	
23	

24 ABSTRACT

25 Tauopathies are neurodegenerative diseases characterized by intracellular amyloid deposits of 26 tau protein. Missense mutations in MAPT cause dominantly inherited tauopathies, but a biophysical 27 mechanism driving its amyloid formation is poorly understood. Many disease-associated mutations 28 localize within tau's repeat domain at inter-repeat interfaces proximal to amyloidogenic sequences, such as ³⁰⁶VQIVYK³¹¹. Using crosslink mass spectrometry, intramolecular FRET, *in vitro* peptide 29 30 systems, simulations, and cell models, we provide evidence that the aggregation prone ³⁰⁶VQIVYK³¹¹ motif forms metastable compact structures with upstream sequences, which 31 32 modulates aggregation propensity. Disease-associated mutations, isomerization of critical prolines, or 33 alternative splicing are all sufficient to destabilize local structure and trigger spontaneous aggregation. 34 These local structural rearrangements provide a biophysical framework supporting a model in which 35 perturbations initiate early events in sporadic and genetic tau pathogenesis. 36 37

- 38
- 39

40 INTRODUCTION

Tauopathies belong to a class of over 20 neurodegenerative diseases in which the protein tau aggregates in neurons and glia. Tau aggregation correlates strongly with the degree of dementia and neurodegeneration, especially in Alzheimer's Disease. The structural mechanisms by which diseaseassociated mutations, alternative splicing, or other events promote aggregation and pathology is unknown. Understanding the molecular mechanisms of tau aggregation is critical for identifying therapeutic targets and diagnostic strategies.

The N-terminal ~200 and C-terminal ~80 residues of tau are largely disordered, rendering this system refractory to high-resolution structural biology methods¹. In contrast, tau repeat domain (tau RD), which spans residues 243 to 365, is predicted to be more structured², forms the core of amyloid fibrils³, and is the minimal region to propagate strains⁴. Tau RD contains an amyloid motif (³⁰⁶VQIVYK³¹¹) (**Figure 1 A**), which is the basis of conversion between the soluble and insoluble states; ³⁰⁶VQIVYK³¹¹-mediated self-assembly is sufficient and necessary to form amyloid *in vitro*⁵ and generate pathology *in vivo*⁶, but its detailed mechanism of action is poorly understood.

54 Recent data from our group has indicated a switch occurs in soluble monomeric tau, which 55 exists in at least two conformational ensembles: inert monomer (M_i) which does not spontaneously self-56 assemble, and seed-competent monomer (M_s) which spontaneously self-assembles into amyloid⁷. M_s 57 has been purified from multiple sources: recombinant fibrils, Alzheimer's disease brain lysate, or brief 58 exposure to heparin⁷. Recent solution nuclear magnetic resonance (NMR) methods mapped the 59 heparin binding site to repeat 2, but how this interaction modulates tau conformation remains unclear⁸. Crvo-EM structures suggest an extended conformation of tau when bound to tubulin⁹. Building on this 60 61 observation, double electron-electron resonance experiments indicated an expansion of this region upon heparin binding¹⁰. Other work mapping the recruitment of molecular chaperones with tau indicates 62 63 many chaperones, including Hsp70, Hsp40, and Hsp90, localize around ³⁰⁶VQIVYK³¹¹¹¹. Furthermore, 64 expansion of tau RD appears to promote chaperone binding to the amyloid motif, suggesting that local conformational changes help recruit factors to suppress aggregation¹². In contrast, intramolecular 65 66 disulfide bridges in tau RD are predicted to form a local loop-like structure spanning repeats 2 and 3 that are incompatible with the formation of amyloid¹³. 67

68 Further solution NMR data is available for a fragment of tau RD in complex microtubules¹⁴

69 where portions of the protein appear to form local contacts with upstream flanking sequences.

70 Structural models guided by experimental restraints from crosslinking mass spectrometry are consistent

71 with independent NMR data¹⁴: ³⁰⁶VQIVYK³¹¹ has potential to form local structural elements.

72 We hypothesized that disease-associated mutations may contribute to tau's molecular 73 rearrangement from inert to an early seed-competent form. Of the missense mutations genetically 74 linked to tau pathology in humans, many disproportionally occur within tau RD and specifically cluster near ³⁰⁶VQIVYK^{311 15} (**Figure 1 A, B**). Disease-associated mutations found near tau's amyloid motif. 75 76 such as P301L or P301S, have no definitive biophysical mechanism of action, but are nevertheless widely used in cell and animal models^{16,17}. These observations suggest that the local environment of 77 78 tau's amyloid motif influences aggregation propensity. A mechanistic understanding of how mutations in 79 tau drive pathology bears directly on how we might better develop conformation-specific diagnostics 80 and therapies.

81 As with disease-associated mutations, alternative splicing also impacts the primary sequence N-82 terminal to ³⁰⁶VQIVYK³¹¹. Tau is expressed in the adult brain primarily as two major splice isoforms: 3repeat and 4-repeat¹⁸. In the truncated 3-repeat isoform, the second of four imperfectly repeated 83 84 segments in tau RD is absent. Expression of the 4-repeat isoform correlates with the deposition of aggregated tau tangles in many tauopathies¹⁹; non-coding mutations that increase preferential splicing 85 86 or expression of the 4-repeat isoform are genetically linked to some tauopathies^{19–21}. It is not obvious 87 why the incorporation or absence of the second repeat correlates with disease, as the primary 88 sequences, although imperfectly repeated, are relatively conserved.

Finally, previous reports have focused on studying intra-repeat interactions with the assumption that each repeat functions independently within tau RD²². These reports have shown a relationship between the length of an intra-repeat fragment, its propensity to spontaneously aggregate, and its seeding capacity in cells²². However, inter-repeat interactions may also influence aggregation given that both alternative splicing and many disease-associated mutations cluster around the repeat interfaces. We hypothesize that wild-type tau aggregates less efficiently because flanking sequences shield ³⁰⁶VQIVYK³¹¹, while disease-causing mutations, alternative splicing, or other factors destabilize local

- 96 structures around ³⁰⁶VQIVYK³¹¹ allowing the transition of tau monomer to an aggregation-prone
- 97 conformation.
- 98

99 RESULTS

100	In Silico modeling indicates tau RD local structure. To initiate our studies, we first used
101	molecular modeling to gain insight into how putative hairpin structures in tau RD might behave. We built
102	predictive models using CS-ROSETTA, which implied metastable local β -hairpin structures across
103	repeat interfaces. We illustrate one of these interface fragments using a model built with CS-ROSETTA
104	for the R2-R3 ³⁰⁶ VQIVYK ³¹¹ -containing interface (Figure 1 C). We focused on the ³⁰⁶ VQIVYK ³¹¹ -
105	containing interface over others in tau RD for several reasons. The ³⁰⁶ VQIVYK ³¹¹ -containing interface
106	has the highest frequency of proximal disease-associated mutations, particularly P301L and P301S,
107	which are commonly used as the genetic basis of disease modelling (Figure 1 A). Secondly, other
108	potential amyloid regions, such as ²⁷⁵ VQIINK ²⁸⁰ , are nevertheless capable of aggregation
109	(Supplemental Figure 1), but are absent in recent cryo-EM structures of tau aggregates ^{3,23} .
110	A standard fragment selection protocol in <i>ab initio</i> ROSETTA yielded similar local β -hairpin
111	structures of the same sequence, further suggesting that the amino acid composition near the amyloid
112	motif is compatible with beta-turns (Figure 1 D). The P-G-G-G sequences preceding 306 VQIVYK 311
113	found in tau RD are compatible with the formation of β -hairpins and are typically found in β -turn
114	secondary structures. Simulating 5,000 structures using each protocol for each of the four potential tau
115	hairpins led to structures consistent with published Rg measurements ²⁴ . Ensemble-wide analysis of
116	each dataset showed an approximate ~25-59% propensity to form hairpin-like structures across repeat
117	interfaces centered on the P-G-G-G sequences (Supplemental Figure 2). Mapping known missense
118	mutations onto the <i>ab initio</i> β -hairpin structure (Figure 1 E), we hypothesized that this cluster of
119	disease-associated mutations could act through a single mechanism of action. Mutations that
120	destabilize this β -hairpin secondary structure may expose the amyloid motif ³⁰⁶ VQIVYK ³¹¹ , allowing for
121	aggregation. This model is compatible with recent cryo-EM findings that indicate a disengagement of
122	³⁰⁶ VQIVYK ³¹¹ 's N-terminal flanking sequence in a fibril structure ³ .

P301L promotes extended forms of tau. *In silico* modelling corroborated recent biochemical
 findings⁷ and suggested a minimal sequence necessary to form a collapsed structure around
 ³⁰⁶VQIVYK³¹¹. To understand how these structures might self-assemble, we employed molecular

126 dynamics (MD) simulations of two tau fragments comprising the minimally structured fragment centered 127 around the R2 to R3 interface: R2R3-WT and R2R3-P301L (Table 1). To enable sufficient sampling of 128 oligomer structures, we employed an unbiased algorithm based on a recently-developed symmetryconstraint approach²⁵. The trimer conformations obtained in simulations are depicted on a root-mean-129 130 square deviation (RMSD) matrix for both R2R3-WT (Figure 2 A) and for the R2R3-P301L mutant 131 (Figure 2 B). For R2R3-WT, we observed a dominant population of trimeric conformations composed of 132 primarily hairpins, while the P301L disease-associated mutation stabilized an extended form. The 133 energy basin for a R2R3-WT peptide hairpin was predicted to be 5 to 6 kJ/mol lower than an 134 extended/fibril state, whereas the R2R3-P301L peptide is 3 kJ/mol lower in a fibril state than a hairpin 135 (Figure 2 C). Additionally, the free energy surface suggested an energy barrier of approximately 5 136 kJ/mol to convert R2R3-WT from hairpin to fibril. That same barrier was less than 1 kJ/mole for R2R3-137 P301L, predicting a faster rate of kinetic conversion between the two conformational states. Thus, MD 138 predicted that a P301L mutation would promote amyloid assembly by destabilizing monomeric hairpin 139 structures.

140 Tau amyloid motif has metastable compact structure. Cross-linking mass spectrometry (XL-141 MS) defines contact points in proteins and protein complexes and can guide the determination of structure for large protein complexes or transient protein-protein interactions^{26,27}. Tau RD cross-linked 142 143 samples are confirmed by SDS-PAGE (Supplemental Figure 3) and monomers are purified by Ultra 144 Performance Liquid Chromatography (UPLC). Cross-linked samples are trypsin digested and analyzed 145 by mass spectrometry to yield intramolecular protein contact information (**Methods**). In each dataset, 146 the cross-links reported represent consensus data across five independent samples with a low false 147 discovery rate (Methods). XL-MS of recombinant tau RD revealed higher order contacts at 37 °C 148 (Figure 3 D) that decrease in frequency at 75 °C (Figure 3 E), consistent with heat denaturation. We 149 found a bimodal distribution of short and long-range contacts within multiple repeat domains, which are 150 consistent with compact local metastable structures.

In contrast, XL-MS of recombinant tau RD with a P301L missense mutation (tau RD-P301L)
 revealed an increased susceptibility to heat denaturation. At 37 °C, the crosslinks found in tau RD P301L (Figure 3 G) are similar than wild type at the same temperature (Supplemental Figure 4).

However, at 75 °C there were fewer crosslinks within tau RD-P301L compared to wildtype (Figure 3 H),
particularly within the N-terminal sector, which harbors the P301L perturbation.

156 To further examine the stability of the amyloid motif in tau, we labeled recombinant tau RD 157 monomer with complementary Fluorescence Resonance Energy Transfer (FRET) fluorophores 158 (Methods, Table 1) at the two endogenous cysteines in tau located at positions C291 and C322, which serendipitously flank the amyloid motif ³⁰⁶VQIVYK³¹¹ around the predicted β -hairpin structure (**Figure 3**) 159 160 A-C). In a closed conformation, the two fluorophores should have relatively high FRET, while a 161 disordered, extended, or denatured chain should yield relatively low FRET signal. To test our system, 162 we first examined two previously identified monomer populations of FL WT tau: inert monomer (M_i) and 163 seed-competent monomer (M_s). M_i requires cofactors, such as heparin, to spontaneously aggregate in 164 vitro, while the M_s monomer, derived from tau fibrils or Alzheimer patient brain material, readily self-165 assembles to form amyloid⁷. M_i and M_s were labeled at C291 and C322 and their steady-state FRET 166 intensities measured. M_i, which is predicted by XL-MS to be in a more closed conformation, showed 167 higher FRET intensities (E = 0.82 ± 0.08, 52.9 Å ± 4.5) compared to M_s (E = 0.46 ± 0.11, 67.7 Å ± 4.4) 168 (Supplemental Figure 5). Denaturing M_i and M_s at 95 °C overnight yielded similar FRET levels (68.9 Å 169 \pm 1.8, 65.1 Å \pm 1.2 respectively). Surprisingly, this region in M_s is denatured at room temperature, 170 suggesting an extended conformation of the R2R3 interface for M_{s_1} versus a relatively compact in M_{i_1} . 171 Using wild type recombinant tau RD, a time course heat denaturation of tau monomer (M_i) between 65 172 °C to 95 °C gradually decreased FRET efficiency, consistent with denaturation of relatively stable local 173 structure (Figure 3 F). The predicted end-to-end distance of a denatured random chain 33-mer is 174 approximately 66 Å²⁸. Consistent with the previous experiment, we observe M_i to be collapsed at room 175 temperature, and expand to a theoretical fully denatured structure with high temperature (Figure 3 F). 176 We next examined tau RD monomer, M_i, in the context of a P301L mutation, which sits between the two FRET probes immediately upstream ³⁰⁶VQIVYK³¹¹ (Figure 3 B). A P301L missense mutation is 177 associated with neurodegeneration in model systems^{17,29} and is genetically linked to dementias in 178 179 human patients³⁰, though its biophysical mechanism of action is poorly understood. We found no 180 detectible difference between monomeric wildtype tau RD and tau RD-P301L FRET energies at room 181 temperature. Consistent with XL-MS data, tau RD-P301L rapidly loses FRET signal and local structure

with heat denaturation (Figure 3 I), suggesting that tau RD-P301L lacks the thermostability associated
with a wildtype tau RD.

Tau amyloid formation is governed by flanking residues. In tau RD, ³⁰⁶VQIVYK³¹¹ is 184 sufficient and necessary to form an amyloid^{5,6}. In solution, ³⁰⁶VQIVYK³¹¹ hexapeptides aggregate 185 186 spontaneously and rapidly as measured by Thioflavin T (ThT) fluorescence intensity ($t_{1/2} < 1$ hr, **Supplemental Figure 1**) whereas the N-terminal sequence ²⁹⁵DNIKHV³⁰⁰ does not aggregate. 187 188 Combining these sequences yields the minimal structural element spanning repeat 2 into repeat 3 (²⁹⁵DNIKHVPGGGSVQIVYK³¹¹, R2R3) predicted by *in silico* modelling (**Table 1, Figure 4 A**). This 189 190 sequence is also where numerous disease-associated mutations cluster. Indeed, WT peptide 191 fragments representing this motif did not aggregate readily, with no ThT detected up to 96 hrs (Figure 4 192 C). By contrast, disease-associated mutations (Figure 4 B) substituted into the R2R3 peptide fragment 193 were sufficient to generate spontaneous amyloid formation: R2R3-P301S ($t_{1/2}$ = 4.1 ± 1.3 hours), R2R3-194 P301L ($t_{1/2} = 7.2 \pm 0.2$ hours), R2R3-N296 Δ ($t_{1/2} = 31.9 \pm 0.2$ hours), R2R3-G303V ($t_{1/2} = 32.1 \pm 0.7$ 195 hours), R2R3-S305N ($t_{1/2}$ = 41.2 ± 0.2 hours), and R2R3-V300I ($t_{1/2}$ = 77.8 ± 1.3 hours, Figure 4 C). 196 Each of these peptides was confirmed to form amyloid-like fibril morphologies by transmission electron 197 microscopy, except for the wildtype R2R3 peptide where no large structures were found (Figure 5 B-198 **H**).

199 We next assessed whether these mutations perturb local structure. We performed circular 200 dichroism on both the R2R3-WT and R2R3-P301L peptides (Figure 4 C). Compared to R2R3-WT, 201 R2R3-P301L monomer had diminished 198nm signal consistent with more random coil and less β-202 sheet. Deconvolution of CD spectra using BeStSel (beta structure selection) revealed predominantly anti-parallel signal (**Table 3, Supplemental Figure 6**)³¹. Both peptides contained significant random 203 204 coil structure, which is expected for metastable structures, intrinsically disordered proteins, and short 205 peptides that cannot gain stability from tertiary structure. The compact structures identified are 206 consistent with intrinsically disordered proteins having residual structural preferences.

207 To test the structural compatibility of aggregates formed by *in vitro* tau models, we employed tau 208 biosensor HEK293 cells that stably express tau RD (P301S) fused to cyan and yellow fluorescent 209 proteins. These cells sensitively report a FRET signal (tau RD-CFP/tau RD-YFP) only when exposed to

210 tau amyloid seeds, and are unresponsive to aggregates formed by other proteins, such as huntingtin or 211 α -synuclein³². The tau biosensor cells responded to all disease-associated peptides that aggregated 212 spontaneously in vitro, but not to the wild-type R2R3 peptide (which did not aggregate in vitro) (Figure 213 5 A). Qualitatively, biosensor cells retained their diffuse tau localization when untreated or exposed to a 214 wild-type R2R3 peptide, but formed puncta when cultured with aggregated mutant peptides (Figure 5 I-215 P). Interestingly, the biosensor cells responded to disease-associated mutant peptides with varying 216 degrees of sensitivity and created dissimilar aggregate morphologies. This is consistent with amyloid 217 structures that act as distinct templates, as we have previously observed to form the basis of tau prionlike strains^{4,33}. 218

219 Tau splice variants reveal differential aggregation propensity. Tau is expressed in the adult 220 brain as 6 major splice isoform types that include either 3 or 4 repeated segments within RD (Figure 6 221 A). 3R lacks the second of four repeats. 4R tau correlates strongly with aggregation in most 222 tauopathies¹⁹ and mutations that increase splicing of the 4R isoform correlate with disease^{19,21}. We examined whether this splice isoform affects the propensity of ³⁰⁶VQIVYK³¹¹-mediated aggregation due 223 224 to the R1 to R3 junction having a different sequence composition from R2 to R3. We constructed a 225 series of peptides to encompass the R1 to R3 repeat interface (R1R3, **Table 1**). This wild type 226 sequence peptide mimicking a 3R splice isoform (R1R3) did not spontaneously aggregate. Surprisingly, 227 an R1R3 peptide with a corresponding P301L mutation also did not aggregate (Figure 6). We 228 hypothesized that differences in amino acid composition between the two splice isoforms led to the 229 sensitivity to aggregate in the presence of disease-associated mutations.

The R1 leading sequence ²⁶⁴<u>E</u>NLKHQPGGGK²⁷³ differs from R2 ²⁹⁵<u>D</u>NIKHVPGGGS³⁰⁴ at four 230 231 amino acid positions. To test the stabilizing effect of the R1 leading sequence, we constructed 16 232 peptides with a P301L disease-associated mutation to represent every combinatorial sequence 233 between the two leading strands (Figure 6 B). In this way, we could identify which amino acid(s) 234 aoverned R1's stronger inhibitory effects. We identified a general trend where R2R3-P301L aggregates 235 in hours with zero or one R1 substitutions. With 2 R1 substitutions, R2R3-P301L aggregation was 236 delayed roughly an order of magnitude to tens of hours. With 3 R1 substitutions, R2R3-P301L 237 aggregation was further delayed to hundreds of hours. With all four R1 substitutions (R1R3-P301L), no

ThT signal was observed within a week (**Figure 6 B**). Thus, all four amino acids contributed to the ability of the R1 leading sequence to delay ³⁰⁶VQIVYK³¹¹-mediated spontaneous aggregation in a 3R splice isoform. This may explain the differential aggregation propensities of tau isoforms in human pathology.

242 Stabilizing β-hairpin structure blocks P301L-mediated aggregation. Our model predicted sequestration of the 306 VQIVYK 311 motif in tau *via* local β -structure. To further test this, we hypothesized 243 244 that artificially enhancing the local β -hairpin structure by stabilizing the termini would promote a more 245 inert, closed conformation, Consequently, we modified the R2R3-P301L peptide with a tryptophan 246 zipper (Trp-R2R3-P301L-Trp, **Table 1**), which stabilizes a β -hairpin structure approximately -2.5 to -7 kJ/mol³⁴. We confirmed a structural change using circular dichroism of Trp-R2R3-P301L-Trp, where we 247 248 found an increase in β -sheet signal at 198 nm compared to R2R3-P301L (**Supplemental Figure 6**, 249 **Table 3**). Subtracting the R2R3-P301L signal from the Trp-R2R3-P301L-Trp revealed a curve with 250 significantly increased signal at 198 nm, indicative of β -sheet formation. Consistent with our model, Trp-251 R2R3-P301L-Trp does not spontaneously aggregate in vitro (Figure 7 B).

252 To ensure that this effect wasn't a result of adding bulky tryptophan residues, we constructed 253 control peptides that contain only the N-term (Trp-R2R3-P301L) or the C-term (R2R3-P301L-Trp) 254 portion of the tryptophan zipper sequence (Figure 7 A). Both half-sequence controls spontaneously 255 aggregated, implying that a tryptophan in either position is insufficient to block aggregation (Figure 7 256 **B**). Only a fully intact tryptophan zipper that stabilizes a β -hairpin conformation ameliorates aggregation 257 propensity. Alternative methods to stabilize a β -hairpin architecture, such as introducing isoelectric 258 interactions, also delayed aggregation: peptides containing additional aspartic acids on the N-terminus 259 and lysines on the C-terminus (R2R3-IEZip, Table 1) retarded R2R3-P301L aggregation over an order 260 of magnitude ($t_{1/2}$ = 8 hours to $t_{1/2}$ = 83 hours, **Supplemental Figure 7**).

To test this effect in cells, we generated biosensor HEK293 cells expressing tau RD with a comparable tryptophan zipper sequence. These biosensors had a significantly diminished capacity to be seeded; R2R3-P301S peptide aggregates triggered aggregation in $14.5 \pm 1.6\%$ of tau biosensor cells, but only $0.3 \pm 0.12\%$ of the tryptophan zipper stabilized biosensor cells (**Supplemental Figure 8**).

265	Proline 301 cis-trans isomerization modulates aggregation. Many proteins in the cell utilize
266	proline isomerization as a molecular switch, such as heat shock protein activation ³⁵ or cell cycle
267	regulation ³⁶ . In some proteins, proline isomerization directly induces or mitigates aggregation into
268	amyloid ^{37–39} . Proline isomerization events in tau have been proposed to play a role in aggregation and
269	disease ³⁸ , but P301 isomerization has not been linked to tau aggregation and pathology. Serine or
270	leucine substitutions at P301 proximal to ³⁰⁶ VQIVYK ³¹¹ drastically alter aggregation propensity. We
271	hypothesized that P301 plays a crucial role inducing a β -turn in a P-G-G-G motif, which mediates a
272	collapsed structure. We tested whether isomerization of P301 could influence spontaneous amyloid
273	formation. We constructed a series of R2R3 peptides with proline analogs that preferentially populate
274	either: (1) a <i>cis</i> rotamer (2S,4S)-fluoroproline; (2) a <i>trans</i> rotamer (2S,4R)-fluoroproline; or (3) a proline
275	analog that easily interconverts between <i>cis</i> and <i>trans</i> (4,4)-difluoroproline (Table 1, Figure 7 C). Only
276	R2R3-Trans spontaneously aggregated (Figure 7 D), indicating the potential for proline isomerization
277	events in tau pathogenesis.

280 DISCUSSION

281 Here we establish the molecular and functional basis for how a series of prominent tau mutations 282 drive spontaneous aggregation. Using intramolecular FRET and XL-MS, we identified local structure 283 within the inter-repeat junctions of tau RD. Local compact structure in the R2-R3 junction, which encompasses the amyloidogenic ³⁰⁶VQIVYK³¹¹ motif. is perturbed by disease-associated mutations. 284 285 such a P301L. Using peptide model systems, we demonstrate that splice isoforms of tau are 286 functionally dissimilar in their capacity to spontaneously aggregate with missense mutations. 287 Furthermore, these peptide models indicate a potential role of proline isomerization in tau aggregation 288 at the critical P301 position. Conversely, stabilizing local structure with tryptophan zippers or other 289 means drastically limits the aggregation in vitro and in vivo. Taken together, our work provides a 290 biophysical framework for how pathogenic mutations, splice isoforms, and other perturbations can drive 291 early events in tau aggregation.

Our study has suggested that local structure encompassing the amyloid motif ³⁰⁶VQIVYK³¹¹ 292 293 regulates aggregation of the protein. Modeling of tau RD by ab initio or CS-ROSETTA indicated that 294 repeat interfaces encode local structure that is compatible with a β -hairpin. Importantly, a cluster of 295 disease-associated mutations localized to the repeat2-repeat3 interface suggested a possible mechanism. To explore the energetic landscape of local compact structure proximal to ³⁰⁶VQIVYK³¹¹. 296 we employed molecular dynamics simulations. A WT peptide encoding the ³⁰⁶VQIVYK³¹¹-containing 297 298 repeat 2/3 interface preferentially populated a hairpin conformation with a relatively low frequency of 299 extended fibril-like structures. Conversely, a disease-associated mutation, P301L, dramatically shifted 300 the equilibrium away from monomeric hairpins to fibril-like ensembles. To test the extent of structure 301 formed in tau RD, we utilized orthogonal biophysical approaches. First, XL-MS revealed contacts 302 spanning the local repeats, and long-range contacts within tau RD. Heat denaturation experiments 303 indicated a marked drop in long-range contacts, consistent with the unfolding of secondary and tertiary 304 structures, Concurrently, intramolecular FRET studies of tau RD experimentally followed unfolding of the ³⁰⁶VQIVYK³¹¹ repeat 2/3 interface in real time by measuring distances between fluorescent probes 305 that flank ³⁰⁶VQIVYK³¹¹. Under native conditions the local structure was collapsed, but expanded to 306 307 random coil with heat denaturation. Conversely, tau RD with a P301L substitution was less

308 thermostable and rapidly lost FRET signal. This suggests that P301L is more susceptible to 309 conformational changes that expose the ³⁰⁶VQIVYK³¹¹ amyloid motif. No structural differences were 310 seen between wildtype and tau RD-P301L at non-denaturing temperatures. While these differences are 311 subtle, we observe that P301L-mediated structural rearrangement only manifest under moderate stress 312 conditions (i.e. heat). This may explain the elusiveness of a biophysical basis of this cluster of 313 pathogenic mutations.

314 We further examined whether these structural perturbations influenced aggregation propensity. WT tau fragments containing ³⁰⁶VQIVYK³¹¹ did not aggregate spontaneously. Single point substitutions 315 316 of 6 disease-associated mutations immediately N-terminal to ³⁰⁶VQIVYK³¹¹ consistently induced 317 spontaneous aggregation propensity in vitro. The fragments which aggregated in vitro formed classical 318 amyloid-like fibrils by EM and seeded soluble tau RD aggregation in tau biosensor cells. Alternative splicing around the ³⁰⁶VQIVYK³¹¹ sequence modulated spontaneous aggregation, and suggested why 319 320 3R tau aggregates less readily than 4R. To further probe the effect of local structure on aggregation 321 propensity, we stabilized a β -hairpin structure using a tryptophan zipper or isoelectric forces. After 322 deconvolution of the CD signal by BeStSel, we identified that essentially all the β -sheet signal from the 323 peptides tested was anti-parallel, consistent with β -hairpin structure. The magnitude of these changes 324 are modest as detected by CD; however, the functional consequences are significant.

325 Disease-associated mutations found near tau's amyloid motif, such as P301L or P301S have no 326 definitive biophysical mechanism but are nevertheless widely used in cell and animal models^{16,17}. 327 Mutations are generally categorized into splice or missense mutants. Two of the pro-aggregation 328 missense mutations studied (N296 Δ , S305N) are reported in the literature as splice mutants with no 329 notable effects on protein aggregation or microtubule binding^{40,41}. Using our peptide model system, we 330 observed that these missense mutations spontaneously aggregate in vitro and seed tau RD in cell 331 models. We therefore provide a rationale for the toxic-gain-of-function for several mutations and expand 332 on the previously reported splice effects of N296 Δ and S305N. This peptide model system compliments 333 in vivo data by disentangling the toxic effects of mutations exerted through either mRNA or protein-334 based mechanisms.

335 Studying the missense mutations in tau has generated valuable disease models^{17,29}; however, the majority of human tauopathies have no observed genetic mutation in *tau*³⁰. Critical proline residues 336 337 N-terminal to the amyloid motif can isomerize into *cis* or *trans* rotamers spontaneously or through 338 unidentified cellular mechanisms. We observe that P301 cis and trans rotamers have distinct 339 aggregation propensities in vitro. In fact, the aggregation kinetics for a trans rotamer of P301 are on par 340 with some disease mutants (N296 Δ , V3001). The concept of proline isomerization triggering 341 aggregation into amyloid is not entirely novel, as this is an accepted mechanism of B2-microglobulin 342 aggregation in kidney dialysis amyloidosis⁴². Other proline residues outside of tau repeat domain are proposed to undergo proline isomerization³⁸. We postulate a new mechanism whereby WT tau 343 344 aggregation could be controlled in vivo: specific prolyl isomerization events - possibly triggered by 345 cellular proline isomerases - could trigger spontaneously aggregation by modulating inter-repeat 346 structural elements.

347 Previous reports have been focused on studying intra-repeat interactions, with the assumption 348 that each repeat functions independently within tau RD. Peptide models have shown a relationship 349 between the length of a peptide fragment and the seeding capacity of tau²². Whereas previous work 350 defined the minimal sequence necessary to act as a fully functional seed, our model defines a minimal 351 sequence necessary for inhibiting aggregation. This work suggests that inter-repeat contacts play a 352 crucial role as structural elements that modulate aggregation propensity. The composition of these 353 inter-repeat sequences, governed by alternative splicing or missense mutations, directly impacts 354 stability of local structures and aggregation propensity. It is tempting to speculate that local structure 355 surrounding each of the four inter-repeat regions play independent roles in the exposure of amyloid 356 sequences. This modular nature of the tau-RD region may explain how these independent regions can 357 lead to different tau assemblies. A more comprehensive structure-function analysis of other sites may 358 help explain how each repeat contributes to the formation of different tau structures.

The expression levels of the two major isoform types of tau in the CNS – 3R and 4R – are similar in the adult brain¹⁸. However, the 3R:4R ratio of aggregate deposits is disproportionally shifted towards 4R in most tauopathies¹⁹. Mutations in tau that affect alternative splicing and generate excess 4R isoforms correlate with some genetic tauopathies^{20,21}. The N-terminal flanking sequences leading

363 into ³⁰⁶VQIVYK³¹¹ differ by four amino acids between the two isoforms. We find that these two isoforms 364 have drastically different aggregation propensities in the presence of disease-associated mutations ($t_{1/2}$ 365 = 7 hours vs $t_{1/2}$ > 200 hours, respectively). Chimeras of R1R3 / R2R3 transition from aggregation-366 resistant to aggregation-prone as they lose R1 N-terminal flanking character. The ability of an R1 leading strand to mitigate ³⁰⁶VQIVYK³¹¹ aggregation may explain why 4-repeat tau correlates more 367 368 closely with pathology. Thus, inter-repeat contacts may explain aggregation propensities of tau isoforms in disease. Encouraging data for a tau vaccine targeting a ³⁰⁰HXPGGG³⁰⁴ sequence suggests it's 369 370 possible to utilize inter-repeat regions to select between pathogenic and non-pathogenic conformations of tau⁴³. 371

Taking these observations together, we propose that sequences N-terminal to tau's amyloid motif forms local contacts consistent with a β -hairpin-like compact structure, which shields the amyloid motif and mitigates aggregation (**Figure 8**). This represents a simple model of tau aggregation that unifies key observations throughout tau literature.

Algorithms that identify potential amyloid nucleating regions, such as TANGO, have indicated that nearly 75% of aggregation nucleating regions in the human proteome use two or more "gatekeeper" residues, with proline being the most common single gatekeeping residue⁴⁴. These gatekeeping residues are more likely than average to be the site of disease-associated missense mutations. These observations tie in closely with our findings of gatekeeping residues near tau's amyloid motif, and suggest that local flanking sequences and their structural contacts may play an important role in mitigating aggregation propensity.

Finally, the identification and characterization of metastable compact structures near ³⁰⁶VQIVYK³¹¹ may itself prove to be a valuable therapeutic target. One might be able to shift the structural rearrangement of tau amyloid motif from exposed (aggregation prone) to buried (inert) using small molecules, antibodies, or cellular co-factors. Our results indicate that subtle changes in local structure have immense functional ramifications; therefore, small molecules that shift this structural equilibrium modestly may have significant benefits.

389

390 METHODS

391 Peptide Synthesis. All peptides were synthesized as ordered by Genscript with N-terminal acetylation
 392 and C-terminal amidation modifications. Peptides were purified to >95% purity by FPLC *via* an Agilent
 393 ZORBAX StableBond 250 mm C8 column.

ThT Fluorescence Assays. Peptides were disaggregated as previously described⁴⁵, lyophilized, and resuspended in 2x PBS (273 mM NaCl, 5.4 mM KCl, 20 mM Na₂HPO₄, 3.6 mM KH₂PO₄, pH 7.4). 25 mM ThT was added to 200uL of 200 μ M peptide in a 96-well clear bottom plate. ThT kinetic scans were run every 5 minutes on a Tecan M1000 plate reader at 446 nm Ex (5 nm bandwidth), 482 nm Em (5 nm bandwidth). Blank wells containing buffer and ThT were subtracted from experimental values.

Tau intramolecular FRET. Tau RD was expressed and purified as previously described⁴⁶. 10-fold

400 excess TCEP was added to 100 μ M Tau RD, the atmosphere was deoxygenated with N₂ gas, and

401 incubated at RT for 30 minutes. To label, C_5 maleimide Alexa-488 and C_2 maleimide Alexa-647 were

402 dissolved in DMSO and added in 5-fold excess to Tau RD, and incubated at 4° C overnight. Alexa-

403 labelled Tau RD was purified using an 8 kDa cut-off mini dialysis exchanged into 1x PBS overnight.

404 FRET efficiencies were calculated as a function of acceptor emission, given E = $(I_{AD} \varepsilon_{AA} - I_{AA} \varepsilon_{AD})/I_{AA} \varepsilon_{DD}$

 $405 \qquad \text{where } I_{\text{AA}} \text{ is Acceptor intensity following Acceptor excitation, } I_{\text{AD}} \text{ is Acceptor intensity following Donor}$

406 excitation, and ε is the extinction coefficient of the fluorophores at given excitations and emissions.

407 Distances in angstroms were derived from FRET energies as a function of $Å = (R_{<0>})[(1-E)/E]^{1/6} R_{<0>}$ is

408 a known value of 56 Å for the FRET pair Alexa-488 and Alexa-647, and E is the calculated energy

above. Alexa 488 Ex/Em was measured at 490 nm/520 nm, Alexa 647 Ex/Em 647 nm/670 nm with a 5
nm bandwidth for both.

Model generation of tau RD using ROSETTA. The backbone NH, N, CA, CB and C=O chemical shift
assignments for the tau fragment from 211-324 (generously provided by Juan Lopez and Guy Lippens)
were used in CS-Rosetta to generate fragment libraries for subsequent model refinement. First,

414 chemical shift parameters were used to predict backbone torsional angles using TALOS to generate a

415 CS-guided fragment library representing the conformations of the protein⁴⁷. For the *ab initio* ROSETTA

416 calculations, the tau RD sequence was used to generate 3-mer and 9-mer fragments derived from the

417protein data bank. The Rosetta energy function was used to assemble and iteratively refine 5000418structural models using each set of fragments^{48,49}. Radius of gyration for each model was computed by419a python script. Ensemble wide calculation of $c\alpha$ - $c\alpha$ end to end distances between residues 264-280,420295-311, 327-343 and 359-375 were carried out using a python script. All simulations were done on421UTSW's biohpc computing cluster. All plots were generated with gnuplot. Images were created using422Pymol.

423 Circular Dichroism. Far-UV CD measurements were performed on a JASCO J-815 spectropolarimeter
424 using a 1-mm path length cuvette. CD samples were prepared in parallel to ThT assays and diluted to
425 0.1 mg/ml in 20 μM NaF. CD spectra were analyzed using BeStSel and CONTIN.

Tau Biosensor Cells. Biosensor cells were plated into 96-well plates at 20,000 cells per well. 10 μg of
aggregated peptide material was added to 0.5 uL lipofectamine and Opti-MEM to a total volume of 10
μL, incubated at room temperature for 30 minutes, and added directly to cell media. After 3 days, cells
were harvested with 0.05% trypsin, then resuspended in Flow buffer (1x HBSS, 1% FBS, 1 mM EDTA,
1x DPBS) and analyzed by flow cytometry.

431 Flow Cytometry. A BD LSRFortessa was used to perform FRET flow cytometry. To measure CFP and 432 FRET, cells were excited with the 405 nm laser, and fluorescence was captured with a 405/50 nm and 433 525/50 nm filter, respectively. To measure YFP, cells were excited with a 488 laser and fluorescence 434 was captured with a 525/50 nm filter. To guantify FRET, we used a gating strategy where CFP bleed-435 through into the YFP and FRET channels was compensated using FlowJo analysis software. We then 436 created a plot of FRET vs. CFP and introduced a triangular gate to assess the number of FRET-positive cells, as previously described¹⁶. For each experiment, 20,000 cells per replicate were analyzed. Data 437 438 analysis was performed using FlowJo v10 software (Treestar).

439 **Transmission electron microscopy (TEM).** An aliquot of 5 μ l of sample was placed onto a glow-440 discharged Formvar-coated 400-mesh copper grids for 30 seconds, washed with distilled water, and 441 then negatively stained with 2% uranyl acetate for 1 min. Images were acquired on a Tecnai G² spirit 442 transmission electron microscope (FEI, Hillsboro, OR), serial number: D1067, equipped with a LaB₆ 443 source at 120kV using a Gatan ultrascan CCD camera.

444 Crosslinking, sample processing and LC-MS/MS analysis. Preparation of tau RD was crosslinked 445 at a total protein concentration of 1.0 mg/mL using 100 µg of starting material. The crosslinking buffer 446 was 1X PBS and 1mM DTT. For each temperature (37°C, 75°C, 85°C and 95°C) five replicates 447 samples were prepared and equilibrated at the appropriate temperature for 30 minutes. The 448 crosslinking reaction was initiated by adding disuccinimidyl suberate (DSS) stock solution (25 mM DSS-449 d_0 and $-d_{12}$, Creative Molecules) in DMF to a final concentration of 1 mM. Samples were further 450 incubated at 37°C, 75°C, 85°C or 95°C for 1 min with 350 RPM shaking. Excess reagent was guenched 451 by addition of ammonium hydrogen carbonate to 50 mM and incubation at 37°C for 30 min, and 452 subsequently flash frozen at -80°C and evaporated to dryness by lyophilization. Proteins were 453 resuspended in 8M urea, reduced with 2.5mM TCEP (37°C, 30 min) and alkylated with 5mM 454 iodoacetamide (30min, room temperature, protected from light). The sample solutions were diluted to 1 455 M urea with 50 mM ammonium hydrogen carbonate and trypsin (Promega) was added at an enzyme-456 to-substrate ratio of 1:50. Proteolysis was carried out at 37°C overnight followed by acidification with 457 formic acid to 2% (v/v). Samples were then purified by solid-phase extraction using Sep-Pak tC18 458 cartridges (Waters) according to standard protocols. Samples were evaporated to dryness and 459 reconstituted in water/acetonitrile/formic acid (95:5:0.1, v/v/v) to a final concentration of approximately 460 0.5 µg/µl, 2µL each were injected for duplicate LC-MS/MS analyses on an Eksigent 1D-NanoLC-Ultra 461 HPLC system coupled to a Thermo Orbitrap Fusion Tribrid system. Peptides were separated on self-462 packed New Objective PicoFrit columns (11cm x 0.075mm I.D.) containing Magic C₁₈ material 463 (Michrom, 3µm particle size, 200Å pore size) at a flow rate of 300nL/min using the following gradient. 0-464 5min = 5 %B, 5-95min = 5-35 %B, 95-97min = 35-95 %B and 97-107min = 95 %B, where A = 465 (water/acetonitrile/formic acid. 97:3:0.1) and B = (acetonitrile/water/formic acid. 97:3:0.1). The mass 466 spectrometer was operated in data-dependent mode by selecting the five most abundant precursor ions 467 (m/z 350-1600, charge state 3+ and above) from a preview scan and subjecting them to collision-468 induced dissociation (normalized collision energy = 35%, 30ms activation). Fragment ions were 469 detected at low resolution in the linear ion trap. Dynamic exclusion was enabled (repeat count 1, 470 exclusion duration 30sec).

471 Analysis of mass spectrometry data. Thermo .raw files were converted to the open .mzXML format 472 using msconvert (proteowizard.sourceforge.net) and analyzed using an in-house version of xQuest⁵⁰. 473 Spectral pairs with a precursor mass difference of 12.075321 Da were extracted and searched against 474 the respective FASTA databases containing Tau (TAU HUMAN P10636-8) or with a P301L 475 substitution. xQuest settings were as follows: Maximum number of missed cleavages (excluding the 476 crosslinking site) = 2, peptide length = 5-50 aa, fixed modifications = carbamidomethyl-Cys (mass shift 477 = 57.021460 Da), mass shift of the light crosslinker = 138.068080 Da, mass shift of mono-links = 156.078644 and 155.096428 Da, MS^1 tolerance = 10 ppm, MS^2 tolerance = 0.2 Da for common ions 478 479 and 0.3 Da for crosslink ions, search in ion-tag mode. Post-search manual validation and filtering was 480 performed using the following criteria: xQuest score > 18, mass error between -2.2 and +3.8ppm, %TIC 481 > 10, and a minimum peptide length of six aa. In addition, at least four assigned fragment ions (or at 482 least three contiguous fragments) were required on each of the two peptides in a crosslink. False 483 discovery rates (FDR's) for the identified crosslinks were estimated using xprophet⁵¹ and estimated to 484 be 1.4-3.3% (Supplemental Figure 9, Supplemental Table 1). At each temperature, the 5 replicate 485 datasets were compared and only crosslinks present in 5 of the 5 datasets were used to generate a consensus dataset (**Supplemental Table 2**). Crosslink data was visualized using Xvis⁵². Histograms 486 487 illustrating the contact order for the consensus crosslink sets were generated using anuplot. **MD Simulations.** Well-Tempered Metadynamics⁵³ was employed to enable accelerated conformational 488 489 sampling and to construct the associated free energy surface. Metadynamics was performed on a two-490 dimensional space of parallel-beta sheet content and anti-parallel sheet content. To increase search 491 efficiency in oligometric space, we have incorporated conformational symmetry constraints, which have been shown to enable sampling of multi-polymer landscapes²⁵. The initial dodecahedron simulation box 492 493 was constructed from a trimer of a randomly unfolded structure of 295-311 by adding 7587 SPCE 494 explicit waters and 3 neutralizing CI ions (one for each monomer). The AMBER99sb-ildn force-field⁵⁴ 495 was used for all simulations. After an initial 1009 steepest descent steps of converged energy minimization, 10 ns of NVT and 20 ns of NPT (first 10 with Berendsen⁵⁵ and the last 10 with Parrinello-496 Rahman⁵⁶ barostats) equilibrations were performed. The subsequent production level trajectories are 497 based on 5 fs time steps using hydrogen-only virtual sites⁵⁷. Production level trajectories were obtained 498

499 for an NPT ensemble with Parrinello-Rahman barostat, and periodic boundary conditions with Particle Mesh Ewald (PME)⁵⁸ summation for long-range electrostatics. The tuned well-tempered metadynamics 500 501 parameters are 10, 1.4 kJ/mole, and 0.3 for bias factor, Gaussian height, collective variable space 502 Gaussian widths, respectively. The Gaussian perturbations were included into MD every 2.5 ps using 503 the PLUMED package⁵⁹ as an external patch to Gromacs-5.0.4⁶⁰. A total of 18 µs trajectories were 504 generated, 9 µs for wild type and 9 µs for the P301L mutant, over a total of 6 independent runs. All 505 simulations were done on UTSW's biohpc computing cluster. 506 Statistics: All statistics were calculated using GraphPad Prism 7.0. A minimum of 3 independent ThT

507 experiments were run for each condition. Plots were fitted to a non-linear sigmoidal curve, from which

508 t_{1/2} values were derived. t_{1/2} error represents a 95% CI. Flow cytometry cell aggregation was conducted

- a minimum of 3 independent experiments, whose values are plotted. Error bars represent a 95% Cl.
- 510

511 Acknowledgements

512 This work was supported by grants from the Tau Consortium and NIH grants awarded to

513 1R01NS071835 (M.I.D.), the Effie Marie Cain Endowed Scholarship (L.A.J.) and the Heising-Simons

514 Foundation (M.M.L.). We appreciate the help of the Structural Biology Laboratory and Proteomics Core

515 Facility at the University of Texas Southwestern Medical Center.

516

517 Author Contributions

518 K.D. M.I.D., and L.A.J. conceived and designed the overall study. K.D. performed *in vitro* aggregation

519 assays, peptide studies, flow cytometry, and cell models. D.C. performed crosslink mass spectrometry.

- 520 D.W. performed electron microscopy. L.S. and M.L. performed molecular dynamics simulations. K.D.
- 521 and L.A.J. wrote the manuscript, and all authors contributed to its improvement.

522

523

Table 1: List of Peptide and Protein Sequences

Peptide Name	Amino Acid Sequence
VQIINK	VQIINK
VQIVYK	VQIVYK
R1R2 (264-280)	ENLKHQPGGGKVQIINK
R2R3 (295-311)	DNIKHVPGGGSVQIVYK
R2R3-N296A	D-IKHVPGSSSVQIVYK
R2R3-V300I	DNIKH I PGGGSVQIVYK
R2R3-P301L	DNIKHV L GGGSVQIVYK
R2R3-P301S	DNIKHV S GGGSVQIVYK
R2R3-G303V	DNIKHVPG V GSVQIVYK
R2R3-S305N	DNIKHVPGGG N VQIVYK
R1R3	ENLKHQPGGGSVQIVYK
R1R3-P270L	ENLKHQ L GGGSVQIVYK
R1R3-P270S	ENLKHQ S GGGSVQIVYK
R1R3-G272V	ENLKHQPG V GSVQIVYK
R1R3-G273R	ENLKHQPGG R SVQIVYK
Trp-R2R3-P301L- Trp	WTGKSKDNIKHVLGGGSVQIVYKEGGW
Trp-R2R3-P301L	WTGK SKDNIKHV L GGGSVQIVYKPVDL
R2R3-P301L-Trp	SKCGSKDNIKHV l GGGSVQIVYK EGGW
R2R3-IEZip	DDDNIKHVPGGGSVQIVYKKK
R2R3-IEZip-P301L	DDDNIKHV l GGGSVQIVYKKK
R2R3-Cis ¹	DNIKHV P GGGSVQIVYK
R2R3-Trans ¹	DNIKHV P GGGSVQIVYK
R2R3-Ea ¹	DNIKHV P GGGSVQIVYK
Tau RD ²	R1: 244 QTAPVPMPDLKN-VKSKIGSTENLKHQPGGGK 274 R2: 275 VQIINKKLDLSN-VQSKCGSKDNIKHVPGGGS 305 R3: 306 VQIVYKPVDLSK-VTSKCGSLGNIHHKPGGGQ 336 R4: 337 VEVKSEKLDFKDRVQSKIGSLDNITHVPGGGN KKIETH 374

¹Fluorinated proline analogs were used to preferentially populate *cis, trans,* or lowered E_a barrier

- conformers at the positions indicated as $\underline{\mathbf{P}}$. ²Cysteines labeled for Tau RD internal FRET are market as $\underline{\mathbf{C}}$.

Table 2: List of AlzForum Disease-Associated Mutations

Peptide Name	Amino Acid Sequence			
	R1: 244 QTAPVPMPDLKN-V K SK I GSTEN L KHQP GG GK 274			
	R2: 275 VQII n kkld ls n-VQskCgskd n Ikh vp g g g s 305			
Iau RD AIZFOIUM	R3: 306 VQIVYKPVD LSK-V TSKCGSLGNIHHK P GG GQ 336			
Mutations	R4: 337 V EVKSE K LDFKDRVQ S KIG S LDN I TH VP G G GN 368			

Peptide Name	% α-helix	<pre>% anti- parallel</pre>	<pre>% parallel</pre>	% turn	% random
R1R2	0	39.5	0.9	14.5	45.1
R2R3	0	36.7	2.8	14.6	45.9
R2R3-P301L	0.3	34.0	2.6	15.4	47.7
Trp-R2R3-Trp	0	42.0	0	13.9	44.1
Trp-R2R3- P301L-Trp	0	42.5	0	13.6	43.9

536 Figure Legends

537

538 Figure 1. Tauopathy mutations cluster to inter repeat regions. A. Disease-associated mutation 539 frequency found in human tauopathies. Most mutations are found within the repeat domain (tau-RD) 540 (repeat 1 = red; repeat 2 = green; repeat 3 = blue; repeat 4 = purple). Amyloidogenic sequences ²⁷⁵VQIINK²⁸⁰ and ³⁰⁶VQIVYK³¹¹ are shown in the inset cartoon. B. Detailed mutation frequencies found 541 near the ³⁰⁶VOIVYK³¹¹ amyloid motif. C, D. Secondary structure models of the repeat2-repeat3 interface 542 (²⁹⁵DNIKHVPGGGSVOIVYK³¹¹) predicted from CS-ROSETTA (C) or *ab initio* (D) shown in cartoon 543 and colored by repeat domain. The amyloid motif ³⁰⁶VQIVYK³¹¹ is colored blue, the leading repeat-2 544 545 sequence is green. E. Positions of disease-associated mutations (red spheres) mapped onto the ³⁰⁶VOIVYK³¹¹-containing *ab initio* β-hairpin structure. 546

547

548 Figure 2. Wildtype and mutant peptides differentially populate hairpin and extended 549 conformations. A. Conformations obtained for a peptide fragment wild type trimer of the sequence ²⁹⁵DNIKHVPGGGSVQIVYK³¹¹. Two-dimensional root-mean-squared-differences (RMSD's) are 550 551 calculated between all pairs of conformations visited during MD simulations. Snapshots of trimeric 552 structures are depicted for select metastable basins, with each peptide monomer represented by a different 553 color. B. The same analysis as above, but for the P301L substituted trimer. C. The free energy surface as 554 a function of deviation from a canonical hairpin structure. Two distinct basins, corresponding to hairpin 555 and fibril/extended sub-ensembles, are found.

556

Figure 3. Tau RD encodes global and local structure. A-C. Cartoon schematic of tau RD used for FRET and XL-MS studies colored according to repeat domain (repeat 1 = red; repeat 2 = green; repeat 3 = blue; repeat 4 = purple). For FRET studies, endogenous cysteines are labelled with alexa-488 and alexa-647 (red and blue balls), which flank the ³⁰⁶VQIVYK³¹¹ amyloid motif. D. Monomeric tau-RD with labeled FRET pairs was denatured at varying temperatures. E-F. Tau RD samples were incubated at 37 °C or 75 °C for one hour. After cross-linking, trypsin fragmentation, and LC-MS/MS analysis, consensus cross-

563 link patterns (circles) are shown as contact maps. Short range crosslinks within the N-term (blue), C-term 564 (red) and long range contacts across N- to C-term (purple) are shown as sectors. Crosslinks are colored 565 according to mean frequency across replicates. G-I. Same as D-F above, except with tau RD that contains 566 a P301L disease-associated substitution.

567

Figure 4. Tauopathy mutations drive aggregation propensity. A. Schematic of tau-RD and the derived peptides representing minimal structural elements around ³⁰⁶VQIVYK³¹¹. B. Primary amino acid sequence mapped onto a cartoon of the predicted minimal structural element proximal to ³⁰⁶VQIVYK³¹¹. Mutations are shown as spheres. C. Wild type and mutant peptides were disaggregated, resuspended at 200 μ M, and allowed to aggregate in the presence of ThT at room temperature. ThT signals are an average of at least 3 independent experiments and are colored according to mutation.

574

575 Figure 5. Peptides form amyloid structures and seed in vivo. A. After 96 hours of in vitro incubation, 576 peptides from previous ThT experiments (Figure 4 C) were transduced into tau biosensor cells via 577 lipofectamine (Methods). FRET signal from each condition (tau-RD-CFP/tau-RD-YFP) was measured 578 by flow cytometry used 3 biological triplicates of at least 10,000 cells per condition. Error bars represent 579 a 95% CI of each condition. Solid and dashed horizontal lines represent the mean and 95% error from 580 untreated biosensor cells, respectively, for ease of statistical comparison. B-H. Electron microscopy 581 images of each peptide from previous ThT experiments (Figure 4 C). The black bar represents 200 nm 582 distance in each image I-P. Qualitative fluorescence microscopy images of tau biosensor cells immediately 583 prior to Flow Cytometry experiments.

584

Figure 6. Alternative splicing modulates aggregation propensity. A. Cartoon schematic for tau 4R and 3R splice isoforms illustrate the difference in primary amino acid sequence leading into the amyloidogenic ³⁰⁶VQIVYK³¹¹ motif. B. A full combinatorial panel of R2R3-P301L and R1R3-P301L chimeras were aggregated *in vitro*. ³⁰⁶VOIVYK³¹¹ is shown in blue, amino acids common between the splice isoforms

are shown in black, amino acids unique to an R3 isoform are colored red, amino acids unique to an R4 isoform are colored green. The kinetic times to aggregate, represented as $t_{1/2}$ in hours with 95% CI, are listed in the right-side column alongside its respective peptide.

592

593 Figure 7. Enhancing β-hairpin structure rescues spontaneous aggregation phenotypes. Cartoon 594 schematic representation of the tryptophan zipper motif (green bars) and controls used to stabilize a β-595 hairpin structure in a R2R3-P301L peptide (**Table 1**). B. Aggregation reactions of the tryptophan zipper 596 peptide and controls measured by ThT fluorescence (200 µM, 25 °C). ThT signals are an average of at 597 least 3 independent experiments. C. Schematic of proline and fluorinated proline analogs used to generate 598 cis and trans proline conformers at the position corresponding to P301 (red ball) in peptide models. D. 599 ThT aggregation reactions of the *cis*, *trans*, and neutral proline analogs substituted into the R2R3 peptide 600 $(200 \ \mu M)$. ThT signals are an average of at least 6 independent experiments.

601

Figure 8. Molecular model of tau amyloid domain structural rearrangement and subsequent aggregation. Naïve tau monomer (left) exists with a propensity to form a relatively collapsed structure, which buries the amyloid domain ³⁰⁶VQIVYK³¹¹. In the presence of disease-associated mutations, proline isomerization events, or certain splice isoforms, the equilibrium is shifted to disfavor local compact structure. This exposes the aggregation prone ³⁰⁶VQIVYK³¹¹ amyloid motif and enhances aggregation propensity, leading to subsequent tau pathology.

609	Refe	rences
610	1.	Cleveland, D. W., Hwo, S. Y. & Kirschner, M. W. Physical and chemical properties of purified tau
611		factor and the role of tau in microtubule assembly. <i>J. Mol. Biol.</i> 116, 227–247 (1977).
612	2.	Eliezer, D. et al. Residual structure in the repeat domain of tau: Echoes of microtubule binding
613		and paired helical filament formation. <i>Biochemistry</i> 44, 1026–1036 (2005).
614	3.	Fitzpatrick, A. W. P. et al. Cryo-EM structures of tau filaments from Alzheimer's disease. Nature
615		547, 185–190 (2017).
616	4.	Sanders, D. W. et al. Distinct tau prion strains propagate in cells and mice and define different
617		tauopathies. <i>Neuron</i> 82, 1271–1288 (2014).
618	5.	Sawaya, M. R. <i>et al.</i> Atomic structures of amyloid cross-β spines reveal varied steric zippers.
619		Nature 447, 453–457 (2007).
620	6.	Von Bergen, M. et al. Mutations of Tau Protein in Frontotemporal Dementia Promote
621		Aggregation of Paired Helical Filaments by Enhancing Local Beta-Structure. J. Biol. Chem. 276,
622		48165–48174 (2001).
623	7.	Mirbaha, H. et al. Inert and seed-competent tau monomers elucidate the structural origins of
624		aggregation. <i>bioRxiv</i> (2017).
625	8.	Zhao, J. <i>et al.</i> Glycan Determinants of Heparin-Tau Interaction. <i>Biophys. J.</i> 112 , 921–932 (2017).
626	9.	Kellogg, E. H. <i>et al.</i> Near-atomic model of microtubule-tau interactions. 1780, 1–9 (2018).
627	10.	Zhang, X. et al. RNA Stores Tau Reversibly in Complex Coacervates. <i>bioRxiv</i> 111245 (2017).
628	11	doi:10.1101/111245
629 620	11.	Mok, SA. et al. Mapping interactions with the chaperone network reveals factors that protect
630 631	12	against tau aggregation. Nat. Struct. Not. Biol. 23, 384–393 (2018).
632	12.	distinct tau species and have different inhibitory effects on amyleid formation <i>L Biol Chem</i>
633		203 2687_2700 (2018)
634	13	Walker S IIIIman O & Stultz C M Using intramolecular disulfide bonds in tau protein to
635	15.	deduce structural features of aggregation-resistant conformations / Biol Chem 287, 9591–
636		9600 (2012).
637	14.	Kadavath. H. <i>et al.</i> Folding of the Tau Protein on Microtubules. <i>Angew. Chemie - Int. Ed.</i> 54.
638		10347–10351 (2015).
639	15.	Mutations. (2017). Available at: http://www.alzforum.org/mutations/. (Accessed: 27th
640		September 2017)
641	16.	Holmes, B. B. et al. Proteopathic tau seeding predicts tauopathy in vivo.
642		doi:10.1073/pnas.1411649111
643	17.	Yoshiyama, Y. et al. Synapse Loss and Microglial Activation Precede Tangles in a P301S
644		Tauopathy Mouse Model. <i>Neuron</i> 53, 337–351 (2007).
645	18.	Goedert, M., Wischik, C. M., Crowther, R. A., Walker, J. E. & Klug, A. Cloning and sequencing of
646		the cDNA encoding a core protein of the paired helical filament of Alzheimer disease:
647		identification as the microtubule-associated protein tau. Proc. Natl. Acad. Sci. 85, 4051–4055
648		(1988).
649	19.	Williams, D. R. Tauopathies: Classification and clinical update on neurodegenerative diseases
650		associated with microtubule-associated protein tau. Internal Medicine Journal 36, 652–660
651		(2006).
652	20.	Schoch, K. M. M. et al. Increased 4R-Tau Induces Pathological Changes in a Human-Tau Mouse
653	a -	Model. <i>Neuron</i> 90 , 941–947 (2016).
654	21.	Hutton, M. et al. Association of missense and 5'-splice-site mutations in tau with the inherited
655	22	dementia FIDP-17. Nature 393, 702–704 (1998).
000	22.	stonr, J. et al. A 31-residue peptide induces aggregation of tau's microtubule-binding region in

657		cells, Nat. Chem. 9 , 874–881 (2017).
658	23.	Falcon, B., Zhang, W., Murzin, A. G., Murshudov, G. & Holly, J. Structures of filaments from Pick
659		s disease reveal a novel tau protein fold. (2018).
660	24	Mylonas E <i>et al.</i> Domain conformation of tau protein studied by solution small-angle X-ray
661		scattering. Biochemistry 47 , 10345–10353 (2008).
662	25.	Lin, M. M. Leveraging symmetry to predict self-assembly of multiple polymers. <i>Chem. Phys. Lett.</i>
663	201	683 , 347–351 (2017).
664	26.	Joachimiak, L. A., Walzthoeni, T., Liu, C. W., Aebersold, R. & Frydman, J. The structural basis of
665		substrate recognition by the eukarvotic chaperonin TRiC/CCT. <i>Cell</i> 159. 1042–1055 (2014).
666	27.	Tam, S. <i>et al.</i> The chaperonin TRiC blocks a huntingtin sequence element that promotes the
667		conformational switch to aggregation. <i>Nat. Struct. Mol. Biol.</i> 16 , 1279–1285 (2009).
668	28.	Flory, P. J. & Volkenstein, M. Statistical mechanics of chain molecules. <i>Biopolymers</i> 8, 699–700
669		(1969).
670	29.	Mocanu, MM. et al. The potential for beta-structure in the repeat domain of tau protein
671		determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in
672		inducible mouse models of tauopathy. J. Neurosci. 28, 737–748 (2008).
673	30.	Rizzu, P. et al. High Prevalence of Mutations in the Microtubule-Associated Protein Tau in a
674		Population Study of Frontotemporal Dementia in the Netherlands. Am. J. Hum. Genet. 64, 414–
675		421 (1999).
676	31.	Micsonai, A. et al. Accurate secondary structure prediction and fold recognition for circular
677		dichroism spectroscopy. <i>PNAS</i> 112, E3095–E3103 (2015).
678	32.	Furman, J. L., Holmes, B. B. & Diamond, M. I. Sensitive Detection of Proteopathic Seeding
679		Activity with FRET Flow Cytometry. J. Vis. Exp. (2015). doi:10.3791/53205
680	33.	Kaufman, S. K. et al. Tau Prion Strains Dictate Patterns of Cell Pathology, Progression Rate, and
681		Regional Vulnerability In Vivo. <i>Neuron</i> 1–17 (2016). doi:10.1016/j.neuron.2016.09.055
682	34.	Kier, B. L., Shu, I., Eidenschink, L. a & Andersen, N. H. Stabilizing capping motif for beta-hairpins
683		and sheets. <i>Proc. Natl. Acad. Sci. U. S. A.</i> 107, 10466–10471 (2010).
684	35.	Vogel, M., Bukau, B. & Mayer, M. P. Allosteric regulation of Hsp70 chaperones by a proline
685		switch. <i>Mol. Cell</i> 21, 359–367 (2006).
686	36.	Gustafson, C. L. et al. A Slow Conformational Switch in the BMAL1 Transactivation Domain
687		Modulates Circadian Rhythms. <i>Mol. Cell</i> 66, 447–457.e7 (2017).
688	37.	Torbeev, V. Y. & Hilvert, D. Both the cis-trans equilibrium and isomerization dynamics of a single
689		proline amide modulate 2-microglobulin amyloid assembly. <i>Proc. Natl. Acad. Sci.</i> 110, 20051–
690		20056 (2013).
691	38.	Pastorino, L. et al. The prolyl isomerase Pin1 regulates amyloid precursor protein processing and
692	20	amyloid-beta production. Nature 440, 528–34 (2006).
693	39.	Lim, J. et al. Pin1 has opposite effects on wild-type and P301L tau stability and tauopathy. J. Clin.
694	40	Invest. 118, 1877–1889 (2008).
695	40.	Hasegawa, IVI., Smith, IVI. J., IIJima, IVI., Tabira, T. & Goedert, IVI. FTDP-17 mutations N279K and
696 607	11	S305N In tau produce increased splicing of exon 10. FEBS Lett. 443 , 93–96 (1999).
697	41.	Pastor, P. et al. Familia atypical progressive supranuclear paisy associated with nomozigosity for
698	40	Life delives of mutation in the lad gene. Ann. Neurol. 49 , 203–207 (2001).
099 700	42.	Element, T. & Radiord, S. E. A Generic Mechanism of B2-Microglobulin Amyloid Assembly at
700	12	Kontsekova E. Zilka N. Kovacech R. Skrahana P. 2. Novak M. Identification of structural
701	45.	determinants on tau protein essential for its nathological function, noval thoronoutic target for
702		tau immunotherapy in Alzheimer's disease. Alzheimers, Res. Ther. 6, 45 (2014)
703 704	лл	au minimunomerapy in Alzheimer Suisease. Alzheimers. Res. 11121. 0, 43 (2014). Roumors I. Mauror Strob S. Schumkowitz I. & Roussoau E. Drotoin soquenees encode
/04	44.	neumers, J., Maurer-Stron, S., Schymkowitz, J. & Kousseau, F. Frotein sequences encode

705		safeguards against aggregation. <i>Hum. Mutat.</i> 30, 431–437 (2009).
706	45.	O'Nuallain, B. <i>et al.</i> Kinetics and Thermodynamics of Amyloid Assembly Using a High-
707		Performance Liquid Chromatography-Based Sedimentation Assay. Methods Enzymol. 413, 34–74
708		(2006).
709	46.	Mirbaha, H., Holmes, B. B., Sanders, D. W., Bieschke, J. & Diamond, M. I. Tau trimers are the
710		minimal propagation unit spontaneously internalized to seed intracellular aggregation. J. Biol.
711		<i>Chem.</i> (2015). doi:10.1074/jbc.M115.652693
712	47.	Shen, Y., Delaglio, F., Cornilescu, G. & Bax, A. TALOS+: A hybrid method for predicting protein
713		backbone torsion angles from NMR chemical shifts. J. Biomol. NMR 44, 213–223 (2009).
714	48.	Lange, O. F. et al. Determination of solution structures of proteins up to 40 kDa using CS-Rosetta
715		with sparse NMR data from deuterated samples. Proc. Natl. Acad. Sci. 109, 10873–10878 (2012).
716	49.	Raman, S. et al. NMR structure determination for larger proteins using backbone-only data.
717		Science (80). 327, 1014–1018 (2010).
718	50.	Rinner, O. et al. Identification of cross-linked peptides from large sequence databases. Nat.
719		Methods 5, 315–318 (2008).
720	51.	Walzthoeni, T. et al. False discovery rate estimation for cross-linked peptides identified by mass
721		spectrometry. <i>Nat. Methods</i> 9, 901–903 (2012).
722	52.	Grimm, M., Zimniak, T., Kahraman, A. & Herzog, F. XVis: A web server for the schematic
723		visualization and interpretation of crosslink-derived spatial restraints. Nucleic Acids Res. 43,
724		W362–W369 (2015).
725	53.	Barducci, A., Bussi, G. & Parrinello, M. Well-tempered metadynamics: A smoothly converging
726		and tunable free-energy method. <i>Phys. Rev. Lett.</i> 100, (2008).
727	54.	Lindorff-Larsen, K. et al. Improved side-chain torsion potentials for the Amber ff99SB protein
728		force field. Proteins Struct. Funct. Bioinforma. 78, 1950–1958 (2010).
729	55.	Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., Dinola, A. & Haak, J. R. Molecular
730		dynamics with coupling to an external bath. <i>J. Chem. Phys.</i> 81, 3684–3690 (1984).
731	56.	Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: A new molecular
732		dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).
733	57.	Feenstra, K. A., Hess, B. & Berendsen, H. J. C. Improving efficiency of large time-scale molecular
734		dynamics simulations of hydrogen-rich systems. J. Comput. Chem. 20, 786–798 (1999).
735	58.	Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: An N·log(N) method for Ewald sums in
736		large systems. J. Chem. Phys. 98, 10089–10092 (1993).
737	59.	Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C. & Bussi, G. PLUMED 2: New feathers for
738	~~	an old bird. Comput. Phys. Commun. 185, 604–613 (2014).
739	60.	Abraham, M. J. <i>et al.</i> Gromacs: High performance molecular simulations through multi-level
740		parallelism from laptops to supercomputers. <i>SoftwareX</i> 1–2, 19–25 (2015).
/41		

Figure 2

b		
	R1R3-P301L	t 1/2
1	ENLKHQLGGGKVQIVYK	>200
		>200
_		122.4 ± 1.5
		119.2 ± 1.4
		60.9 ± 0.3
		62.2 ± 0.4
		36.4 ± 0.5
		66.4 ± 0.9
		49.3 ± 1.1
280		70.6 ± 1.5
		33.6 ± 0.3
		6.7 ± 0.1
		11.7 ± 0.5
		6.9 ± 0.2
		7.2 ± 0.4
		7.2 ± 0.2

R2R3-P301L

а

