
Genome Functional Annotation using Deep Convolutional
Neural Network

Ghazaleh Khodabandelou1, Etienne Routhier1,2, Julien Mozziconacci1

1 Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière
Condensée, LPTMC, 75005 Paris, France. 2 ENS Cachan, Cachan, France

* ghazaleh@lptmc.jussieu.fr, mozziconacci@lptmc.jussieu.fr

Abstract

Deep neural network application is today a skyrocketing field in almost all disciplinary
domains. In genomics, which deals with DNA sequences, the development of deep
neural networks is expected to revolutionize current practice, from fundamental issues
such as understanding the evolution of genomes to more specific applications such as
the development of personalized medicine. Several approaches have been developed
relying on convolution neural networks (CNN) to identify the functional role of
sequences such as promoters, enhancers or protein binding sites along genomes. These
approaches rely on the generation of sequences batches with known annotations for
learning purpose. While they show good performance to predict annotations from a test
subset of these batches, they usually work less well when applied genome-wide; i.e. for
whole genome annotation. In this paper, we address this issue and propose an optimal
strategy to train CNN for this specific application. We use as a case study gene
Transcription Start Sites (TSS) and show that a model trained on one organism (e.g.
human) can be used to predict TSS in a different specie (e.g. mouse).

Author summary

We propose a method to use deep convolution neural networks in order to label genomes
with functional annotations. Functional annotations cover any relevant features which
can be associated with specific positions on the genome (e.g. promoters, enhancers,
conserved regions). This method is based on a optimized generation of the examples
used to train the network in order to deal with the well-known problem of using
unbalanced data. When these annotations are known in one species, the trained neural
network can be used to predict these annotations in a different specie if the mechanisms
used to interpret the genomes are conserved in the two species. We use as a case study
gene transcription start sites (TSS) in human and show that the model trained on
human TSS can be used to recover a similar information on the mouse genome.

Introduction 1

In genomics, one of the major goals is to interpret the function of DNA sequences. 2

While some of the sequences in the human genome are simply used to encode the 3

protein sequences of the proteome, most of the sequences do not code for any protein. 4

Deciphering these non-coding sequences function is a challenging task which has been 5

increasingly achieved with the development of next generation sequencing. The 3.2 6

PLOS 1/20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/330308doi: bioRxiv preprint

https://doi.org/10.1101/330308

Billion base pair (bp) long human genome is now annotated with many functional and 7

bio-chemical cues. Interpreting these annotations and their relevance in embryonic 8

development and medicine is a current challenge in human health. Deep neural network 9

techniques [1] is undoubtedly a perfect tool in the field as proven by many studies 10

summarized in [2, 3]. It was shown in pioneering studies [4–8] that deep convolutional 11

neural network (CNN) is a state-of-the-art neuronal architecture to reliably interpret 12

genetic sequences. In these studies, the training datasets are obtained in a similar 13

fashion. For instance, Min et al. [4] used a deep convolution network to detect 14

enhancers, specific sequences that regulate gene expression at a distance, in the human 15

genome. They considered genetic sequences as 1D images and collected 300 bp long 16

sequences around enhancers as positive inputs and the same numbers of sequences of 17

the same length from non-enhancers regions, as negative inputs. Predictions were made 18

on 10−1th of the total number of sequences and the method reached very good scores 19

ranking it better than previous state-of-the-art, i.e. support vector machine 20

methods [9,10]. Similar training datasets with balanced data, i.e. with a similar amount 21

of positive and negative examples, were used in other papers aiming at identifying 22

promoters [5] or detecting splicing sites [11]. While these approaches are very 23

competitive when applied on test sets derived from the training sequences, they tend to 24

perform less well when applied on full chromosomes or genome-wide. In this paper, we 25

tackle this issue using a different strategy for training. 26

We use here as a case study one of the most simple and useful genome feature: the 27

transcription start sites (TSS) of genes in the human genome. TSS play a fundamental 28

role in the regulation of transcription of protein-coding and RNA genes since they 29

identify the exact location of the first nucleic acid that will be transcribed in RNA. The 30

promoter region is defined as a larger regulatory region flanking the TSS within a 31

length of ∼ 100− 1000 base pairs (bp) located at upstream (5’) of the sense strand of 32

the regulated gene. The motifs within the promoter region can be used by proteins as 33

recognition sites providing specific regulation of gene expression as well as precise 34

location of the initiation of transcription. Therefore, a promoter region contains the 35

information to identify the TSS locations in silico. It has been however proven quite 36

hard to conceive such a computational model because of the gene-specific nature of the 37

TSS. Although, several studies have been tackling the identification of promoters 38

regions [12–14], there is still not a trustworthy method for prediction of TSS positions 39

on a genome-wide scale. 40

We inspire our strategy from Alipanahi et al. [6] and Kelley et al. [8] who used 41

unbalanced datasets, i.e. with more negative than positive training examples to predict 42

respectively DNA and RNA-binding sites for proteins [6] and genome accessibility [8]. 43

In this paper, we propose to optimize the ratio between positive and negative examples 44

in order to obtain the highest prediction scores for identifying TSS. Furthermore, unlike 45

the state-of-the-art approaches we do not take into account prediction scores obtained 46

from test sets as a quality measure. These subsets are randomly pulled from the initial 47

training set. We rather assess the ability of our model to find potential TSS in full 48

chromosomes. A direct advantage of this method is that we can now train our network 49

on a dataset corresponding to one organism and then use it for prediction on the 50

genome of a related organism. As a proof of principle, we show here that a CNN trained 51

on human TSS is able to recover TSS in the mouse genome and vice versa. 52

The program is available to run at https://github.com/StudyTSS/DeepTSS/. 53

PLOS 2/20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/330308doi: bioRxiv preprint

https://doi.org/10.1101/330308

Results 54

Training models for genome annotation 55

The problem of detecting TSS using deep neural networks has been already tackled by 56

Umarov et al. [5]. To detect sequence features, convolutional neural networks have 57

proven the most efficient [2, 3]. We use here our own architecture, comprising 3 58

convolution layers followed by one fully connected layer (Fig 1, see Convolution Neural 59

Network (CNN) for details). In order to construct our training set, we use a similar 60

protocol as Umarov et al. [5] (see Convolution Neural Network (CNN)). We train and 61

validate our model on an equal number of 299 bp long positively/negatively labeled 62

input sequences and test it on a test set of 15% of the input data (see Materials and 63

methods). We reach scores of AUROC=0.984 and AUPRC=0.988 comparable to results 64

of [5]. Nevertheless, in order to develop a practical tool for detecting TSS on a 65

genome-wide scale, we apply our trained model over all sequences along chromosome 21 66

(which is withdrawn from the training set) with a rolling window. This leads to a very 67

noisy output making the model an imprecise tool as depicted on Fig 2 by blue signal. 68

The model trained on the balanced data is applied over the full human chromosome 21 69

(with a total of 480 TSS). Fig 2 illustrates the predictions of the CNN model over a 70

typical region of 300 kbp containing 7 TSS. Although the predictions present higher 71

scores over TSS positions (peaks), they also present high predictions scores over many 72

non-TSS positions. This phenomenon makes it difficult for a predictive model to 73

differentiate between true and false TSS. Indeed, a predictive model trained on the 74

balanced data and applied on imbalanced data tends to misclassifying the majority 75

class. This is due to the fact that the reality is biased in training phase, since the CNN 76

model learns to attribute equal weights to the positive and the negative classes. This 77

leads to the emergence of many false positives in a context in which the ratio between 78

the positive and the negative class is very different. The model, facing extreme 79

imbalances in new examples such as chromosome 21, fails to generalize inductive rules 80

over the examples. The imbalances hinder learning process because of the difficultly to 81

make conjunctions over the high degree of features with limited examples [15]. Instead, 82

the model learns the inductive rules over the small examples leading to over-fitting, 83

hence the false positives issue. 84

In regards to address this issue and effectively learning from such dataset we propose 85

a heuristic approach. This approach consists in adding progressively more sparsity 86

(negative examples) into the balanced dataset to alleviating the importance of positive 87

class in training phase and allocating more weight to the negative class. We call such 88

datasets limited imbalanced datasets. This method, detailed in Materials and methods, 89

is expected to mitigate the impact of the extreme imbalanced data on learning process. 90

In order to denote the ratio between positive and negative training examples, we use the 91

Q∗ labeling where Q is the corresponding ratio. For instance, on Fig 2 the model 92

trained on the balanced data yielding to blue signal predictions is denoted by 1∗. 93

To set up a limited imbalanced dataset, first we take the same number of TSS 94

positions as in the balanced dataset, building the positive class. We then select 95

randomly for Q = 100 the non-TSS positions, building the negative class. We denote 96

the dataset thereby generated by 100*. Finally, we apply the CNN model on the dataset 97

100* and assess the efficiency of the trained model. As depicted on Fig 2 by a red signal, 98

the predictions for this model displays a much higher signal to noise ratio, with high 99

peaks over each of the 7 TSS (C21orf54, IFNAR2, IL10RB, IFNAR1, IFNGR2, 100

TMEM50B, DNAJC28) and a much weaker signal between these sites. Predicting TSS 101

using the 100* model is thus much efficient, generating no false positive signal. 102

PLOS 3/20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/330308doi: bioRxiv preprint

https://doi.org/10.1101/330308

Fig 1. Overview of the CNN model. Nucleotide sequences of size 299 bp long is one hot encoded forming a matrix of
shape 4× 299. The first convolutional layer performs the convolution operation on successive input matrices to recognize
relevant patterns. The next convolutional layers model the correlation among patterns in previous layers and form high-level
features. Max-pooling layers reduce the input patterns to a lower dimension resulting in less computational cost and promote
high-level features detection. Dropout layers discard randomly some outputs of previous layers to avoid over-fitting. Fully
connected layer deals with linear and non-linear combination of high-level features arising from the convolutional layers in
order to make the final decisions.

Investigating the effect of random selection of the negative 103

examples over predictions 104

Since the negative examples are randomly picked out of the genome, the performance of 105

the model in different regions of chromosome 21 could vary for different sets of training 106

examples. To investigate this variation, we setup 30 balanced datasets and train them 107

separately using CNN. We then apply the 30 models over human chromosome 21 to 108

study the fluctuation of predictions. The variation of 30 predictions is depicted in Fig3. 109

The maximum and minimum predictions for each genomic site are highlighted by black 110

and red colors, respectively. The other 28 predictions are colored in gray. The first 111

observation is that almost all predictions peak over the gene DIP2A. However, it is not 112

the case for the DIP2A-IT1 gene, which reflects the fact that trained models using 113

different training sets can yield different prediction scores even over the TSS positions. 114

Indeed, the significant gap between the minimum and maximum predictions 115

demonstrates the variability of prediction obtained with different balanced datasets. 116

While some of these predictions report weak scores others represent high scores. This 117

shows the model uncertainty when predicting new observations, i.e. chromosome 21. As 118

explained in the previous subsection, adding more negative examples to the training set 119

PLOS 4/20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/330308doi: bioRxiv preprint

https://doi.org/10.1101/330308

33180000 33480000

C21orf54
IFNAR2

IL10RB

IFNAR1 IFNGR2

TMEM50B

DNAJC28

DNAJC28RefSeq genes

0

100
GC

Positions on chromosome 21 w.r.t TSS

0.2

0.4

0.6

0.8
P
re

d
ic

ti
o
n
s
 s

c
o
re

s

100*

1*

Fig 2. Application of a neural network model trained to find TSS over a 300 kbp region of chromosome 21.
Prediction scores for 1* and 100* models, respectively in blue and red. The position of genes is indicated below. The GC
content is indicated as blue bars below the genes. Both models detect effectively seven TSS positions over a fragment of
chromosome 21, still the model 1* returns many false positives. Adding more negative examples into the balanced data using
the model 100* mitigates obviously the false positives while preserving the high scores over TSS.

gives the model a better chance to identify false positive when applied genome-wide. 120

46459000 46462400

DIP2A
DIP2A-IT1RefSeq genes

0

100
GC percent

Positions on chromosome 21 w.r.t. TSS for 30 balanced datasets

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

d
ic

ti
o
n
s
 c

o
re

s

Max

Min

All

Fig 3. Application of 30 deep convolutional neural network models trained to find TSS over a 3.2 kbp
region of chromosome 21. All the predictions are plotted in gray. At each site, the min and the max of the predictions are
indicated respectively in red and black.

PLOS 5/20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/330308doi: bioRxiv preprint

https://doi.org/10.1101/330308

Comparing 1* and 100* models over all TSS of chromosome 21 121

In the previous subsection, we showed that training the CNN with more negative 122

examples improves its performance for genome-wide prediction. We use the trained 123

model over the full chromosome 21 and present the results in a heat-map form. On Fig 124

5 (a) and (b) each horizontal line corresponds to the standard score of the predictions 125

computed over ±5000 bp of each TSS of chromosome 21 for the models 1* and 100*, 126

respectively. The central axis indicates the exact position of the TSS and positions 127

around the axis indicate the neighboring regions. While the model 1* Fig 5 (a) presents 128

a noisier signal around TSS positions, the model 100* Fig 5 (c) displays a higher signal 129

to noise ratio. Fig 5 (c) and (d) illustrate the standard score curves averaged over all 130

the TSS of chromosome 21 for the model 1* and 100*, respectively, allowing us to 131

quantify the average signal to noise ratio. We call the areas under the curves λ score. 132

This definition implies the fact that a larger λ score corresponds to a better signal to 133

noise ratio. In this particular case, we find a λ score of 5 and 10 for the 1* and 100* 134

model, respectively. We could vary the ratio between positive and negative examples 135

used for training from 10* to 100* and λ scores showed almost no variations (see Fig 4 136

(a) and (b)). 137

a. b.

1*
10*

20*
30*

50*
70*

100*
D
A

Datasets

0

5

10

�

Human

Fig 4. Standard score and λ values for different datasets. For the purpose of genome-wide annotation, the
robustness of a model cannot be determined only based on test set performance, since test set contains the same distribution
as training set along with much lower samples size. Therefore, a trained model could produce high performance applied on
test set but it might fail to fit new observations and to generalize the trend and inductive rules out of training set. To
investigate the performance of the model on the balanced data on the genome-wide scale, we apply the trained models on an
unseen part of the genome (excluded from training phase), i.e. chromosome 21 for human, chromosome X for mouse. In this
perspective, the costume metric λ is used to evaluate the quality of the models. (a) standard scores averaged over 5000 bp
flanking the TSS of chromosome 21 for the models 1*, 10*, 20*, 30*, 50*, 70*, 100* and DA. The limited imbalanced data
scores double up the balanced data score. While the limited imbalanced data scores variate slightly, the highest and the
lowest standard scores belong to models 100* and 1*, respectively. The area under the standard score curve λ follows the
same tendency. (b) The λ reaches at the maximum values for model 100*. It should be pointed out that, since the
performance of models 30* and 100* varies slightly, it is possible to use the 30* model instead of 100* to perform less costly
and less time-consuming experimentations.

In order to illustrate the prediction scores on given examples, we pick four 138

representatives TSS along the chromosome. The first arbitrary selected TSS 139

corresponds to the gene CXADR, shown in Fig 5 (e). While the prediction of model 1* 140

results in poor averaged standard scores over all positions, the averaged standard score 141

of model 100* strongly peak around the TSS positions and shows low variations over 142

non-TSS positions. Fig 5 (g) depicts the second selected TSS corresponding to a specific 143

gene KRTAP19-2. Fig 5. This gene is part of a cluster of similar genes belonging to the 144

family of Keratin Associated Proteins (highlighted by a yellow rectangle on Fig 5 (a) 145

PLOS 6/20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/330308doi: bioRxiv preprint

https://doi.org/10.1101/330308

and (c)). For this particular cluster, the predictions are poor for both 1* and 100*, 146

probably reflecting a specific TSS signature for these proteins. Another example of gene 147

cluster with a poor prediction score for TSS is the t-RNA cluster, highlighted in green. 148

Fig 5 (h) and (i) displays the predictions around the TSS of the SCAF4 and PCNT, 149

C21ORF58 genes, respectively. On these more typical TSS the 100* model shows a 150

higher signal to noise ratio than the 1*, as a consequence of this, TSS are faithfully 151

detected. 152

-0.5

0.5

1.5

2.5

3.5

-5000 5000

Predictions on chromosome 21 w.r.t. TSS

0

5

10

15

20

25

S
ta

n
d
a
rd

 s
c
o
re

100*

1*

SCAF4

31730000

-5000 5000

Predections on chromosome 21 w.r.t. TSS

0

5

10

15

20

25

S
ta

n
d
a
rd

 s
c
o
re

100*

1*

46323900

C21ORF58
PCNT

-5000 5000
Predictions on chromosome 21 w.r.t. TSS

0

5

10

15

20

25

S
ta

n
d
a
rd

 s
c
o
re

100*

1*

17513000

CXADR

-5000 5000

Predictions on chromosome 21 w.r.t. TSS

-1

0

1

2

3

S
ta

n
d
a
rd

 s
c
o
re

100*

1*

KRTAP19-2

30487400

0.2

0.6

1

1.4

1.8

2.2
1*

-5000 5000

Positions on chromosome 21 w.r.t. TSS

S
ta

n
d
a
rd

 s
c
o
re

0

1

2

3

4

5

6

S
ta

n
d
a
rd

 s
c
o
re

100*

Positions on chromosome 21 w.r.t. TSS

5000-5000

7

Human

e.

g.

h.

i.c. d.

0

0 0

Fig 5. Comparison of the models 1* and 100* predictions over chromosome 21. (a,b) Heat maps depict the
standard score of the prediction for respectively the 1* and 100* models flanking 5000 bp around each TSS of chromosome 21.
(c,d) Averaged standard score of the predictions over each TSS of chromosome 21. (e-j) Zoom on regions around selected TSS.
Genes are indicated at the bottom of each plot.

PLOS 7/20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/330308doi: bioRxiv preprint

https://doi.org/10.1101/330308

Learning TSS in a cross-species context: human and mouse 153

In order to demonstrate generalizability of the proposed method to predict effectively 154

TSS positions, we replicate our TSS analysis in mouse spices using the mm10 genome 155

assembly. The 1* and 100* models trained on mouse are applied over the mouse 156

chromosome X to assess the model performance, see Fig 6 (a), (d) and (g). Note that 157

the chromosome X is discarded from learning set. The averaged standard score reaches 158

maximum values of 2.8 and 7.5 respectively for the 1* and 100* models in quantitative 159

agreement to the model performance observed in human genome. 160

We then test the possibility for our method to assess TSS positions in one organism 161

when trained on a different albeit related organisms. We thus apply the mouse trained 162

model on human chromosome X and the human trained model on mouse chromosome X. 163

The two chromosomes carry homologous genes, the number of annotated TSS varies 164

with a total of 4,968 TSS in human and only 2,005 TSS in mouse. While the model 165

trained and applied on mouse shows a better signal to noise ratio, the same model 166

applied to human chromosome X still captures most of the TSS and gives a maximum 167

averaged standard score of 5.9 for the 100* model, see Fig 6 (b), (e) and (h). Similarly, 168

the models trained over human capture most of TSS on the mouse X chromosome 6 (c), 169

(f) and (i) and reaches a maximum averaged standard score of 6.8 for the 100* model. 170

In all cases, the signal to noise ratio is improved in the models 100*. 171

All results for the cross-species comparison on chromosome X are summed up in Fig 172

7. Overall, the scores show comparable results for both 1* and 100* models when 173

trained over human and applied on human chromosome 21 (H-H), trained over mouse 174

and applied on mouse chromosome X (M-M), trained over mouse and applied on human 175

chromosome X (M-H) and trained over human and applied on mouse chromosome X 176

(H-M). The human model applied on human provides the highest scores for both 1* and 177

100* models, possibly due to the fact that the TSS annotation is more complete. 178

Conventional measures for model performance assessment do 179

not reflect their genome-wide quality 180

We next investigate the scores obtained for Q∗ models (with Q = 1, 10, 20, 30, 50, 70, 181

100) as well as a data augmentation strategy (DA, see Materials and methods) using 182

conventional metrics as explained in Performance measures. To evaluate the 183

performance of the models trained by supervised learning techniques, they are applied 184

over test sets. Conventionally, these sets are pulled out of the learning examples in a 185

random manner. As reported in Fig 8, the CNN model applied on the balanced data 186

(1*) yields the best performance on such a test set regarding Receiver Operating 187

Characteristic curve (ROC) and precision/recall curve (PR) with respect to other Q∗ 188

models. In the balanced data case, the ROC curves ascent much faster towards to 189

top-left corner comparing to the limited imbalanced datasets (Q∗) suggesting the model 190

can achieve relatively high true positive rate at relatively low false positive rate. The 191

results also suggest the superiority of the model applied on the balanced data. Counter 192

intuitively, the model which gives the best scores on a conventional test set yields the 193

poorest predictions when used genome-wide. Both metrics indicate the highest score for 194

DA model and the lowest for the genome model. All 299 bp no-overlapping windows 195

that do not contain a TSS are taken as negative examples. Although, the DA 196

outperforms the other models scores, its performance is biased by the fact that similar 197

sequences, albeit with different offsets with respect to the TSS positions, are found in 198

both training and test sets. Once again, the model giving the best scores on a 199

conventional test set yields the poorest predictions when used on the genome-wide scale. 200

Following this observation, we verify whether this holds also for other metrics 201

commonly used to evaluate the performance of the CNN models over test sets. Fig 9 (a) 202

PLOS 8/20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/330308doi: bioRxiv preprint

https://doi.org/10.1101/330308

Fig 6. Overview of human and mouse models performances over the chromosome X. (a) and (c) Heat maps
depict the standard score of the predictions for respectively the 1* model trained on mouse and applied on mouse (a), human
(b) and for the 1* model trained on human and applied on mouse (c). (e) and (g) Similar to (a) and (c) with the 100* model.
(h) and (j) Averaged standard score of the predictions over of the heat maps over all TSS, for the models 1* and 100* similar
to (a) and (c).

recapitulates the results presented in Fig 8. The Area Under Precision/Recall Curve 203

PLOS 9/20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/330308doi: bioRxiv preprint

https://doi.org/10.1101/330308

1*
10
0*

Datasets

0

5

10

λ

H-H

M-M

H-M M-H

Fig 7. Cross-species comparison of λ scores for the models 1* and 100* for
human and mouse-trained models applied on human and mouse
chromosome X. The model 100* returns higher scores for all experiments comparing
to model 1*. The highest score is provided by model 100* (H-H) and the lowest one by
model 1* (H-M).

0.0 0.2 0.4 0.6 0.8 1.0

False Posit ive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
r
u

e
 P

o
s
it

iv
e

 R
a

t
e

ROC curve - Hum an 1*

10*

20*

30*

50*

70*

100*

DA

Genom e

a.

Fig 8. Results on ROC and PR obtained over test sets. The model 1* represents the balanced data. The model
applied over augmented data (DA) reports the highest score on both metrics while the model applied over genome wide shows
the lowest scores.

(AUPRC) reveals an uppermost score for the balanced dataset but it deteriorates across 204

the limited imbalanced datasets. The Area Under an ROC Curve (AUROC) on the 205

other hand presents stationary scores across all models. Given that there are many 206

more true negatives than true positives within imbalanced datasets, PR is considered as 207

a trustworthy measure because it does not take into account the true negatives. Indeed, 208

AUPRC curve is misleading when applied to strongly imbalanced datasets, because the 209

false positive rate (FP/total real negatives) does not decrease drastically when the total 210

real negatives is huge. Whereas AUPRC is highly sensitive to FP, it is not impacted by 211

a large total real negative denominator. In Fig 9 (b), F1-score reports a weighted 212

average between precision and recall per class. While, the F1-score enhances for 213

non-TSS class across the datasets an opposite trend is observed for TSS class. This 214

signifies the more negative samples are introduced in the datasets, the more the model 215

has the difficulty to return efficient predictions for TSS class. We observe the same 216

trend where two classes are combined. Fig 9 (c) shows the scores for binary cross 217

entropy (equation 2), MCC (equation 5) and accuracy measures for all models. Binary 218

PLOS 10/20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/330308doi: bioRxiv preprint

https://doi.org/10.1101/330308

Cross Entropy is the loss function computed by back-propagation algorithm during 219

training process. Cross entropy loss decreases as the predicted probability converges to 220

the ground truth data. Cross entropy penalizes both false positive and false negative. 221

However, it especially penalizes those false predications having a high confident score. A 222

perfect model would have a 0 log loss. As shown in Fig 2 the balanced data produces 223

plenty of false positives which are penalized by cross entropy. This justifies the high 224

value of the metric regarding the balanced data. Adding up more negative examples 225

into the balanced dataset reduces the cross entropy score across the limited imbalanced 226

datasets. Regarding the accuracy scores, they reach their maximum when it comes to 227

the limited imbalanced datasets. In the imbalanced data scenario, accuracy is not any 228

more a reliable measure. As a matter of fact, machine learning algorithms are usually 229

designed to improve accuracy by reducing the error. Thus, facing imbalanced datasets, 230

they produce inadequate predictions, since they do not consider the class distribution. 231

This leads to achieving high overall accuracy, while it only reflects the accuracy of the 232

majority class. The issue with accuracy arises from a deeper problem. De facto, 233

accuracy assigns equal intensity to all errors in classification. In the context of a 234

predictive model, it fails to be sensitive to the probabilistic nature of classification by 235

measuring hard class assignments trueness while learnings from data are probabilistic. 236

Discussion 237

With the thriving DNA sequencing technologies, billiards of sequences are generated 238

everyday. It has not escape the notice of many computational biologists that deep 239

neural networks will be a key tool to harvest the fruits from this gigantic and still 240

increasing amount of data. One of the practical issues when applying deep CNN on 241

genomic sequences is the imbalanced data, a well-known issue in the machine learning 242

literature [16], [17], [15]. In the present paper, we address this problem using human 243

TSS as a case study. Indeed, the TSS occupy only a few locations on the genome 244

(31,037 TSS for human), which leads to extreme imbalances in dataset (∼ 10−5 is the 245

ratio of TSS-containing 299 bp windows to non-TSS in the human genome). This issue 246

is usually referred to as a rare events or rare samples. Imbalance due to rare samples is 247

representative of domains where minority class samples are very limited. In this 248

scenario, the lack of representative data deteriorates learning process as predictive 249

models using conventional machine learning algorithms do not accurately measure model 250

performance and could be biased and inaccurate. To deal with this disparity we adopt a 251

sub-sampling strategy to decrease the frequency of the majority class samples (non-TSS) 252

improving thereby identification of the rare minority class samples (TSS). We show that 253

this method achieves very good performance for CNN models in predicting TSS and 254

non-TSS sequences genome-wide. It does not require knowledge of any specific TSS 255

features. Since the convolution filters are able to automatically capture sequence motifs 256

and other significant characteristics of biological and genomic sequences, this approach 257

can be easily extended to identify other functional regions in any annotated genomes. 258

We also show that our method can be efficiently used trans-genome-wide, that is 259

training the model in one genome and applying it to other genomes. We used mouse 260

and human TSS as case study and apply both models on chromosome X of each 261

organism. While the sequence of this chromosome has evolved differently in both 262

species, many genes are homologous. The fact that we can recover TSS in mouse/human 263

with a model trained in the other organism suggest that the machinery able to recognize 264

TSS in both organism is largely conserved. While genome sequence conservation can be 265

computed directly from DNA sequences, our method provides a new tool to address the 266

conservation of the whole nuclear machinery that interprets the sequences. We expect 267

that such a tool will be used more and more in the future both by evolutionary biologists 268

PLOS 11/20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/330308doi: bioRxiv preprint

https://doi.org/10.1101/330308

1*
10*

20*
30*

50*
70*

100*
DA

Datasets

0.0

0.5

1.0

S
c
o

re
s

Entropy MCC Accuracy

1*
10*

20*
30*

50*
70*

100*
DA

Datasets

0.0

0.5

1.0

F
1

 s
c
o

re

non-TSS TSS All

1*
10*

20*
30*

50*
70*

100*
DA

Datasets

0.0

0.5

1.0

S
c
o

re
s

AUPRC AUROC

a.

b.

c.

Fig 9. Results on different metrics for evaluating the performance of CNN
model applied over Q∗ models. The results reports the performance of the models
over test sets. (a) AUPRC is Area Under Precision-Recall Curve and AUROC is Area
Under an ROC Curve. (b) F1-score reports a weighted average between precision and
recall per class (TSS and non-TSS). (c) Variation of binary cross entropy, MCC and
accuracy measures for all Q∗ models.

and by molecular biologists interested in the evolution of chromatin metabolism. 269

Materials and methods 270

Input Generation 271

We collect TSS positions from the reference genomes for human (hg38) and mouse 272

(mm10) species. Genome sequences are downloaded at 273

http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/ and 274

http://hgdownload.soe.ucsc.edu/goldenPath/mm10/bigZips/, respectively. TSS 275

PLOS 12/20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/330308doi: bioRxiv preprint

https://doi.org/10.1101/330308

positions over the entire human and mouse genomes are downloaded at 276

http://epigenomegateway.wustl.edu/browser/ and 277

http://egg.wustl.edu/d/mm10/refGene.gz, respectively. 278

The input generation consists of two strategies: we first generate balanced and 279

imbalanced datasets; we then apply a data augmentation strategy to increase the 280

examples size. 281

Generating balanced and imbalanced datasets 282

We use as positive input sequences regions of 299 bp flanking TSS, i.e. ±149 bp around 283

the TSS, which are supposed to contain multiple sequence signals indicating the 284

presence of a TSS to the transcription machinery of the cell. Overall, 31,037 TSS 285

positions are extracted on both DNA strands, eventually generating the complementary 286

sequence of the human genome (15,798 for positive strand and 15,239 for negative 287

strand). In a similar fashion, we extract 25,698 TSS positions out of the mouse genome 288

(12,938 for positive strand and 12,760 for negative strand). In order to generate the 289

negative class, we perform a sub-sampling strategy on both genomes to set up a 290

balanced dataset. To do this, we select Q× 31, 037 random positions 299 bp long 291

regions flanking those random selected positions, insuring that the regions do not 292

contain a TSS. For Q = 1, this strategy avoids the problem of imbalanced data, since it 293

equalizes the ratio of negative class examples (non-TSS positions) to positive class (TSS 294

positions). To introduce more negative examples into balanced dataset, we use different 295

values of Q ranging from 1 to 100. 296

Data augmentation 297

A constraint of deep neural networks is the need of a large amount of training examples. 298

In our balanced dataset, we only dispose of 62,074 (for human) and 51,396 (for mouse) 299

training examples for both negative and positive classes. The limited samples size leads 300

to over-fitting issues as the model learns only the restrictive rules and becomes too 301

specific. In order to address this issue, we also opt for a data augmentation strategy to 302

increase the training set volume. We slide a window of size 299 bo along the genome 303

with stride 1 bp around the TSS positions, and take every sequence overlapping with 304

the original one to obtain augmented sequences. We also augmented the number of 305

examples from non-TSS regions using the same strategy, i.e. 1 bp sliding around 306

positions randomly chosen in the genome. The number of training examples increases 307

from 62,074 to about 2 million examples. The same as sub-sampling strategy, the 308

augmented sequences from TSS regions are labeled as positive, and those from non-TSS 309

regions are labeled as negative. For the sake of brevity, in our study the data 310

augmentation is realized only in human. 311

Convolution Neural Network (CNN) 312

A deep convolutional neural network typically has an input shape as a tensor with 313

dimension of c× b× l. We have implemented a CNN to implement a prediction model 314

capable of predicting the presence of a TSS out of a DNA sequences of size 299 bp. In 315

our model architecture, summarized in Fig 1, the input can be thought of as a tensor 316

where c is the array size for a single nucleotide, b is the length of the input sequence and 317

l is the depth of the tensor. The nucleotide sequences are one hot encoded forming 4 318

channels as A (1,0,0,0), T (0,1,0,0), G (0,0,1,0), and C (0,0,0,1). Thus, the value of c is 319

equal to 4 and the input sequences b are of length of 299 bins with a depth l equals to 1. 320

A single DNA sequence example is of shape (4×299×1) in training set. The training set 321

contains N samples of labeled-pair of form (X(n), y(n)), for n ∈ {1, · · · , N}, where X(n)
322

PLOS 13/20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/330308doi: bioRxiv preprint

https://doi.org/10.1101/330308

are matrices of size c(= 4)× b(= 299) and y(n) ∈ {0, 1}. Each sample in the matrices 323

X(n) is labeled by y(n) = 1 when it corresponds to TSS position and y(n) = 0 otherwise. 324

The convolutional layers carry out a series of sliding windows operation (convolution) 325

using k kernels each of size s to scan motifs all over positions p. The first layer kernels 326

perform convolution on s successive input sequences positions p ∈ {1, · · · , (b− s+ 1)} 327

to recognize relevant patterns (motifs) and updating themselves during the training 328

phase. The next convolutional layers scan low-level features in the previous layers in 329

order to model high-level features. This filtering operation generates an output feature 330

map of size k × (b− s+ 1). For an input sample X of size c× b. The feature map 331

M = fconv(X) resulting from the convolution operation is computed as follows: 332

Mp,i =
c∑
j

s∑
r=1

Wi,j,rXp+r−1,j + Bi, i ∈ {1, · · · , k} (1)

where W denotes the weights with size (k × c× s), which are updated via a 333

back-propagation process so that the loss decreases and B denotes the bias with size 334

(k × 1). This step is followed by applying a non-linear function, here a Rectified Linear 335

Unit (ReLU). This activation function computes fReLU (M) = max(0,M) to 336

incorporate nonlinearity by transforming all negative values to zero. In order to reduce 337

the input dimensionality and provide an abstract form of the representation, we apply 338

max-pooling process with pool size m over the output of fReLU (M). Max-pooling 339

reduces the input parameters to a lower dimension and provides basic translation 340

invariance to the inner representation resulting in less computational cost and promotes 341

high-level patterns detection. Using fewer parameters avoids also over-fitting. In our 342

model, max-pooling layer reduces a large region into a smaller representation by taking 343

the maximum values of the range in pooling size. We apply a max-pooling layer 344

fmaxpool(M) over an input M of size k × (b− s+ 1). One of the important issues of 345

any learning algorithm is over-fitting. In order to deal with this issue we use a 346

regularization parameter, called dropout. In training step, to avoid over-fitting some 347

outputs of previous layer are randomly discarded and then remaining information are 348

fed as the inputs to the next layer. 349

The final step is using a fully connected layer to learn a model to map DNA 350

sequences X(n) onto TSS positions y(n). While convolutional layers learn high-level 351

features, the fully connected layer deals with linear and non-linear combinations of 352

high-level features arising from the convolutional layers in order to make the final 353

decision. Indeed, the output of the previous layer determines which features correlate 354

the most to a particular class. In order to learn all hidden features, our network has 355

several hidden layers and the last layer is the output layer, which through a sigmoid 356

function (φ = 1
1+e−x) generates the class scores for all input sequences. The 357

optimization function in a supervised learning problem attempts to minimize a loss 358

function during training phase by measuring the compatibility between a prediction and 359

the ground truth label. The loss function computes an average over the losses for every 360

individual sample. The loss function calculates the gap between the predicted output 361

and the ground truth. We use binary Cross Entropy (log loss), which is commonly-used 362

to measures the performance of a classification model whose output is a probability 363

value between 0 and 1. It is computed as: 364

L = −1/N
N∑
i=1

[y(n)log(ŷ(n)) + (1− y(n))× log(1− ŷ(n))] (2)

where ŷ(n) is the estimated scores for the input samples X(n). To minimize L 365

gradient descent via a back-propagation process updates all learning parameters of the 366

model Θ, in the opposite direction: 367

PLOS 14/20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/330308doi: bioRxiv preprint

https://doi.org/10.1101/330308

∇Θ = −γ δL
δΘ

(3)

where γ stands for the learning rate, which determines the size of the steps to reach 368

a local minimum. 369

Hyperparameter tuning 370

We implement CNN using Keras library and Tensorflow [18] as back-end. For a faster 371

training a GTX 1070 Ti GPU is used. We use Adaptive Moment Estimation 372

(Adam) [19] to compute adaptive learning rates for each parameter. Adam optimizer is 373

an algorithm for first-order gradient-based optimization of stochastic objective 374

functions, based on adaptive estimates of lower-order moments. Our CNN architecture 375

(see Fig1) consists of three convolutional layers of size 32, 64 and 128 kernels each of 376

shape (4× 4) with sliding step 1. The output from convolutional is entered into a 377

max-pooling layer with pooling size (1× 2). After each max-pooling layer a ReLU layer 378

is used following by a dropout with a ratio of 0.2. Finally, the output of the last pooling 379

layer is flattened to 1D via a Flatten layer and passed through a fully connected (Dense) 380

layer with 128 neurons. The output layer contains a single neuron. It uses a sigmoid 381

activation function to make predictions by producing a probability output of being TSS 382

or non-TSS. The models are trained for 150 epochs and they mostly converge early 383

(around 30-35 epochs). This step is a k-fold cross validation, which helps tuning 384

parameters. The network architecture is detailed in Table 1. For training a CNN model

Table 1. Network architecture of the CNN model.

Layer name Layer shape Output shape

Input - 4× 299× 1
Conv2D 32× 4× (4× 4) 32× 284× 1
Max-pooling 1× 2 32× 142× 1
Dropout - 32× 142× 1
Conv2D 64× 32× (4× 4) 64× 127× 1
Max-pooling 1× 2 64× 63× 1
Dropout - 64× 63× 1
Conv2D 128× 64× (4× 4) 128× 48× 1
Max-pooling 1× 2 128× 24× 1
Dropout - 128× 24× 1
Dense 128 128
Dropout - 128
Dense (sigmoid) 1 1

The first column depicts the different layers used consecutively in the network. The
layer shape column reports shape of the convolutional kernels, the max-pooling windows
and the fully connected layers. The output shape column represents the variation of
layers shape at each step.

385

on the balanced dataset, the sample sets of total 62,074 (for human) and 51,396 (for 386

mouse) are divided into 3 separate sets of training (70%), test (15%) and validation 387

(15%) sets. The training set is used to find the optimal weights using the 388

back-propagation algorithm by pairing the input with expected output. The validation 389

set helps to tune the hyperparameters and provides information about how well the 390

model has been trained. It returns the model performance scores for each epoch and 391

helps to find the optimum number of hidden units or determine a stopping point for the 392

PLOS 15/20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/330308doi: bioRxiv preprint

https://doi.org/10.1101/330308

back-propagation algorithm to avoid over-fitting. The test set helps to assess the quality 393

of the fully-trained model over unseen samples. As here we are facing the imbalanced 394

data issue, during the training phase the model may reach at a local optimum 395

predicting always non-TSS and making it hard to further improve the model. In order 396

to deal with this issue, the model has to make a trade-off between precision and recall of 397

the predictions during the training phase. In other words, both TSS and non-TSS 398

classes must be regarded as equally important. To incorporate this trade-off into the 399

training process of the imbalanced datasets, the samples belonging to both classes have 400

to contribute to the loss with different weight distribution. This can be achieved by 401

assigning more importance to TSS class by multiplying its samples by a CW weight: 402

CW = w × number of non-TSS

number of TSS
, w ∈ [0, 1] (4)

when w = 1 more importance is attributed to recall, when w = 0 more importance is 403

attributed to precision and when w = 0.5 both classes are regarded as equally 404

important. We take here a value of w = 0.5. 405

To investigate the impact of different architectures of our CNN model on the 406

network performance quality, we tune some hyperparameters. The different 407

architectures permit to explore the effect of the kernel size s, to study the influence of 408

the pool size m or to explore the impact of the network depth over validation set 409

reliability. Table 2 displays the impact of varying s, m and network depth on validation 410

set across the balanced data with regard to accuracy score. As reported in the table, 411

performance of different architectures did not vary significantly from each other. 412

However, the architecture related to the highest accuracy score is selected as 413

hyperparameters of our final CNN model, see Table 1. 414

Table 2. Results on hyperparameters tuning.

Kernel size Pool size Depth Accuracy

(4x4, 4x4, 4x4) (1x2, 1x2, 1x2) 3 0.829
(3x4, 4x4, 2x4) (2x2, 2x2, 2x2) 3 0.807
(2x4, 3x4, 4x4,4 x4) (1x2, 1x3, 1x2, 1x2) 4 0.791
(1x4, 1x4, 1x4, 1x4) (1x2, 1x2, 1x2, 1x2) 4 0.812
(3x4, 4x4, 2x4, 4x4, 4x4) (2x2, 1x2, 1x2, 2x2, 1x2) 5 0.802
(2x4, 2x3, 2X4, 1x4, 4x4) (1x2, 1x2, 1x2, 1x2, 1x2) 5 0.785

The impact of different combinations of kernel size s, pool size m and network depth on
accuracy score over validation set of the balanced data. The first column represents
different kernel sizes for 3 convolutional layers. The second column shows different pool
sizes used after each convolutional layer. The third column corresponds to the depth of
the network. s is capable of recognizing relevant patterns within local neighborhood and
m reduces input patterns to a lower dimension by combining important representations
within the region. The first row values representing the highest accuracy score are
selected as hyperparameters of our CNN model.

Performance measures 415

Several conventional measures are used to evaluate the performance of the CNN models. 416

Our predictive models can be thought of a binary classifier by assigning a decisive 417

threshold over their probabilistic outputs. Traditional measures for binary classification 418

task are precision, recall, F1-score and accuracy. We define true positives (TP) as 419

correctly predicted TSS, false positives (FP) as TSS wrongly classified as non-TSS, false 420

PLOS 16/20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/330308doi: bioRxiv preprint

https://doi.org/10.1101/330308

negative (FN) as non-TSS wrongly classified as TSS and true negative (TN) as TSS 421

wrongly classified as non-TSS. 422

Precision is the ratio of correctly predicted TSS to the total predicted positive 423

observations: Pr = TP
TP+FP . Thus, the high precision relates to the low false positive 424

rate. Recall (or sensitivity) is the ratio of correctly predicted TSS to the all 425

observations in positive class: Re = TP
TP+FN . 426

F1-score is the weighted average of precision and recall, which takes equally both 427

false positives and false negatives into account: F1-score = 2× Re×Pr)
(Re+Pr) . Accuracy is the 428

most intuitive performance measure and it is defined by a ratio of correctly predicted 429

observations (true positives and true negatives) to the total positive and negative 430

observations: Accuracy = TP+TN
TP+FP+FN+TN . However, accuracy is not a reliable measure 431

to assess model performance for datasets with inequivalent distributed classes such as 432

the unequal proportion of TSS and non-TSS samples. F1-score measure is usually more 433

adequate than accuracy in uneven class distribution. Matthews Correlation Coefficient 434

(MCC) is widely used in Bioinformatics as a performance metric. According to [20] 435

MCC is more reliable than the other measures for imbalanced data. This measure takes 436

into account the imbalance in the classes (in binary classification) and is defined as 437

follows: 438

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5)

The MCC is a correlation coefficient value between −1 and +1, where a coefficient 439

of +1 signifies an ideal prediction, −1 an inverse prediction and 0 an average random 440

prediction. 441

All aforementioned measures assess the performance of the model applied on the test 442

sets. On the one hand, they are no longer state of the art measures to evaluate the 443

performance of the trained models when applied over new imbalanced inputs such as on 444

the genome-wide sequence. This is due to the fact that the predictive models tend to be 445

biased towards the majority class and hence perform poorly on the minority class. Thus, 446

predictive models using conventional machine learning algorithms do not accurately 447

measure model performance and could be biased and inaccurate. On the other hand, 448

having a high performance on test set does not imply the generability of a model, since 449

test set is only a subset of learning set and it may not be representative of a much 450

larger data (e.g. whole genome or a full chromosome) with different properties and data 451

distribution (see Fig 4 for more details). Thus, we have to use an adequate metric to 452

assess how the trained models generalize over the unseen chromosomes, i.e. 453

chromosomes 21 for human and chromosomes X for mouse. 454

We therefore define a custom metric called λ. To compute λ, we first compute the 455

genome-wide standard score Z from the predictions Xi: 456

Z =
Xi − µ̄
σ

, i ∈ {1, · · · , N} (6)

where µ̄ and σ stand for the predictions mean and standard deviation, respectively. 457

Xi represents all predictions scores. We denote w as all windows selected over Z scores 458

within 10 kbp regions flanking each TSS position. We then compute Sv the average of 459

Z over w (see ig 4 (a)): 460

Sv =
1

||w||
∑
α∈w
Zv(α) (7)

where v ∈ [−5000,+5000] are the positions within each window and Zv(α) is the 461

standard score for a given window α at position v. We define the area under the curve 462

PLOS 17/20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/330308doi: bioRxiv preprint

https://doi.org/10.1101/330308

Sv on a region of r = 600 bp centered over the TSS as λ: 463

λ =
1

r

+r/2∑
v=−r/2

Sv (8)

A higher value of λ corresponds to a higher signal to noise ratio around TSS regions. 464

Supporting information 465

S1 Fig. The performance of the CNN models for test sets applied 466

separately over 30 balanced datasets. 467

0 7 14 21 29
30 balanced datasets

0.0

0.5

1.0
S
co

re
s

Entropy MCC Accuracy

We generate up to 30 random balanced datasets from non-TSS regions and use the 468

1* model to separately train them. The metrics express almost no variation throughout 469

the 30 models scores for test sets. 470

S2 Fig. The variation of MCC scores for training and validation sets 471

within training phase. 472

1*
10*

20*
30*

50*
70*

100* DA

Datasets

0.3

0.6

0.9

M
C
C

Train Validat ion

In regards to the MCC, the test sets scores decreasing through the datasets. The 473

same trend is observed in training and validation sets scores. The MCC metric takes 474

into account the unequal distribution of classes within the datasets. 475

PLOS 18/20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/330308doi: bioRxiv preprint

https://doi.org/10.1101/330308

Acknowledgments 476

We would like to thank Léopold Carron for helping us with datasets. This research was 477

supported by funding from the Agence Nationale pour la Recherche (HiResBac 478

ANR-15-CE11-0023-03 to J.M.). 479

Author Contributions 480

GK and JM conceived and designed the methodology. GK performed the experiments. 481

GK and ER analyzed the data. GK wrote the paper. JM revised the manuscript. 482

References 483

1. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. 484

2. DeepLearning Biology;. 485

https://github.com/hussius/deeplearning-biology. 486

3. Ching T, Himmelstein DS, Beaulieu-Jones BK, Kalinin AA, Do BT, Way GP, 487

et al. Opportunities and obstacles for deep learning in biology and medicine. 488

bioRxiv. 2018; p. 142760. 489

4. Min X, Chen N, Chen T, Jiang R. DeepEnhancer: Predicting enhancers by 490

convolutional neural networks. In: Bioinformatics and Biomedicine (BIBM), 2016 491

IEEE International Conference on. IEEE; 2016. p. 637–644. 492

5. Umarov RK, Solovyev VV. Recognition of prokaryotic and eukaryotic promoters 493

using convolutional deep learning neural networks. PloS one. 2017;12(2):e0171410. 494

6. Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence 495

specificities of DNA-and RNA-binding proteins by deep learning. Nature 496

biotechnology. 2015;33(8):831. 497

7. Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep 498

learning–based sequence model. Nature methods. 2015;12(10):931. 499

8. Kelley DR, Snoek J, Rinn JL. Basset: learning the regulatory code of the 500

accessible genome with deep convolutional neural networks. Genome research. 501

2016;26(7):990–999. 502

9. Lee D, Karchin R, Beer MA. Discriminative prediction of mammalian enhancers 503

from DNA sequence. Genome research. 2011;21(12):2167–2180. 504

10. Ghandi M, Lee D, Mohammad-Noori M, Beer MA. Enhanced regulatory 505

sequence prediction using gapped k-mer features. PLoS computational biology. 506

2014;10(7):e1003711. 507

11. Leung MK, Xiong HY, Lee LJ, Frey BJ. Deep learning of the tissue-regulated 508

splicing code. Bioinformatics. 2014;30(12):i121–i129. 509

12. Picardi E, Pesole G. Computational methods for ab initio and comparative gene 510

finding. In: Data mining techniques for the life sciences. Springer; 2010. p. 511

269–284. 512

13. McHardy AC. Finding genes in genome sequence. In: Bioinformatics. Springer; 513

2008. p. 163–177. 514

PLOS 19/20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/330308doi: bioRxiv preprint

https://github.com/hussius/deeplearning-biology
https://doi.org/10.1101/330308

14. Sonnenburg S, Zien A, Rätsch G. ARTS: accurate recognition of transcription 515

starts in human. Bioinformatics. 2006;22(14):e472–e480. 516

15. He H, Garcia EA. Learning from imbalanced data. IEEE Transactions on 517

knowledge and data engineering. 2009;21(9):1263–1284. 518

16. Chawla NV, Japkowicz N, Kotcz A. Special issue on learning from imbalanced 519

data sets. ACM Sigkdd Explorations Newsletter. 2004;6(1):1–6. 520

17. Batista GE, Prati RC, Monard MC. A study of the behavior of several methods 521

for balancing machine learning training data. ACM SIGKDD explorations 522

newsletter. 2004;6(1):20–29. 523

18. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al.. TensorFlow: 524

Large-Scale Machine Learning on Heterogeneous Systems; 2015. Available from: 525

https://www.tensorflow.org/. 526

19. Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv preprint 527

arXiv:14126980. 2014;. 528

20. Boughorbel S, Jarray F, El-Anbari M. Optimal classifier for imbalanced data 529

using Matthews Correlation Coefficient metric. PloS one. 2017;12(6):e0177678. 530

PLOS 20/20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/330308doi: bioRxiv preprint

https://www.tensorflow.org/
https://doi.org/10.1101/330308

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/330308doi: bioRxiv preprint

https://doi.org/10.1101/330308

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/330308doi: bioRxiv preprint

https://doi.org/10.1101/330308

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/330308doi: bioRxiv preprint

https://doi.org/10.1101/330308

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/330308doi: bioRxiv preprint

https://doi.org/10.1101/330308

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/330308doi: bioRxiv preprint

https://doi.org/10.1101/330308

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/330308doi: bioRxiv preprint

https://doi.org/10.1101/330308

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/330308doi: bioRxiv preprint

https://doi.org/10.1101/330308

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/330308doi: bioRxiv preprint

https://doi.org/10.1101/330308

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/330308doi: bioRxiv preprint

https://doi.org/10.1101/330308

0 7 14 21 29
30 balanced datasets

0.0

0.5

1.0
S
co

re
s

Entropy MCC Accuracy

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/330308doi: bioRxiv preprint

https://doi.org/10.1101/330308

1*
10*

20*
30*

50*
70*

100* DA

Datasets

0.3

0.6

0.9
M

C
C
Train Validat ion

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/330308doi: bioRxiv preprint

https://doi.org/10.1101/330308

