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Abstract 
Objective: This study aims at identifying master regulators of transcriptional networks in autism spectrum 

disorders (ASDs). 

Results: With two sets of independent RNA-Seq data generated on cerebellum from patients with ASDs and 

control subjects (N=39 and 45 for set 1, N=24 and 38 for set 2, respectively), we carried out a network 

deconvolution of transcriptomic data, followed by virtual protein activity analysis.  We identified PPP1R3F 

(Protein Phosphatase 1 Regulatory Subunit 3F) as a master regulator affecting a large body of downstream 

genes that are associated with the disease phenotype. Pathway enrichment analysis on the identified 

targets of PPP1R3F in both datasets indicated alteration of endocytosis pathway. This exploratory analysis 

is limited by sample size, but it illustrates a successful application of network deconvolution approaches in 

the analysis of brain gene expression data and generates a hypotheses that may be further validated by 

large-scale studies in the future. 

Keywords: Autism Spectrum Disorders; RNA-Seq; Next Generation Sequencing; Network Deconvolution; 

Gene Expression. 

 

Introduction 
Autism Spectrum Disorders (ASD) comprise a set of highly inheritable neurodevelopmental conditions 

characterized by impairments in social communication, repetitive behaviors and restricted interests [1, 2]. 

ASDs are estimated to affect 1 in 68 children in the United States, and boys are 4.5 times more likely than 

girls to develop ASDs [3]. Several studies showed that the heritability of autistic phenotypes is estimated to 

be around 90% [4, 5]. The number of genes potentially implicated in ASDs is rapidly growing, mainly from 

large-scale genetic studies such as next generation sequencing (NGS) [6-10] and genome wide association 

studies (GWAS) [11-13]. Although these genetic studies have substantially advanced our understanding of 

the etiology of ASDs, the underlying  molecular mechanisms remain elusive [14]. Transcriptome analysis is 

gaining momentum as a complementary approach to genetic association studies [14], and can help us 

understand the molecular pathophysiology of ASDs in a more systematic and mechanistic manner. 

A number of studies have been conducted to evaluate whole-genome gene expression that may 

contribute to the onset of ASD. In a large-scale RNA-Seq effort, matched brain regions from subjects affected 

with ASDs and controls were utilized to identify neuronal genes which are strongly dysregulated in cortical 

regions [14]. It was noted that a module of expressed genes in microglia was negatively correlated with a 

module of differentially expressed neuronal genes, implicating correspondence of dysregulated microglial 

responses with activity-dependent genes in autism brains [14]. Utilizing microarray technology, Voineagu et 

al. [15] demonstrated consistent differences in transcriptome organization between autistic/normal human 

brain tissues using gene co-expression network analysis. In their study, they report consistent differences in 

regional patterns of gene expression in several brain regions such as frontal cortex, suggesting abnormalities 

in cortical patterning [15]. However, besides extracting co-expressed gene modules, they did not investigate 

potential molecular drivers of such expression patterns. Despite applications of co-expression network 

approaches in the inference of regulatory machinery in ASD [16], state-of-the-art network approaches such 

as information-theory based methods and network deconvolution methods are barely adopted in this area. 

Network deconvolution methods have shown great merits in a wide range of disease or mechanistic studies 

such as prostate differentiation [17] and cancers [18]. These methods can overcome limitations of other 

network-based methods such as: connecting genes having indirect interactions leaving their mutual causal 

effects aside, overfitting when dealing with small number of samples, suffering from the curse of 

dimensionality, and not being able to reverse-engineer the mammalian genome-wide cellular networks [19]. 

Using available gene expression data, these methods can provide deep biological insights into the underlying 

transcription circuitry of diseases and illustrate molecular connections and potential regulation drivers at a 

systems level. As an example, with transcriptional network deconvolution approach, we have recently 

provided novel insights on Post-Traumatic Stress Disorder (PTSD) [20] by identifying several genes as drivers 

of innate immune function. In the current study, we used ARACNe (Algorithm for Reconstruction of Accurate 

Cellular Networks) [21] as a versatile tool to deconvolute cellular networks. In this approach, first gene-gene 

co-regulatory patterns are identified using the information theoretic measure of mutual information. Next, 

the constructed networks are pruned by removing indirect connections where two genes are co-regulated 

through one or more intermediaries. This allows us to keep connections bearing significantly high 
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probabilities of representing direct interactions or mediated interactions through post-transcriptional 

regulation. The constructed networks were then used to infer the activity degrees of the hub genes within 

the network. 

In this study, using two of the largest transcriptomic datasets of postmortem brain tissues from ASD 

individuals and control subjects by Parikshak et al [16] and Gupta et al [14], we reconstructed the 

transcriptional networks followed by virtual protein activity analysis, to identify “master regulators” (MRs) 

that may differentially regulate the expression levels of multiple downstream genes in the cerebellum region 

of ASD patients and controls.  

Main Text 

Methods 

In this study, after constructing the transcriptional networks, we have used a probabilistic algorithm 

called VIPER (Virtual Inference of Protein-activity by Enriched Regulon analysis [18]). VIPER aims at inferring 

the protein activity of a MR by a systematic analysis of the expression patterns of its targets (regulons). 

VIPER directly integrates target mode of regulation indicating whether targets are repressed or activated 

given the statistical confidence in regulator-target interactions and target overlap between different 

regulators in order to obtain the enrichment of a protein regulon in differentially expressed genes [20]. 

VIPER has advantages over the existing approaches such as T-profiler [22], gene set enrichment analysis 

(GSEA) [23], and Fisher’s exact test [24] in that it uses a fully probabilistic enrichment analysis framework 

that supports seamless integration of genes with different likelihoods of representing activated, repressed 

or undetermined targets.  

Both datasets contain multiple brain regions including cerebellum, which is relevant for ASDs since 

specific cerebellar zones can affect neocortical substrates for social interaction and cognitive functions such 

as language and executive functions [25-27]. We reasoned that in the same brain region, there should be 

highly active proteins whose expression regulate a large set of target genes and such patterns should be 

replicated in an independent RNA-Seq data. Our preliminary finding indicates PPP1R3F (Protein Phosphatase 

1 Regulatory Subunit 3F) as a potential master regulator (MR) to exert large-scale regulatory effects on a 

body of genes in ASD. The general framework of the in-silico experiments is illustrated in Figure 1. We 

further explored the relevance of this gene to ASD and generated a testable hypothesis on how the 

dysregulation of this gene can influence ASD pathogenesis.  

Results and discussion 

We first used the data from Parikshak et al [16] to construct the regulatory networks. This data is part 

of a large RNA-Seq repository on post-mortem human brain tissue (39 cases versus 45 controls) from 

cerebellum, frontal cortex, temporal cortex, prefrontal cortex, and visual cortex. During the process of 

network deconvolution (see Methods in Additional File 1), pairwise Mutual Information (MI) between all of 

the available transcripts were obtained. Next, the constructed network was trimmed to remove genetic 

intermediaries, resulting in potential direct connections between MRs and their targets (we used the 

recommended p-value threshold of 1e-8, as a measure of confidence of regulatory relationships between 

two genes [21]). This analysis yielded a repertoire of 672,973 interactions, 23,935 regulators, and 24,847 

targets in the constructed network using the dataset from Parikshak et al [16]. We similarly analyzed the 

second dataset from Gupta et al [14], a RNA-Seq data of post-mortem brain tissues where cerebellum 

samples were much more than samples from other brain regions. Using the same network construction 

settings on this dataset [14] containing 24 cases and 38 controls, we deconvoluted a network of 297,870 

interactions containing 12,040 regulators and 12,529 targets. The constructed networks from both datasets 

were provided in Additional Files 3 and 4, respectively. 

After applying VIPER on the constructed networks using both datasets, we compared the list of highly 

significant MRs at FDR 0.05. We identified PPP1R3F (Protein Phosphatase 1 Regulatory Subunit 3F) as the 

only shared MR between the two data sets; given the small sample size, it is possible that our analysis was 

under-powered and may have missed other relevant MRs in ASDs. Figure 2 illustrated how downregulation 

of this MR influences the expression of its regulons in both constructed networks.  

PPP1R3F is one of the type-1 protein phosphatase (PP1) regulatory subunits which is found to be 

important in neuronal activities and has been implicated in carrying rare mutations in autistic individuals 
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[28]. A systematic resequencing of X-chromosome synaptic genes in a group of individuals with ASD (122 

males and 20 females) has identified a rare non-synonymous variant in PPP1R3F that can predispose to 

developing ASDs [28]. This potentially damaging variant, c.733T> C, was observed in a boy with a diagnosis 

of Asperger Syndrome and was transmitted from a mother who suffered from learning disabilities and 

seizures [28]. Protein phosphorylation is a key mechanism by which cells regulate transduction pathways 

and PPP1 family enzymes are associated with dephosphorylation of several proteins such as TGF-b cascade 

[29].  

To further probe the biological relevance of the predicted PPP1R3F network to ASD, we examined the 

overlaps between PPP1R3F regulons and known candidate genes implicated in ASD and its related   disorders 

(Table 1). The most significant overlap was found with SFARI gene list [30] (P=0.0008), followed by overlap 

with an intellectual disability database gene list (P=0.072) [31]. The overlaps with other ASD candidate gene 

lists also showed trends towards to being significant). These results suggest the potential relevance of the 

predicted PPP1R3F network to ASD.  

PPP1R3F is a sex-linked gene, so we attempted to account for the differences between the expression 

of PPP1R3F in male and female samples with ASDs. In the Parikshak et al data set (from [16]) there were 32 

males and 7 females with ASDs while there were 39 male controls compared to 6 female controls. The 

gender information is not available on the Gupta et al dataset [14]. We found no difference of PPP1R3F 

expression between male and female samples in the Parikshak et al dataset [16] (FDR=0.644; two-side t-

test), but this may be due to small sample size. Nevertheless, to account for possible role of sex-related gene 

expression in the structure of the constructed network, we re-constructed the regulatory network using 

only male samples in the Parikshak et al dataset [16] (that is, 32 cases and 39 controls). Following the virtual 

protein activity analysis, we observed that PPP1R3F remained as a significant MR (VIPER enrichment P-

value=0.0186). This finding indicated that PPP1R3F acts independently from potential sex-based gene 

expression differences, and thus our finding of PPP1R3F as a MR was not an artifact of sex biases. 

Additionally, we conducted the same analytical experiments on the gene expression data from pre-frontal 

cortex. PPP1R3F was not identified as a significant MR in this brain region (activity FDR=0.1364). We should 

note that the number of samples from other brain regions were too small to be used for network analysis. 

Our finding suggests the potential role of PPP1R3F in developing ASDs upon regulatory control of a large 

body of genes in the cerebellum region of the brain. 

Table 1. The overlap of the identified PPP1R3F regulons from both datasets (n= 177 genes) with several candidate gene lists for 
ASDs and ID (Intellectual Disability). P-values are calculated by two-sided Fisher’s exact test. 

Source of Gene List # Genes in the 
Gene List 

Overlap P-value Fold Enrichment Reference 

SFARI gene list (v. 2.0) 881 17 0.0008 2.4 [30] 

Intellectual Disability database, 
University of Colorado Denver 

1095 11 0.268 1.2 [32] 

Intellectual Disability database, 
University of Chicago 

1969 22 0.072 1.4 [31] 

Intellectual Disabilities (IDS v. 1.0) 897 11 0.097 1.5 [33] 

ASD de novo mutation list* (v. 1.5) 1248 11 0.124 1.1 [34]  
*We have removed de novo mutations in intergenic and intronic regions. 

 

We next conducted pathways enrichment analysis on the PPP1R3F regulons from both constructed 

networks separately, and observed the targets to be enriched for endocytosis pathway in the Parikshak et 

al dataset [16] (FDR=0.005, fold enrichment= 8.26) and the Gupta et al dataset [14] (FDR=0.0008, fold 

enrichment= 8.42). “Endocytosis” is the only significantly enriched pathway on both data sets. Combining 

both sets of targets totaling 177 genes (Supplementary Figure 1 in Additional File 2 and Additional File 5), 

the enrichment of endocytosis pathway was even more significant (FDR=4.85e-04, fold enrichment= 8.97).  

Since ASDs are commonly recognized as brain disorders, we further examined whether the identified 

MR is mainly expressed in the brain.  We looked up PPP1R3F in GTEx consortium portal [35], and found that 

compared to other tissues, PPP1R3F is predominantly expressed in various brain regions such as frontal 

cortex and cerebellum (Supplementary Figure 2 in Additional File 2). We checked BrainSpan Atlas of the 

Developing Human Brain (http://brainspan.org) to see whether PPP1R3F is highly expressed in prenatal or 

postnatal stages. PPP1R3F was not expressed until 37 weeks post-conception. While remaining unexpressed 

in some brain regions, it is modestly expressed in four-month postnatal stage in particular brain regions. We 

further probed the expression of each of the 177 targets of PPP1R3F in GTEx and identified the tissues in 
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which they are highly expressed. 89 genes out of 177 were highly expressed in various regions of the brain, 

compared to other tissues (P-value from Fisher’s exact test= 5.51 × 10-5, number of protein coding genes in 

GTEx = 20900, number of protein coding genes highly expressed in the brain in GTEx=7528). The significant 

overlap of the expressed PPP1R3F target genes with the total number of highly expressed genes in the brain 

partially supports the pathophysiological relevance of PPP1R3F to ASDs.  

Conclusions  

In this study, we performed exploratory analysis on two small-scale RNA-Seq data sets, and used a 

network deconvolution algorithm to reverse engineer regulatory networks. By further applying virtual 

protein activity analysis on both networks, we identified PPP1R3F as a MR of a regulon consisting of 177 

targets that are differentially expressed between ASD patients and controls. Gene set enrichment analysis 

on the PPP1R3F regulons suggested that PPP1R3F may exert its functional effects through regulating the 

endocytosis, a pathway that has been previously implicated in neuropsychiatric disorders [36].  

Limitations 
We acknowledge that our study is limited by the small sample size (due to the scarcity of brain tissues), 

and the results thus need further replications. Nonetheless, our study generates a testable hypothesis that 

may be validated by large-scale studies in the future. Additionally, further experimental validation of the 

regulatory effects of PPP1R3F on its downstream targets as predicted by our network analysis may provide 

novel insights on possible pathophysiological role of PPP1R3F as a MR of ASD gene network.  

Additional files 
Additional file 1. Detailed explanation of the methods being used in this study. 
Additional file 2. Supplementary figures. 
Additional file 3. The constructed networks from the Parikshak et al dataset [16] . 
Additional file 4. The constructed networks from the Gupta et al dataset [14]. 
Additional file 5. The list of the combined set of target genes of PPP1R3F. 
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Figure 1.  The overall process of network construction and virtual protein activity analysis to identify a 

master regulator 

 

 

Figure 2. Gene set enrichment analysis (GSEA) of PPP1R3F targets in the constructed networks using the 

data by (a) Parikshak et al [16] and (b) Gupta et al [14]. Black bars in the both figures depict the rank of the 

PPP1R3F targets in terms of correlation with the phenotype among the entire list of genes in the both 

datasets. 
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