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Abstract

The neighbors principle implicit in any machine learning algorithm says that samples
with similar labels should be close to one another in feature space as well. For example,
while tumors are heterogeneous, tumors that have similar genomics profiles can also be
expected to have similar responses to a specific therapy. Simple correlation coefficients
provide an effective way to determine whether this principle holds when features and
labels are both scalar, but not when either is multivariate. A new class of generalized
correlation coefficients based on inter-point distances addresses this need and is called
“distance correlation”. There is only one rank-based distance correlation test available to
date, and it is asymmetric in the samples, requiring that one sample be distinguished as
a fixed point of reference. Therefore, we introduce a novel, nonparametric statistic,
REVA, inspired by the Kendall rank correlation coefficient. We use U-statistic theory to
derive the asymptotic distribution of the new correlation coefficient, developing
additional large and finite sample properties along the way. To establish the
admissibility of the REVA statistic, and explore the utility and limitations of our model,
we compared it to the most widely used distance based correlation coefficient in a range
of simulated conditions, demonstrating that REVA does not depend on an assumption
of linearity, and is robust to high levels of noise, high dimensions, and the presence of
outliers. We also present an application to real data, applying REVA to determine
whether cancer cells with similar genetic profiles also respond similarly to a targeted
therapeutic.

Author summary

Sometimes a simple question arises: how does the distance between two samples in
multivariate space compare to another scalar value associated with each sample. Here,
we propose theory for a nonparametric test to statistically test this association. This
test is independent of the scale of the scalar data, and thus generalizable to any
comparison of samples with both high-dimensional data and a scalar. We apply the
resulting statistic, REVA, to problems in cancer biology motivated by the model that
cancer cells with more similar gene expression profiles to one another can be expected
to have a more similar response to therapy.
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Introduction 1

The venerable K-nearest-neighbor approach succinctly captures a principle at the heart 2

of any machine learning algorithm: samples with similar labels should be close to one 3

another in feature space as well. Here, we present a method for quantifying the extent 4

to which the neighbors principle holds in a given dataset, without making specific model 5

assumptions. Our method, called REVA, was motivated by computational genomics for 6

cancer, where machine learning methods are applied to high dimensional genetic 7

signatures to identify aggressive tumors and predict response to therapy. The biology 8

behind response to therapy is complex, with extensive heterogeneity of genetic profiles 9

and therapeutic response between distinct tumors and even within the cells that 10

comprise a single tumor. Yet, the neighbors principle can be expected to hold when 11

predicting therapeutic response of targeted therapies that work by blocking a genetic 12

alteration specific to a tumor. Namely, tumors that are similarly responsive to that 13

therapy are hypothesized to have more similar genetic profiles than tumors do not, 14

reflecting the wide variety of mechanisms that individual tumors can utilize to escape 15

treatment by targeted therapies. It is of interest, then, to have computationally efficient, 16

model-free statistical measures of the extent to which samples with similar profiles share 17

similar responses. 18

To develop the REVA method to quantify the extent to which the neighbors 19

principal holds, we adopt the following notation. For each sample i, we observe (xi, yi), 20

where yi is a scalar, response variable and xi is a vector of predictors. In our example of 21

targeted therapeutic response in cancer, yi would be a measurement of therapeutic 22

response and xi a genetic profile for tumor i. According to the neighbors principal 23

described, we expect small values of |yi − yj | to correspond to small values of D(xi,xj), 24

where D is a distance on X. Our goal is then to measure the correspondence, assign 25

confidence intervals, and perform hypothesis tests. The resulting measure should 26

capture both linear and non-linear relationships, be relatively invariant to the 27

dimensionality of the X, and statistical procedures, including hypothesis testing, should 28

be computationally efficient. The cancer genomics context of our motivating example 29

suggests some additional constraints on the possible solutions to the problem. 30

Specifically, genomics data is subject to pervasive, technology-specific biases which can 31

be controlled using rank-based analysis procedures as shown in the literature ( [1–4]). 32

Recent work has led to the development of a small but growing class of generalized 33

correlation coefficients applicable to multidimensional data. These methods were 34

pioneered by Szekely, Rizzo and Bakirov with their development of distance correlation, 35

wherein interpoint distances D(xi,xj) and D′(yi,yj) are calculated for all pairs of 36

vectors (xi,xj) and (yi,yj) and then based on these calculations, Pearson’s correlation 37

is calculated as ρ(D(xi,xj), D
′(yi,yj)) [5–7]. Heller, Heller and Gorfine [8] presented 38

an elegant alternative, calculating a rank-based correlation coefficient, but requiring 39

that one sample be chosen as a reference point and ranking the other samples according 40

to their relative distance from the selected reference. More recently, Shen, Priebe, 41

Maggioni and Vogelstein [9] extended the distance correlation framework of Szekely and 42

colleagues to restrict the correlation to specific scales relevant to the data, rather than 43

weighing all pairwise relationships among variables equally [9]. None of these methods 44

depends on parametric assumptions, all are similarly computationally efficient and all 45

three have the potential to capture a variety of linear and non-linear relationships. 46

However, only the approach by Heller et al. [8] is based on ranks, and it requires to 47

choose one of the samples as the reference point, and the result depends on the choice. 48

Using a very different, generalized approach to the same problem, Gretton, Fukumizu, 49

Teo et al. introduced the Hilbert-Schmidt independence Criterion, a kernel dependence 50

test in multidimensional Euclidean spaces [10–12]), building on earlier kernel methods 51

like N-distances ( [13]). 52
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REVA was inspired by the Kendall rank correlation coefficient. Briefly, Kendall’s 53

statistic starts by designating a pair of samples (xi, yi) and (xj , yj) as concordant if 54

xi > xj when yi > yj , and discordant if the order is not the same, and is then defined as 55

τ =
#concordant pairs−#discordant pairs

#All pairs
.

We observed that if we considered triplets of samples rather than pairs, then it was 56

possible to define concordant and discordant states, based on the relative order of the 57

pairwise distances, regardless of the dimensionality of the data, without the requirement 58

that one sample be selected as a reference point. This work is a natural extension of our 59

previous work using Kendall’s statistic to compare genetic dysregulation between 60

tumors of two subtypes or tumors relative to normals [14,15] using analytical hypothesis 61

testing methods developed in [16], building upon previous permutation tests developed 62

for similar analyses [17]. In the following sections we develop the REVA statistic, using 63

the theory of U-statistics to demonstrate consistency and asymptotic normality. To 64

establish the admissibility of the REVA statistic, and explore the utility and limitation 65

of our model, we compared it to the most widely used distance based correlation 66

coefficient in a few simulated conditions, and demonstrated it in a real application 67

associated genomics profiles in cancer cells with targeted therapeutic response. 68

The REVA Statistic 69

Like Kendall’s τ , REVA starts with a definition of concordance. Consider any 3 70

samples, xi, yi, xj , yj , and xk, yk where the x are vectors and the y, are scalar and 71

suppose, without loss of generality, that yi < yj < yk so that the jth sample represents 72

the median of these 3 points. Inspired by Frechet’s generalization of the median, we 73

borrow the notion of the median as a point whose distance to other points is minimum 74

on average, rewriting the necessary condition as follows, yj is the median if 75

|yi − yk| > max(|yi − yj |, |yj − yk|). We will say that the triplet is concordant if xj also 76

represents the Frechet median among the x’s so that 77

D(xi,xk) > max(D(xi,xj), D(xj ,xk)). REVA is then defined as the proportion of all 78

triplets that are concordant. This concept is formally developed in the following 79

definitions. 80

Definition 1 Let D be any metric on space X. We define the median sample, out of 81

three arbitrarily selected samples xi,xj ,xk ∈ X as the one satisfying 82

M(xi,xj ,xk) = arg mina∈{i,j,k}
∑
b∈i,j,kD(xa,xb). 83

Remark 1 In the development of REVA, and in the theoretical results that follow, we 84

generally assume that all xi are unique, as well as all distances, D(xi,xj) so that there 85

is a unique M for each triplet. In practice there may be ties, of course, in which case, 86

we propose to break the tie randomly (e.g. selecting between two possible medians with a 87

probability of 0.5 for each). 88

Remark 2 Because we are using ranks of distances we are not calculating a median 89

directly but only identifying the median sample M(xi,xj ,xk). In the remainder of the 90

paper we will use the terms median sample and median interchangeably to refer to the 91

sample. To avoid confusion, we use M to indicate the median vector (i.e. in X space) 92

and m to denote the scalar median sample (i.e. in R). 93

Now, we are ready to define REVA itself. 94
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Definition 2 Let Z1 = (X1, Y1), . . . ,Zn = (Xn, Yn) be i.i.d. samples where Xi’s are 95

random vectors ∈ X and Yi’s are their i.i.d. corresponding scalars (∈ R). A triplet, 96

i, j, k, is concordant if M(XiXj ,Xk) = m(Yi, Yj , Yk) and discordant otherwise. We 97

define REVA as the proportion of concordant triplets, expressed mathematically as, 98

R ,
1(
n
3

) ∑
1≤i<j<k≤n

I(M(XiXj ,Xk) = m(Yi, Yj , Yk)),

where I(x) is the indicator function which is 1 if x is true and 0 otherwise. 99

Remark 3 With the definition of median in hand for multivariate triplets, the REVA 100

framework is readily extended to accommodate a vector-value Y . The criteria for 101

concordance becomes M(Xi,Xj ,Xk) = M(Yi,Yj ,Yk), and with this change, the 102

definitions above accommodate the generalized scenario, and the asymptotic theory that 103

follows holds with some changes to the variance calculation. 104

The expected value of REVA (denoted by R) is easily derived under independence. 105

It is the probability that M(XiXj ,Xk) = m(Yi, Yj , Yk) by chance alone. Trivially, if 106

the Xi are independent of Yi then all the possibilities are equally likely. Hence, 107

Proposition 1

R , E(R) =
1

3
assum. Xi |= Yi(Null hyp.). (1)

Also if ∀i, j, k, l D(Xi,Xj) > D(Xk,Xl)⇔ |Yi − Yj | > |Yk − Yl|, then R = 1 which 108

means if there is perfect matching between the pairwise distance and the scalar, REVA 109

captures it perfectly. 110

Remark 4 It is easy to see that the neighbor principle holds, and R = 1 when X and 111

Y are perfectly anticorrelated as well (D(Xi,Xj) > D(Xk,Xl)⇔ |Yi − Yj | < |Yk − Yl|, 112

for all i, j, k, l.) However R can take on values below 1
3 in unusual cases where the order 113

relationships among the dXis is very different from the Yis. For example, REVA = 1
4 if 114

x and Y are both scalar values with Xi ∼ U(0, 1), Yi = f(Xi) =

{
Xi − 0.5 Xi > 0.5
Xi + 0.5 Xi ≤ 0.5

115

Asymptotic Normality and Implementation 116

In some settings, it will be desirable to calculate a confidence interval or perform a test 117

and assign a p-value for these associations. Bootstraps and permutations provide a 118

general method to establish a null distribution and calculate relevant statistics. However, 119

this process can become computationally intensive especially if we need to correct for 120

multiple hypothesis as with False Discovery Rate adjustment [18]. As is customary in 121

statistics and machine learning, we attempt to find the asymptotic distribution for 122

REVA and as usual we anticipate its asymptotic normality. U-statistic theory provides 123

the theoretical framework for establishing the asymptotic normality of REVA: 124

Theorem 1 As the number samples (n) grows, REVA converges asymptotically to a 125

normal distribution, i.e. 126√
n(R−R)→ N (0, 9σ2

1) (2)

where σ2
1 is defined below. 127

Proof 1 Since the indicator function is a bounded function, we can simply apply the 128

main result of the U-Statistic theory [19] which proves the theorem. 129
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To calculate the variance, σ2
1 , we define 130

h(Zi,Zj ,Zk) , I(M(XiXj ,Xk) = m(Yi, Yj , Yk)),

and R = 1

(n
3)

∑
1≤i<j<k≤n

h(Zi,Zj ,Zk). 131

The main theorem of U-Statistics says that for large samples,
Var(R) ≈ 9

nσ
2
1 + 18

n2σ
2
2 + 6

n3σ
2
3 where σ2

1 = Cov(h(Zi,Zj ,Zk), h(Zi,Zl,Zo)),
σ2

2 = Cov(h(Zi,Zj ,Zk), h(Zi,Zj ,Zl)), and σ2
3 = Var(h(Zi,Zj ,Zk)). To calculate a

p-value, it is necessary to estimate these parameters under the null hypothesis, i.e.
when Xi |= Yi. An expansion of σ2

1 under that circumstance is shown below, similar
expressions for σ2

2 and σ2
3 are not shown.

σ2
1 = E (h(Zi,Zj ,Zk), h(Zi,Zl,Zo))− E2(h(Zi,Zj ,Zk)) (3)

= P (M(Xi,Xj ,Xj) = m(Yi, Yj , Yk),M(Xi,Xl,Xo) = m(Yi, Yl, Yo))−
1

9

=
∑
a,b

P (M(i, j, k) = a,M(i, l, o) = b)P (m(i, j, k) = a,m(i, l, o) = b)− 1

9
. (4)

The second equality follows from the observation that h is an indicator function and 132

the third equality from the law of total probability and independence of Xi’s and Yi’s 133

under the null hypothesis. Taking advantage of the symmetry between Zi, Zj , and Zk, 134

we can show the full distribution of possible values for equation 5 in a simple tabular 135

form (left side of Table 1). We note that because of the symmetry, it is necessary to 136

estimate only one parameter: α = P (M(Xi,Xj ,Xk) = i,M(Xi,Xl,Xo)) = i . In the 137

absence of ties, we can pre-compute the exact values for scalar-valued, ranked data, as 138

shown on right side of Table 1. Table 2 shows the similar probabilities that are obtained 139

for σ2
2 . Once again the scalar matrix can be pre-computed, although now it is necessary 140

to estimate two parameters: ζ and ξ. For σ2
3 = Var(h(Zi,Zj ,Zk)) = 1

3 ×
2
3 = 2

9 because 141

of symmetry. For large n (typically > 100), we sub-sample the samples to estimate 142

α, ζ, ξ since the sub-sample estimate are reliable and reduce the computation 143

significantly. 144

Remark 5 For smaller numbers of samples, the variance is better approximated by 145

9σ2
1 + 18

n σ
2
2 or even 9σ2

1 + 18
n σ

2
2 + 6

n2σ
2
3 (σ2

2 , σ
2
3 are calculated in the next Remark). In 146

Fig 2 we compare each asymptotic approximation to an exact variance calculated by 147

permutation, to show the rate of convergence. 148

Remark 6 A main concern in U-Statistics analysis is the risk of degeneracy of the 149

variance, which occurs when σ1
2 = 0 under the null. Simplifying σ1

2 using the notations 150

in Table 1, and considering the symmetry α+ 2β = β + 2γ = 1
3 , we can simplify 151

σ2
2 = 3α

4 −
1
12 . Hence, we need to show α > 1

9 . Using a standard technique, we condition 152

on Xi, and use i.i.d. assumption. 153

P (i = M(i, j, l), i = M(i, l, o)) = E(P 2(i = M(i, j, l)|Xi)) = V ar(P (i = M(i, j, l)|Xi))

+ E2(P (i = M(i, j, l)|Xi)) = V ar(P (i = M(i, j, l)|Xi)) +
1

9

It follows that as long as Var(P (i = M(i, j, l)|Xi)) > 0, or equivalently 154

P (i = M(i, j, l)|Xi) is not constant in probability, REVA avoids degeneracy. While we 155

cannot entirely rule out the possibility of degeneracy, (we hypothesize that it could 156

happen where the distribution is perfectly symmetric, e.g. in the case of a uniform 157

distribution on a sphere), it is extremely unlikely where there is asymmetry of the 158

distribution or distance measure. 159
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Table 1. Probabilities required to be estimated for σ2
1 as in eq. (4): (left)

P (M(i, j, k),M(i, l, o)) only one parameter needed to be estimated (e.g. α).
The sum of the rows and columns must be 1/3 due to symmetry. (right)
P (m(i, j, k),m(i, l, o)) can be pre-computed due to being a scalar assuming
ties are improbable.

i l o

i α β β 1/3
j β γ γ 1/3
k β γ γ 1/3

1/3 1/3 1/3

i l o

i 2/15 1/10 1/10 1/3
j 1/10 7/60 7/60 1/3
k 1/10 7/60 7/60 1/3

1/3 1/3 1/3

Table 2. Probabilities required to be estimated for σ2
2. (left)

P (MS(i, j, k),MS(i, j, l)) only two parameters needed to be estimated (e.g. ζ,
ξ). The sum of the rows and columns must be 1/3 due to symmetry and
i.i.d assumption. (right) P (m(i, j, k),m(i, j, l)) can be pre-computed due to
being a scalar assuming ties are improbable.

i j l

i ζ η κ 1/3
j η ζ κ 1/3
k κ κ ξ 1/3

1/3 1/3 1/3

i j l

i 2/12 1/12 1/12 1/3
j 1/12 2/12 1/12 1/3
k 1/12 1/12 2/12 1/3

1/3 1/3 1/3

Fig 1. REVA vs Pearson and Kendall correlation in simulated data with
controlled correlation between pairwise distances and the scalars.
In this case Xi’s are scaler i.i.d. with Yi = qXi + (1 − q)X ′i as described in equation
(5) The REVA statistic is monotonically increasing with both Kendall-tau and Pearson
correlations. As expected, REVA behaves more similarly to Kendall-tau.

Results 160

Simulations 161

To study REVA’s behavior as a correlation measure, we ran a simulation in which we 162

can control the correlation between Xi’s and Yi’s. Consider the following one 163

dimensional scenario: Let Xi’s be i.i.d standard normals and D be L-1 norm. Now, let 164

Yi = qXi + (1− q)X ′i (5)

where X ′i ∼ N (0, 1) and independent of Xi. In this scenario, the Pearson correlation, 165

ρ(Xi, Yi) = q
q2+(1−q)2 . Proposition (1) suggest that if q = 0 or q = 1, REVA statistic 166

R = 1
3 or R = 1. To investigate behavior between these extremes, we simulated 1000 167

rounds under a range of q values and show the results as the error bar plot in Fig (1). 168

For Kendall-tau, we used an empirical average for any fixed q. As expected, REVA 169

behaves monotonically and more closely resembles Kendall’s coefficient than Pearsons’s. 170

In fact, the following theorem reveals some theoretical similarities: 171

Theorem 2 Let x and Y be continuous scaler r.v.s. with FXY , FX , FY c.d.f. 172

E(R) = 6

∫ ∫
FXY (FXY + 1− FX − FY ) + (FX − FXY )(FY − FXY )dFXY ,

(while their Kendall’s-τ is 4
∫ ∫

FXY dFXY − 1 [20]). 173
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Fig 2. The ratio of asymptotic variance to exact variance, calculated over 1000
permutations data, for different sample sizes. o( 1

n ), o( 1
n2 ), o( 1

n3 ) describe increasingly
precise approximations to the variance. It can be seen that for small sample numbers,
the approximation of o( 1

n3 ) is necessary for accurate approximation but for more
samples we can only use o( 1

n ). Therefore, the consistent underestimation of the variance
is reduced for large sample sizes.

Proof 2 Proof of Theorem (2).

E(R) = 3P (m(Xi, Xj , Xk) = m(Yi, Yj , Yk) = j)

= 3P (Xi < Xj < Xk, Yi < Yj < Yk) + 3P (Xi < Xj < Xk, Yi < Yj < Yk)

+ 3P (Xi > Xj > Xk, Yi < Yj < Yk) + 3P (Xi > Xj > Xk, Yi < Yj < Yk) =

= 6P (Xi < Xj < Xk, Yi < Yj < Yk) + 6P (Xi < Xj < Xk, Yi < Yj < Yk)

= 6

∫ ∫
(P (Xi < xj < Xk, Yi < yj < Yk) + P (Xi < xj < Xk, Yi < yj < Yk))dFXY (xj , yj)

= 6

∫ ∫
(P (Xi < xj , Yi < yj)P (Xi > xj , Yi > yj)

+ P (Xk < xj , Yk > yj)P (Xk > xj , Yk < yj))dFXY (xj , yj)

= 6

∫ ∫
(FXY (FXY + 1− FX − FY ) + (FX − FXY )(FY − FXY ))dFXY (xj , yj)

The first line is because of the symmetry to i, j, k, the second and third line is because all 174

orderings are disjoint, the forth line is due to symmetry i, j, k, the fifth line is due to 175

independence and the sixth line is due to identically distribution of the disjoint of FXY . 176

Expressed in this form, it is easy to see that REVA offers greater power than 177

Kendall in at least one, well-known situation of non-linear association. Consider the 178

example where Xi ∼ U(−0.5, 0.5), Yi = f(Xi), R = 1
2 which is bigger than random 179

threshold (i.e. > 1
3 ). As known, Kendall-τ=0. 180

One obvious conlcusion of the theorem (2) is the following corollary. 181

Corollary 1 Under the conditions of theorem (2), REVA > 0. 182

Proof 3 Proof of corollary (1): R is non-negative and hence, its expectation, REVA, is 183

non-negative. If E(R) =0, because of positivity of the joint distribution and its 184

complements then 185

FXY (FXY + 1− FX − FY ) = 0, (FX − FXY )(FY − FXY ) = 0 a.s.

By subtracting two equality we have FXY − FXFY = 0 a.s. and by replacing back into 186

the second equation, we have FX(1− FX)FY (1− FY ) = 0 almost surely which is 187

contradictory to the definition of the c.d.f of continuous random variables. 188

Following Remark (4) and Corollary (1), it makes sense to ask about the minimum 189

value that REVA can assume in the scale case. The following Corollary proves that the 190

example described in Remark 4 achieves the minimum. 191

Corollary 2 Under the conditions of theorem (2), REVA ≥ 1
4 . 192

Proof 4 Proof of corollary (2): To show that REVA ≥ 1
4 , we need to use copula theory 193

to prove the inequality. Applying Sklar’s theorem, REVA can be re-written as 194
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FX , FY U(0, 1) and FXY = C(x, y) where C is a copula and x, y ∈ [0, 1]. Based on the 195

Frechet-Hoeffding bounds 0, x+ y − 1 ≤ C and C ≤ x, y. 196

REV A = 6

∫ 1

0

∫ 1

0

{2C2 + (1− 2x− 2y)C + xy}dxdy,

and since the integrand is positive for any Ω ∈ [0, 1]× [0, 1], 197

REV A ≥ 6

∫ ∫
x,y∈Ω

{2C2 + (1− 2x− 2y)C + xy}dxdy.

A specific Ω, we are interested in Ω = {(x, y)||x− y| ≤ 1
2 , x+ y ≤ 1

2 , x+ y ≥ 3
2}. For a 198

fixed x,y, the minimizer of integrand (ignoring the constraint that C is a copula) is when 199

C∗ = 2x+2y−1
4 . Hence, the integrand ≥ 1

8 (4x+ 4y − 4x2 − 4y2 − 1). Now, from the last 200

inequality and inequality of the integrand, we have: 201

REV A ≥ 6

∫ ∫
x,y∈Ω

{1

8
(4x+ 4y − 4x2 − 4y2 − 1)}dxdy =

6× 2

48
=

1

4
.

Note that if E(2C2 + (1− 2x− 2y)C + xy|x, y 6∈ Ω) > 0, then REVA¿ 1
4 . So, a necessary 202

condition for inequality to become an equality is that 203

E(2C2 + (1− 2x− 2y)C + xy|x, y 6∈ Ω) = 0. 204

Robustness Analysis 205

In this section, we explore the performance of REVA under a variety of simulated 206

conditions. We consider the situation where a simple linear relationship between X and 207

Y is diminished by increased noise levels, increased dimensionality and the presence of 208

outliers. We also considered a non-linear model, simulating this scenario using the same 209

assumptions about noise, dimensionality and the presence of outliers. In each scenario 210

we compare REVA to the distance correlation approach by Szekely and Rizzo, which 211

has become a standard method for data of this type. Based on the literature of 212

statistics, we expect the rank-based REVA to be less sensitive to influence from outliers, 213

noise, etc. than distance correlation inspired by Pearson’s. Conversely, all else equal, 214

distance correlation should offer better power when the relationship is close to linear. 215

We start with a scenario in which we can control the effects of dimension, noise, etc. 216

Consider the following scenario: Let Yi ∼ N (0, 1) and 217

Xi = (Yi, N
1
i , . . . , N

d−1
i ) (6)

where Nk
i i.i.d. N (0, υ2) and D is the L-1 norm. We vary both parameters 218

d ∈ {5, 10, 15, 20, 25, 30, 100, 200, 500, 1000, 2000} and υ ∈ {0.05, 0.10, 0.15, . . . , 0.50}, 219

comparing REVA to Distance Correlation over all combinations of these parameters. 220

The resulting statistics are depicted in the first panels of Fig 3, along with the null case 221

where X and Y are independent, which is labeled as “Noise Only” in the figure. 222

Naturally as the dimension or noise level increases both tests lose power. Distance 223

correlation has better power than REVA in lower dimensions, but as the dimension 224

increases, the relationship is reversed. 225

We also evaluated performance when the relationship between X and Y is non-linear, 226

applying an exponential transformation to Y , shown in the lower panels of Fig (3). Since 227

REVA is rank-based, it is invariant to monotone transformations, however, distance 228

correlation loses its power dramatically due to violation of the linearity assumption. 229

We added outliers to the simulation by randomly choosing 10% of the distances and 230

applied the same exponential function used in the first scenario described in this section. 231
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The results are depicted in Fig (4). REVA is more robust to outliers than distance 232

correlation. As seen in the scenarios described above, REVA’s distribution under the 233

null is very stable with median very close to 1
3 . To make a more precise comparison, we 234

calculated the p-value using both REVA and distance correlation in the outlier situation 235

for the “Signal+Noise” scenario and show it in Table 3. Boldface p-values show those 236

under 0.01. As expected, REVA is significantly more powerful distance correlation 237

throughout much of the range of simulated signal to noise ratos. 238

Fig 3. Peformance of REVA (first row) and Distance Correlation (second and third
row) under increased dimensionality and/or noise as described above in the “Robustness
Analysis” section. In the sub-figures in the top two rows, the “Signal+Noise” scenario is
described as in eq. 6 where there is a signal detect and the “Noise only” where there is
no signal to detect. The bottom sub-figures depict the distance correlation performance
under the scenario in which the scaler has been transformed by a non-linear function,
i.e. exponential function. Since REVA is ranked-based its outcome is identitical to the
first row but distance correlation loses its detection power.

Fig 4. Performance of REVA (top row) and Distance Correlation’s (bottom row) where
a randomly selected 10% of pairwise distances were transformed by the exponential
function. REVA is more robust to the presence of outliers in the pairwise distances.

Application to Genomic Data 239

An emerging question in cancer research is whether we can predict which patients will 240

respond to a specific therapy based upon the molecular profile of their tumor ( [21]). In 241

this analysis, we look at whether lung cancer cell lines with similar gene expression 242

profiles will respond similarly to Erlotinib, a therapeutic agent approved by the FDA for 243

use in lung cancer. The data for this analysis is obtained from the Cancer Cell Line 244

Encyclopedia (CCLE, [22]). Genome-wide gene expression values for hundreds of cancer 245

lines were obtained using the Affymetrix hgu133plus2 arrays. Drug response for each of 246

these cell lines is reported as ActiveArea, a summary of the rate at which cancer cells 247

are killed across a range of dose levels, such that larger values indicate greater 248

sensitivity to the drug. 249

We chose this example because the mechanism of action for this drug is well 250

understood, permitting us to make predictions about the outcome of the study. 251

Specifically, erlotinib inhibits the Epidermal Growth Factor Receptor (EGFR) gene, 252

which is a commonly activated and serves as an oncogene in lung cancer. Therapeutic 253

response to EGFR inhibition has been associated with a biological processes called the 254

epithelial to messenchymal transition (EMT) in numerous cancer types [23–25]. 255

Therefore, we would expect genes associated with that pathway and response to 256

erlotinib to follow the neighbors principle. Prior studies [26] have defined a robust EMT 257

signature in lung cancer which can be segregated into two sets of genes, epithelial and 258

mesenchymal genes. We apply REVA separately to each set, to test whether the 259

neighbors principal holds in between erlotinib response and gene expression profiles of 260

either the epithelial or messenchymal genes using L-1 distance. We confirm that REVA 261

finds that gene expression profiles for epithelial genes are more significantly associated 262

with Erlotinb response (p-value of 3.6e-08 for R = 0.392, 5) than messenchymal genes 263

(p-value of 0.033 for R=0.356, not shown). 264

May 24, 2018 9/13

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 25, 2018. ; https://doi.org/10.1101/330498doi: bioRxiv preprint 

https://doi.org/10.1101/330498


Table 3. Comparison of p-values for REVA’s (top) and Distance Correlation’s (bottom) in simulations
performed in Fig (4) for “Signal+Noise.” Columns represent the dimension of X and rows show the noise
standard deviation in “noise features.” 10% of pairwise distance were randomly chosen to be manipulated
by exponential function. P-values < 0.01 are bold-faced. REVA keeps its detection power relatively better
than distance correlation as the dimension of feature space or/and the standard deviation of the noise grow,
and therefore is more robust to the presence of outliers in the pairwise distances. Due to space limitations
some dimensions are dropped.

5 10 15 20 25 30 100 200 500 1000 2000

0.05 2e-134 1e-127 1e-147 3e-132 2e-125 1e-134 2e-131 3e-111 1e-108 2e-105 1.2e-80
0.1 2e-130 1e-110 4e-123 1e-113 2e-110 3e-124 8e-83 9e-73 8.2e-56 3.9e-38 4.9e-25

0.15 7e-103 1.3e-97 3e-105 1e-107 2.6e-71 7.8e-94 1.8e-49 2.1e-56 1.7e-26 1.3e-13 4.1e-11
0.2 3e-111 4.7e-85 1.9e-63 2.1e-68 3e-61 3.3e-57 4.1e-30 5.4e-32 8.9e-11 4.3e-07 0.0013

0.25 1.9e-75 2.6e-66 1.5e-46 2.2e-50 5e-56 5.5e-50 1.2e-14 1.5e-15 2.4e-07 0.0049 4.9e-05
0.3 1.7e-62 1.8e-45 1.3e-38 1.3e-37 4e-34 5.2e-17 4.5e-15 1.8e-08 2.9e-06 0.0079 0.0086

0.35 1.5e-52 1.7e-38 1.5e-23 1.3e-21 5.6e-24 1.1e-27 7e-15 0.00011 3.2e-05 0.29 0.25
0.4 1.9e-44 2.5e-26 1.5e-21 9.7e-17 1.8e-18 2.2e-12 1.2e-05 7e-04 4e-04 0.03 0.085

0.45 6.7e-36 2.5e-20 2.9e-17 5e-17 5.4e-22 4.1e-11 6.2e-05 0.00012 0.057 0.34 0.04
0.5 2.2e-26 3.4e-22 3.6e-16 2.2e-20 1.8e-09 0.00015 0.0043 0.12 0.0022 0.035 0.59

5 10 15 20 25 30 100 200 500 1000 2000

0.05 2.2e-12 6e-10 4.8e-05 0 2.2e-12 2e-08 3.6e-08 1.2e-06 1.8e-06 2.8e-06 0.003
0.1 0.00016 0 4.8e-05 3.4e-08 3.2e-11 6e-11 0.0012 0.0015 2e-04 0.0038 0.32

0.15 0.00024 0.00063 4.2e-11 2.2e-16 1.9e-09 1.1e-09 0.013 0.00057 0.29 0.71 0.23
0.2 0 1.1e-09 4.3e-07 0.00016 9.5e-07 4.3e-06 0.0077 0.042 0.051 0.65 0.26

0.25 3.6e-13 6.1e-06 4.1e-06 0.00011 7.1e-05 4.6e-05 0.059 0.017 0.13 0.55 0.38
0.3 0 1.1e-05 0.00078 3.7e-06 0.00084 0.057 0.036 0.012 0.31 0.4 0.92

0.35 6.7e-09 7.6e-05 0.0071 0.018 0.027 0.0075 0.037 0.45 0.29 0.7 0.15
0.4 4.3e-06 0.0041 0.00054 0.068 0.012 0.024 0.49 0.52 0.34 0.21 0.83

0.45 1.5e-05 0.05 0.041 0.00012 0.00078 0.071 0.12 0.87 0.11 0.75 0.48
0.5 2.7e-05 0.0015 0.065 0.0041 0.041 0.73 0.52 0.7 0.6 0.06 0.42

Fig 5. Lung cancer cell lines sorted by response to Erlotinib (Active area, top).
Heatmap of gene expression values for corresponding lung cancer cell lines (columns) for
the set of epithelial genes colored according to the z-score for each gene (row).

Conclusion 265

In this paper, we seek a robust, generalized measure of correlation for the case where at 266

least one variable is multidimensional. Although several relevant methods have been 267

developed in recent years [5–9], there is only one rank-based test available to date [9], 268

and it violates the principle that correlations should be symmetric in the samples. We 269

introduce REVA which extends Kendall’s rank-based τ statistic to operate on pairwise 270

point distances for triplets of points. The result is nonparametric and rank based, and 271

symmetrical in the samples. It is very flexible, capable of capturing an array of 272

non-linear relationships among the variables in addition to linear relationships. The 273

expected value of REVA under the null hypothesis is constant (equal to 1
3 ), it does not 274

depend on the dimensionality of the data and is asymptotically normal. Therefore, 275

REVA can be quickly and reliably computed for datasets with large feature spaces. The 276

resulting statistics are slightly more computationally demanding than the alternative 277

methods. REVA is O(n3) as compared to O(n2 log n) for Heller’s and Shen’s approach 278
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and O(n2) for distance correlation, where n is the sample size. Nonetheless, although a 279

thorough analysis of the performance of REVA is beyond the scope of this paper, our 280

results on simulated data in comparison to distance correlation suggest that REVA is a 281

powerful test in some situations. Work is ongoing on extensions of the REVA approach. 282

Shen et al. extended distance correlation to capture a wide array of non-linear 283

relationships by calculating a local correlation, rather than weighing all pairwise 284

relationships among variables equally [9] The same approach can be implemented with 285

REVA. 286

An interesting inverse question arises from work in cancer genomics. Recent data 287

suggests that more aggressive tumors have more heterogeneous genetic profiles 288

( [2, 17, 27]). In this case, we would expect a stronger relationship between tumor profile 289

and response in indolent tumors than in their rapidly growing counterparts. The goal of 290

this analysis is then a change-point problem, where the goal is to identify points along 291

the Y scale where the correlation between X and Y changes. Similar approaches have 292

been applied for time course analysis in genomics [28]. We believe that the REVA 293

framework is amenable to reformulation, providing a general framework for 294

non-parametric, rank-based change point analysis applicable both for prediction and 295

time course analysis. 296
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