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Abstract 10	

Phylogeographic approaches are commonly used to understand historical-biogeographic 11	

patterns in the distribution of haplotypes. However, the emphasis of most tools lies on 12	

describing spatial patterns of genetic variation and assess how large are haplotypic differences 13	

among populations. An evaluation of the relative influence of environmental factors 14	

compared to pure neutral process of haplotypic distribution - a question of great interest for 15	

molecular ecologists - is less investigated, in part because appropriate tools are lacking. Here, 16	

we introduce HaploVectors, a flexible tool that allows exploring phylogeographical patterns 17	

and discriminating biogeographic, neutral and environmental factors acting to shape genetic 18	

distribution across space. Haplovectors are variables that summarize the major gradients of 19	

haplotypic distribution across a set of localities and allow weighting haplotypic frequencies 20	

by the number of mutational steps using a fuzzy weighting approach.  HaploVectors is 21	

presented as an R package for computing haplotypic eigenvectors and performing null model-22	

based tests. Investigation of HaploVectors using empirical datasets showed that the method is 23	
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useful to uncover hidden patterns of haplotypic distribution, not easily detected using 24	

traditional methods. Using a plant species as study case, we demonstrate by means of 25	

HaploVectors that, even though the distribution of plant haplotypes was associated with 26	

different biogeographic regions of the Brazilian Cerrado biome, such association was not 27	

mediated by evolutionary relationships among haplotypes. The applicability of HaploVectors 28	

is broad, ranging from the pure pattern exploration and discrimination of genetic populations, 29	

to a hypothesis-testing framework that uses null-models to understand the influence of 30	

environmental factors on haplotypic distribution. 31	

Keywords: Fuzzy set theory, haplotypic eigenvectors, haplotype network, principal 32	

coordinates of genetic structure 33	

34	
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Introduction 35	

A complete understanding of the historical and biogeographic patterns of species distribution 36	

benefits from the connection between micro and macroevolution, a major goal of the field of 37	

phylogeography (Avise, 1987; Avise, 2009). Since the middle 1990’s, the number of studies 38	

using molecular markers to understand phylogeographical patterns is increasing at astonishing 39	

rates (Beheregaray, 2008; Turchetto-Zolet, Pinheiro, Salgueiro & Palma-Silva, 2013). 40	

Accordingly, the number of molecular markers used increased from single locus to multiple 41	

genome regions (Freeland, 2014; Blom, Horner & Moritz, 2016). Testing hypotheses about 42	

ecological influences on the genealogical history of populations from a single species, and the 43	

comparison of such patterns across multiple species (comparative phylogeography), has the 44	

potential to shed light on process of species diversification and on the geological and 45	

biogeographic connections of entire regions (Diniz-Filho et al., 2008; Carnaval et al., 2014). 46	

However, hypothesis testing in a rigorous statistical framework were only latter incorporated 47	

into phylogeography, with the advent of statistical phylogeographical approaches (Templeton 48	

et al., 1998; Papadopoulou & Knowles, 2016) that helped moving the field beyond the 49	

essential descriptive nature present in its infancy. Still, the development of analytical tools to 50	

integrate the ecological thinking into phylogeography has lagged behind the ever-increasing 51	

number of molecular loci discovered and the numerous tools focused on spatial genetics (e.g., 52	

Templeton, 2004; Miller, 2005; Epperson, 2005). In the era of multiple molecular markers 53	

and genomics in phylogeography, new analytical tools are imperative to better understand the 54	

increasingly complex phylogeographical patterns, to compare results from different loci, and 55	

to uncover environmental correlates of genetic distribution in the ‘twilight zone’ (Diniz-Filho 56	

et al., 2008). 57	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 25, 2018. ; https://doi.org/10.1101/330761doi: bioRxiv preprint 

https://doi.org/10.1101/330761
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 4	

A principal goal in studies of molecular ecology and phylogeography is to understand 58	

to what extent genetic variation of a species, expressed as the spatial distribution of alleles, 59	

genotypes and haplotypes, might be affected by different factors, such as dispersal 60	

mechanism, history of populations, climate changes or just by isolation by distance (Manel, 61	

Schwartz, Luikart & Tarbelet, 2003, Storfer et al., 2007, Avise, 2009). To explore processes 62	

underlying genetic diversity distribution, a representation of evolutionary relationships among 63	

organisms or populations by means of phylogenetic trees or networks is often performed. In 64	

this sense, networks are recognized to be more appropriate than trees, since the former allow 65	

visualization of reticulation events, such as hybridization and recombination (Kong, Sánchez-66	

Pacheco & Murphy, 2015). Nonetheless, a network representation per se does not allow 67	

robust hypothesis tests to evaluate the interplay between genetic variation across space and 68	

alternative explanatory factors. Analysis of molecular variance (AMOVA, Excoffier, Smouse 69	

& Quattro, 1992) has been widely used for this purpose (Fitzpatrick, 2009; Maestri et al., 70	

2016; Raffini et al., 2018). AMOVA, which is a permutation procedure akin to approaches 71	

often used in ecological studies, such as PERMANOVA (Pillar & Orlóci, 1996; Anderson, 72	

2001) allows analyzing whether pairwise genetic dissimilarities between individuals 73	

distributed across different sites or regions defined by groups of sites is higher than expected 74	

by chance given within site (or region) dissimilarities. Note that AMOVA is based on overall 75	

genetic dissimilarities, and therefore does not permit direct inference about effects of spatial, 76	

environmental and/or biogeographic factors on the distribution of haplotypes across space. 77	

Despite debates about different methods to construct haplotypes networks (see 78	

Mardulyn et al., 2012), phylogenetic median-joining network (MJN, Bandelt, Forster & Röhl, 79	

1999) is the method normally used in phylogeographical studies. The MJN method is based in 80	

the minimum spanning trees and shows the relationships between haplotypes obtained by the 81	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 25, 2018. ; https://doi.org/10.1101/330761doi: bioRxiv preprint 

https://doi.org/10.1101/330761
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 5	

distance measured among them (e.g. number of character differences - Hamming distance). 82	

The use of MJN has been grown exponentially since its development (Kong et al., 2015). 83	

Moreover, the network representation used to explore evolutionary relatedness among 84	

haplotypes do not allow neither a clear visualization of haplotype co-occurrence within sites 85	

nor general trends in haplotype distribution across space. 86	

 Phylogenetic eigenvectors have been used to express the variation of phylogenetic 87	

beta diversity (or simply phylobetadiversity) among an array of localities (Duarte, 2011; 88	

Duarte, Debastiani, Freitas & Pillar, 2016) based on phylogenetic fuzzy weighting (Pillar & 89	

Duarte, 2010). Phylogenetic fuzzy weighting allows describing sites by their phylogenetic 90	

composition based on species incidences/abundances and the phylogenetic relatedness among 91	

species (see also Duarte et al., 2016). The phylogenetic composition of a set of sites can be 92	

thereby decomposed into independent phylogenetic eigenvectors using Principal Coordinates 93	

of Phylogenetic Structure, or simply PCPS (Duarte, 2011; Duarte et al., 2016). Each 94	

eigenvector describes the sites by scores that position them along a phylogenetic gradient 95	

expressing a fraction of the total phylogenetic relatedness among the species distributed 96	

across the sites. By doing so, PCPS analysis renders single variables that synthesize 97	

phylogenetic gradients, and thereby can be used to analyses addressing environmental, spatial 98	

or biogeographic determinants of phylogeny-mediated species distribution (Duarte, Bergamin, 99	

Marcilio-Silva, Seger & Marques, 2014; Carlucci et al., 2016). 100	

 In this study we introduce HaploVectors, a new flexible analytical tool for molecular 101	

ecologists to disentangle biogeographic or environmental factors driving haplotypic 102	

distribution across space. For this, HaploVectors extends the application of phylogenetic 103	

fuzzy weighting in order to describe the distribution of haplotypes across sets of localities, 104	

allowing flexible exploratory analysis. Moreover, by applying appropriate null models, 105	
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HaploVectors allows to analyze multiple determinants of the frequencies of haplotypes, as 106	

well as the number of mutations separating different haplotypes, across sets of localities, 107	

providing robust hypotheses tests for phylogeographical studies. We demonstrate the 108	

application of HaploVectors in two empirical datasets. 109	

Materials and Methods 110	

Haplotypic eigenvectors 111	

Haplotypic eigenvector analysis and hypotheses tests based on null models were implemented 112	

in the R package HaploVectors (freely available at 113	

https://github.com/vanderleidebastiani/HaploVectors). The function ‘HaploVectors’ allows 114	

defining the frequency of each haplotype across a set of localities from where the individuals 115	

were sampled and to weight those frequencies across localities according to the number of 116	

mutational steps between all pairs of haplotypes arranged into a network based on fuzzy set 117	

theory (Zadeh, 1965). Further, the function implements null model tests to analyze the 118	

influence of environmental, biogeographic or spatial variables on the distribution of 119	

haplotypes across sets of localities, as well as to estimate to what extent such influence is 120	

mediated by the evolutionary distance between haplotypes. The rationale underlying the 121	

HaploVectors approach, including the null model tests, was adapted from phylogenetic fuzzy 122	

weighting (Pillar & Duarte, 2010), a method originally developed to analyze multiple 123	

determinants of phylogenetic composition across metacommunities based on fuzzy set theory 124	

(see details on the method in Duarte et al., 2016).  125	

The first analytical step implemented in HaploVectors consists of defining haplotypes 126	

for a set of samples and computing the frequency (number of individuals) of each haplotype 127	

per locality. For this, two input datasets are required: (1) a *.fas file containing aligned 128	
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genetic sequences for each sampled individual, and (2) a matrix describing the incidence of 129	

each individual (rows) in a given locality (column). Based on these two datasets, the function 130	

‘HaploNetDist’ extracts the haplotypes for the *.fas file using the function ‘haplotype’, and 131	

computes an haplotypic network using the function ‘haploNet’, functions originally 132	

implemented in the R package pegas (Paradis, 2010).  133	

Further, ‘HaploNetDist’ computes the frequency of each haplotype per locality 134	

(matrix W), and submit W to fuzzy weighting as follows: From the matrix D describing all 135	

pairwise distances between haplotypes based on the number of mutational steps between any 136	

pair of haplotypes, remove all distances between haplotypes not connected in the network, 137	

replacing them by the mutations separating two haplotypes in the network plus one. This 138	

procedure generates matrix DN, which reproduces haplotype connections described in the 139	

network. Matrix DN is further converted into a similarity matrix S describing the similarities 140	

between all pairs of haplotypes i and j (sij, ranging between 0 and 1), as follows: 141	

	142	

dij is the number of mutations separating the haplotypes i and j in DN, and max (dij) is 143	

the maximum number of mutations between any pair of haplotypes in the network. Matrix S 144	

is then standardized by marginal total within columns, generating a matrix Q that describes 145	

fuzzy belongings between haplotypes (Pillar & Duarte, 2010; Duarte et al., 2016). Matrix Q, 146	

containing haplotypic fuzzy sets are then employed to weight the frequencies of haplotypes 147	

per locality described in matrix W by their evolutionary relatedness, generating matrix P, 148	

which describes localities by their haplotypic composition, that is, haplotype frequencies per 149	

locality weighted by their evolutionary relatedness. The output of HaploVectors function 150	

provides matrices W, D, DN, Q and P.  151	

ijs =1− ijd
max ijd( )
"

#

$
$

%

&

'
'
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Performing principal coordinates on P generates haplotypic eigenvectors, which 152	

decompose the total variation in the haplotypic composition across the set of localities into 153	

independent fractions proportional to its respective eigenvalue λ. Those eigenvectors 154	

representing the higher amount of variation in P can be used to explore major trends in 155	

haplotype distribution across the localities. Those localities sharing most haplotypes will 156	

show similar scores, and therefore will group to each other in the scatter plot. Thus, this 157	

scatter plot allows simultaneously explore evolutionary links among haplotypes and localities. 158	

The function ‘HaploVectors’ also allows analyzing multiple environmental, 159	

biogeographic or spatial determinants of haplotype distribution across a set of localities, and 160	

therefore is a useful tool for robust hypothesis test in phylogeography. For this, the function 161	

implements two null model tests, adapted from Duarte et al. (2016) and designed to test the 162	

following hypotheses:  163	

Hypothesis 1: A given environmental, biogeographic or spatial factor E affects the 164	

distribution of haplotypes across a set of localities. This hypothesis is tested by means of a 165	

null model called site shuffle, which is a classical permutation-based procedure assuming 166	

independence between haplotypes and localities. The test can be performed based on either 167	

haplotypic dissimilarities between localities computed based on P (hereafter DP) using an 168	

appropriate resemblance measure, such as Euclidean distances or Bray-Curtis dissimilarities 169	

(Legendre & Legendre, 2012), or directly on single haplotypic eigenvectors. The test consists 170	

of 1) computing a FObs statistic. If DP is modeled on E, the test is based on a dissimilarity 171	

regression on distance matrices (hereafter called ADONIS; see McArdle & Anderson, 2001). 172	

For single haplotypic eigenvectors modeled on E, the test is an ordinary linear squares (OLS) 173	

model; 2) freely permuting the localities a number of times (say 999); 3) at each permutation 174	

step, computing Fnull; and 4) defining the probability of obtaining the observed statistic by 175	
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chance (H0 = FObs ≤ Fnull), as the proportion of permutations in which Fnull exceeded FObs. 176	

Using this procedure, the test simultaneously addresses the influence of E on the distribution 177	

of haplotypes across the localities (the number of haplotypes shared between pairs of 178	

localities) and to what extent such influence is mediated by the evolutionary relatedness 179	

between the haplotypes (the number of mutational steps between the pairs of haplotypes). 180	

Therefore, even if this first hypothesis is corroborated (H0 is rejected), such test does not 181	

allow us to conclude that the influence of E on haplotype distribution is or is not dependent 182	

on the evolutionary relatedness among haplotypes. To accomplish that, it is necessary to test a 183	

second hypothesis, which is conditioned on the validity of the first one: 184	

Hypothesis 2: The influence of E on the distribution of haplotypes across a set of 185	

localities depends on the evolutionary relatedness among them. To test this hypothesis, a 186	

second round of permutations (network shuffle) is needed in order to compute Fnull. 187	

Accordingly, the frequency of haplotypes in W is kept constant across the localities while 188	

evolutionary relatedness between them is permuted by haplotype label shuffling (Kembel et 189	

al., 2010). After computing FObs (step 1, as described for site shuffle), the procedure consists 190	

of 2) freely permuting haplotype labels in the network to generate random evolutionary 191	

relatedness among haplotypes and computing null matrices D, DN, Q and P. The procedure is 192	

repeated 999 times; 3) at each permutation procedure, computing null DP and, if necessary, 193	

null haplotypic eigenvectors. In this later case, null haplotypic eigenvectors are submitted to 194	

procrustean adjustment (Jackson, 1995) and fitted values between observed and null 195	

eigenvectors are obtained; 4) take null DP or selected adjusted null eigenvectors as response 196	

variable in ADONIS or OLS, respectively, using E as predictor, and compute Fnull values; 5) 197	

generating a set of Fnull to get the probability under the null hypothesis (H0 = FObs ≤ Fnull); 6) 198	

defining a probability under the null hypothesis.  199	
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By performing both null model tests, two probability values are generated. Previous 200	

analyses using simulated data demonstrated that both null models show appropriate type I 201	

error and statistical power (Duarte et al., 2016). Using site shuffle, whenever the null 202	

hypothesis is rejected, we conclude that E affects the distribution of haplotypes across a set of 203	

localities (hypothesis 1). Then we proceed to test for the hypothesis 2 (via network shuffle). If 204	

the null hypothesis is rejected, we conclude that the influence of E on the distribution of 205	

haplotypes across the localities depends on the evolutionary relatedness among them. In Fig. 206	

1 we illustrate the expected distribution of haplotypes and the respective probabilities 207	

generated under site and network shuffle models. 208	

Application using empirical datasets 209	

We demonstrate the application of HaploVectors in phylogeographical analyses through two 210	

empirical data sets: a set of cpDNA sequences from 333 adult individuals of Eugenia 211	

dysenterica, a tree species from Myrtaceae family, sampled from 23 localities (Lima, Telles, 212	

Chaves, Lima-Ribeiro & Collevatti, 2017), and a set of cpDNA sequences from 257 adult 213	

individuals of Mauritia flexuosa, a palm tree sampled from 26 localities (Lima, Lima-Ribeiro, 214	

Tinoco, Terribile & Collevatti, 2014). Both data sets are available at GenBank (accession 215	

numbers: MF752706-	MF753038 and KC527837-KC528609, respectively). 216	

Dataset 1: Eugenia dysenterica 217	

Using a phylogeographical approach, Lima et al. (2017) investigated the spatial pattern of 218	

genetic diversity on E. dysenterica, a widely distributed tree species in the Brazilian savanna. 219	

Four regions of the chloroplast were sequenced from individuals sampled at 23 populations 220	

throughout its distribution (for details about sampling and genetic data see Lima et al., 2017). 221	

The authors inferred the phylogenetic relationships among haplotypes using median-joining 222	
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network analysis. Furthermore, Analysis of Molecular Variance (AMOVA) was used to 223	

analyze spatial patterns of genetic variation among biogeographic regions of the Cerrado 224	

biome (Table 1). Although AMOVA pointed out genetic differentiation among sites located at 225	

three different Cerrado regions (Central, Northeast and Southeastern; P < 0.001), the results 226	

of the network analysis visually suggested that the phylogenetic relationships among 227	

haplotypes did not match the geographical distribution of the lineages (Fig. 2a). 228	

 We analyzed the variation in the distribution of haplotypes across the biogeographic 229	

regions of the Cerrado using HaploVectors approach. Our hypotheses propose that (1) the 230	

spatial distribution of haplotypes varies among the different biogeographic regions of the 231	

Cerrado biome, and that (2) the biogeographic distribution of haplotypes across the Cerrado 232	

regions depends on the evolutionary relationships among them. We tested these hypotheses 233	

using ADONIS, based on haplotypic dissimilarities between localities (DP), and OLS using 234	

haplotypic eigenvectors. For ADONIS, we computed matrix P using log-transformed 235	

frequencies of haplotypes per site (matrix W) and square-rooted Hamming distances between 236	

haplotypes (matrix DN). Haplotypic dissimilarities between sites were computed using 237	

Euclidean distances. The same three biogeographic regions of Cerrado were taken as a 238	

categorical predictor in the analysis (matrix E). For OLS, we first computed haplotypic 239	

eigenvectors (haplovectors) based on DP. Haplovectors containing more than 5% of total 240	

information in P were taken as response variables in linear models, while E was used as 241	

predictor. 242	

Dataset 2: Mauritia flexuosa 243	

Mauritia flexuosa is a dioecious palm species distributed widely across South America, 244	

occurring in Brazilian savannas and Amazonia (Lima et al., 2014). Because its occurrence is 245	

associated with wetlands, Lima et al. (2014) investigated spatial patterns in chloroplast 246	
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genome regions among populations of M. flexuosa occurring across four different river basins 247	

(Amazon, Araguaia/Tocantins, Paraná and São Francisco). For this purpose, the authors 248	

estimated phylogenetic relationships among haplotypes using the median-joining network 249	

analysis and performed a hierarchical analysis of molecular variance (AMOVA) to analyze 250	

the genetic differentiation among populations from different river basins. The haplotypic 251	

network (Fig. 2c) did not allow a clear congruence between the geographic distribution of 252	

phylogenetic lineages and river basins, although AMOVA found significant genetic 253	

differentiation among river basins (Table 1). For this dataset we performed similar analyses as 254	

described for E. dysenterica. 255	

Results 256	

For analyses performed using E. dysenterica dataset, ADONIS indicated that sites occurring 257	

at the same biogeographic region of the Cerrado biome share more haplotypes with each other 258	

than with sites located at different regions (Psite shuffle = 0.001, Table 1); nonetheless, such 259	

difference in haplotype composition is not related with evolutionary relatedness among 260	

haplotypes (Pnetwork shuffle = 0.973). The two first haplovectors (Fig. 2b), containing 32% and 261	

17% of total variation in haplotype composition of sites, respectively, indicated association 262	

between haplotype distribution across sites and biogeographic regions (Psite shuffle < 0.02). The 263	

first haplovector shows a separation of populations from Southeast Brazil (green circles) from 264	

other regions (Fig. 2b), which relies only on haplotype composition, but not evolutionary 265	

relatedness among haplotypes (Pnetwork shuffle = 0.936). On the other hand, the second 266	

haplovector discriminated some populations from Northeast Brazil from other regions (Fig. 267	

2b). In this case, an evolutionary signal in the association between haplotype composition of 268	

sites and biogeographic regions was detected (Pnetwork shuffle = 0.024), based mostly on the 269	

evolutionary path from haplotype one to 19 to 11 (Figs. 2a, 2b). 270	
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For the Mauritia flexuosa dataset, ADONIS rejected null hypothesis for both site 271	

shuffle and network shuffle null models (Table 1), indicating that haplotype composition 272	

differed between river basins (Psite shuffle = 0.01), and that such difference was mediated by 273	

evolutionary relatedness between haplotypes (Pnetwork shuffle = 0.005). For this dataset, only the 274	

first haplovector (Fig. 2d), containing 42% of total variation in haplotype composition of 275	

sites, indicated association between haplotype distribution across sites and river basins (Psite 276	

shuffle = 0.021), which was mediated by evolutionary relatedness between haplotypes (Pnetwork 277	

shuffle = 0.007). The first haplovector showed a clear separation between populations located in 278	

Amazon (left side of the plot in Fig. 2d), which were related to haplotypes seven and eight 279	

(Fig. 2c), and Araguaia/Tocantins basins (right side of the plot in Fig. 2d), mostly associated 280	

with haplotypes one to five. 281	

Discussion 282	

Current implemented methods for phylogeographical analyses treat haplotypic frequency 283	

across localities over a given environmental gradient/factor and phylogenetic relationships 284	

among those haplotypes in disconnected manners, lacking a clear conceptual framework to 285	

integrate both. Haplovectors provide such integration, allowing disentangling the 286	

environmental or biogeographic influence on haplotypic distribution and assessing whether 287	

that distribution is resulting from the evolutionary relationship among haplotypes. In cases 288	

where AMOVA (Excoffier et al., 1992) and analyses using haplotype networks (e.g., 289	

Templeton, 1998) reveal contradicting results of haplotypic distributions, we propose that 290	

HaploVectors can elucidate the conundrum. 291	

 In the first example (E. dysenterica dataset) we found that the influence of 292	

biogeographic regions at structuring haplotypes is independent from the evolutionary 293	

relatedness among them (i.e. the number of mutational steps separating haplotypes). This 294	
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shows that biogeographic regions are indeed structuring haplotypes (i.e. different haplotypes 295	

can be found in different regions, implying few haplotypes occurring in more than one 296	

region), however, inside any given biogeographic region, haplotypes are not the closely 297	

related to each other based on the phylogenetic relationships among haplotypes. This means 298	

that phylogenetic closely related haplotypes occur in distinct biogeographic regions, and each 299	

biogeographic region comprises exclusive haplotypes from multiple evolutionary origins. 300	

Different from that observed in E. dysenterica dataset, for the M. flexuosa dataset we 301	

found that haplotype composition differed between river basins and this difference was 302	

associated with the evolutionary relatedness among haplotypes. This reveals that haplotypes 303	

that occur in the same river basins are more phylogenetically related than those that occur in 304	

different river basins. These interpretations provided by HaploVectors solve the apparent 305	

paradox found in the results of previous analyses in both cases: the AMOVA found 306	

haplotypic differences among biogeographic regions and river basins; however, the 307	

haplotypic network failed to revel a clear structured haplotypic distribution over the same 308	

regions. The null model tests implemented in HaploVectors permit treating the haplotype 309	

frequency across localities on a given environmental factor, independently from the 310	

phylogenetic similarities among haplotypes. The combination of both tests in a joint approach 311	

allows for tracing a complete picture of the evolutionary history of populations. 312	

We hope that this approach will be useful in all cases where the distribution of 313	

haplotypes is hypothesized to be under the influence of an environmental or biogeographic 314	

factor. These questions are likely to be encountered with increasingly frequency by molecular 315	

ecologists and phylogeographers. 316	
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Table 1. Comparison between results obtained by Analysis of Molecular Variance (AMOVA) and null model 438	
tests implemented in HaploVectors. DP - haplotypic dissimilarities between localities computed based on matrix 439	
P.  440	
Source Case species Question Method Results 

Lima et al. 
(2017) 

Eugenia dysenterica 
Differences 

among Cerrado 
regions? 

AMOVA FCT= 0.164; P < 0.001 

   ADONIS on DP 
R2 = 0.20; FObs = 5.38; Psite shuffle = 0.001, 

Pnetwork shuffle = 0.973 
   

OLS on haplovectors 
Haplovector 1 (32%): 

   
R2 = 0.58; FObs = 11.44; Psite shuffle = 0.001, 

Pnetwork shuffle = 0.936 
    Haplovector 2 (17%): 

    
R2 = 0.15; FObs = 2.36; Psite shuffle = 0.016, 

Pnetwork shuffle = 0.024 
    Haplovector 3 (11%): 

    
R2 < 0.01; FObs = 0.34; Psite shuffle = 0.608, 

Pnetwork shuffle = 0.854 
    Haplovector 4 (9%): 

    
R2 < 0.01; FObs = 0.67; Psite shuffle = 0.432, 

Pnetwork shuffle = 0.111 
Lima et al. 
(2014) 

Mauritia flexuosa 
Differences 

among basins? 
AMOVA FCT = 0.387; P < 0.050 

   ADONIS on DP 
R2 = 0.23; FObs = 2.24; Psite shuffle = 0.010, 

Pnetwork shuffle = 0.005 
   

OLS on haplovectors 
Haplovector 1 (42%): 

   
R2 = 0.24; FObs = 2.78; Psite shuffle =0.021, 

Pnetwork shuffle = 0.007 
    Haplovector 2 (19%): 

    
R2 = 0.07; FObs = 1.23; Psite shuffle = 0.211, 

Pnetwork shuffle = 0.460 
    Haplovector 3 (13%): 

    
R2 = 0.03; FObs = 0.93; Psite shuffle = 0.304, 

Pnetwork shuffle = 0.695 
    Haplovector 4 (6%): 

        
R2 = 0.03; FObs = 1.28; Psite shuffle = 0.204, 

Pnetwork shuffle = 0.680 
 441	

 442	
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  443	
 444	
Fig. 1. Expected distribution of haplotypes (colors denote different haplotypes) across localities (squares) and 445	
the respective probabilities of homogeneity of haplotype composition among localities, under site and network 446	
shuffle null models. Scenario 1): Localities contain different haplotypes (Psite shuffle ≤ 0.05), but variation of 447	
haplotype composition among sites is not associated with evolutionary structure depicted by the haplotype 448	
network (Pnetwork shuffle > 0.05). Scenario 2): Localities contain different haplotypes (Psite shuffle ≤ 0.05), and 449	
haplotype distribution across sites is mediated by evolutionary relatedness among them (Pnetwork shuffle ≤ 0.05).  450	
 451	

3VLWH�VKXႉH�������
3QHWZRUN�VKXႉH�!�����

+DSORW\SH
1HWZRUN

6FHQDULR�� 6FHQDULR��
3VLWH�VKXႉH�������

3QHWZRUN�VKXႉH�������

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 25, 2018. ; https://doi.org/10.1101/330761doi: bioRxiv preprint 

https://doi.org/10.1101/330761
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 21	

 452	

Fig. 2. Haplotype networks and their respective scatter plots of haplovectors computed for two datasets. 1a-b) 453	
Eugenia dysenterica (Lima et al. 2017). Red, blue and green circles indicate Northeast, Central and Southeastern 454	
biogeographic regions of the Brazilian Cerrado biome, respectively. a) MJN haplotypic network; b) Scatter plot 455	
for the two first haplovectors. Black circles indicate haplotypes (H1-H19). 1c-d) Mauritia flexuosa (Lima et al. 456	
2014). Red, blue, orange and green circles indicate Amazon, Paraná, São Francisco and Araguaia/Tocantins river 457	
basins in South America, respectively. c) MJN haplotypic network; d) Scatter plot for the two first haplovectors. 458	
Black circles indicate haplotypes (H1-H9). 459	
 460	
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