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ABSTRACT12

‘Animal personality’ is considered formed through complex interactions of an individual and its sur-
rounding environment. How can we quantify the ‘personality’ of an individual? Although there is no clear
consensus, quantifying intra- and inter-individual variations of behavior, or individual behavioral type,
is a prerequisite in the studies of animal personality. We propose a statistical method to measure the
appropriateness of our assumption of ‘individual’ in repeatedly measured behavioral data, from each
individual from a predictive point of view. For a model case, we studied the sponge crab Lauridromia
dehaani known to make a ‘cap’ from a natural sponge and carry it for camouflage. Because a cap is
most likely to be rebuilt and replaced repeatedly, we hypothesized that each individual crab would grow
a unique behavioral type and it would be observed under an experimentally controlled environmental
condition. To test the hypothesis, we conducted behavioral experiments and newly took an approach of
Bayesian model comparison to examine whether the crab has the individual behavioral type in the cap
making behavior. The behavioral choices were given to a crab using artificial sponges of three different
sizes. We did statistical modeling to implement hierarchical structure specifying the behavioral type. We
modeled a choice of sponges, size of a trimmed part of a cap, size of a cavity of a cap, latency to pro-
duce a cap, as random variables in 26 models. In addition, we calculated widely applicable information
criterion (WAIC) value for each model to evaluate the models from the predictive point of view. As a
result, the crabs less than about 9 cm were found to make caps from the sponges. The body size well
explained the behavioral variables, choice, trimmed and cavity size, but not the latency. The behavioral
type was captured as a difference of WAIC of the models. Thus, we captured the behavioral type as a
probabilistic distribution structure in the behavioral data. Our statistical approach is not limited to behav-
ioral data but also applicable to physiological or morphological data when one would try to examine if
some group structure would exist behind fluctuating empirical data.
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INTRODUCTION35

An individual is an important hierarchical structure in biology. We aim to capture intra- and inter-36

individual variations in behavior as a probabilistic distribution structure, because it is a prerequisite for37

the study of ‘animal personality’ (Sih et al., 2004; Niemelä and Dingemanse, 2018). Because the term38

‘individual difference’ sometimes means only inter-individual difference, we use ‘individual behavioral39

type’ to refer to the two variations. Behavioral ecologists and evolutionary biologists have been interested40

in the behavioral type, because it can be a selective trait. At the evolutionary time scale, the structure of41

distribution is very likely to be related to a survival value of an individual. At the behavioral time scale,42

the behavioral type can be caused through complex and dynamic interactions of individual properties43

such as behavioral plasticity based on physiological processes, with surrounding dynamic environments.44

A typical interaction can be observed in body extending behaviors such as tool making and using (e.g.,45

Hunt, 1996; Wang et al., 2014; Matsui and Izawa, 2017; Sonoda et al., 2012). A body extending be-46
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havior which is basically a behavior attaching non-living thing to a body, seems to require at least some47

information processing to infer a current body size, in order to achieve an adaptive extension through the48

complex interactions. Uncertainty in the inference, and accumulation of experiences accompanying the49

realization of body extensions, might result in the emergence of the behavioral type. Here we examine50

the hypothesis that the individual behavioral type would emerge in a body extending behavior. As an51

example of the body extending behavior, the cap making and carrying behavior by the sponge crab is52

experimentally examined and statistically modeled in this study. To capture the structure, we need re-53

peated measurements and specific statistical modeling considering a hierarchical structure (Niemelä and54

Dingemanse, 2018). The hierarchical model such as a generalized linear mixed effect model (GLMM) is55

widely considered appropriate for the repeated data (Zuur et al., 2009; Niemelä and Dingemanse, 2018;56

Reinhart, 2015). However, it has been poorly examined in empirical data on how much appropriate a57

hierarchical model is against a non-hierarchical one such as a generalized linear model (GLM). One fa-58

mous statistical measure used in GLM from the predictive point of view is Akaike Information Criterion59

(AIC) (Akaike, 1974; Sakamoto et al., 1986). To calculate AIC, the maximum log-likelihood needs to60

be calculated, but in general, the predictive by the maximum likelihood (ML) method is inappropriate61

for hierarchical models (Watanabe, 2005). This is because a model with hierarchical structures is sta-62

tistically non-regular model and the assumptions set in the ML estimation is violated (Watanabe, 2005,63

2010b, 2018). Alternatively, a Bayesian procedure to construct a predictive distribution is known to64

perform better than the ML method in the hierarchical models (Watanabe, 2018).65

Although the basic Bayesian framework and its mathematical foundation of measuring predictabil-66

ity of an arbitrary pair of a statistical model and a prior distribution, has been rigorously established67

(Watanabe, 2010b,a, 2018), there is few applications of the framework to the behavioral data containing68

repeated measurements (Wakita et al., 2019). Specifically, a performance of a predictive distribution69

can be inferred by WAIC that is a measure of generalization error defined as the quantity of how well a70

specified predictive distribution is approximated with respect to an unknown true distribution that gener-71

ates data (Akaike, 1998; Watanabe, 2018). Furthermore, there are almost no appropriate applications of72

WAIC to hierarchical models for the repeatedly measured data. For constructing a predictive distribution73

using a hierarchical model, we are usually interested in a new observation from a new cluster other than74

clusters that provided observations. Therefore, we need to marginalize the parameters assigned to each75

cluster to calculate WAIC in that situation (Watanabe, 2018; Millar, 2018). However, this point does not76

seem to be recognized well not only in biological communities but also in other real-world data analyses77

in general.78

Therefore, we adopt the Bayesian model comparison framework using WAIC to study a specific79

individual behavioral type in the body extending behavior in the crab. In previous research, one field80

study dealt with the preference of dromiid crabs to materials and examined the association between a81

cap size with a body size (McLay, 1983). Additionally, it is reported that Cryptodromia hilgendorfi use82

caps made from many species of sponges, but they particularly prefer the sponge Suberites carnosus, and83

the crabs make sponge caps twice as large as the carapace area. In previous experimental research, the84

preference for material size and the suitability between body size and cap size is scarcely investigated.85

It is reported that Dromia personata mainly used sponges and ascidians (Bedini et al., 2003), while they86

could also make caps with paper (Dembowska, 1926). Dembowska (1926) reported non-breaking space87

is used qualitatively and the cap size made by Dromia personata (reported as D. vulgaris) with paper is88

as large as the size of those that the crabs originally carried. Because these studies sampled a body size89

and a camouflage size once for an individual, it is unclear whether there is an individual behavioral type.90

In addition, it is unknown whether the behavioral type conditional on body size exists in the cap making91

behavior. Thus, although the crabs in the family Dromiidae have been known to make a cap (Guinot and92

Wicksten, 2015), the behavior of the Lauridromia dehaani has not been examined so far.93

Taking into account the lack of the experimental data of cap making in the crab Dromia personata94

and the limitations of the statistical approach hitherto, we set the four goals to study the individual behav-95

ioral type in the body extending behavior: (1) to perform behavioral experiments sampling behavioral96

data repeatedly, (2) to formulate an individual behavioral type in statistical models, and simultaneously97

to construct other models assuming no such a behavioral type, (3) to measure predictive performance98

of those models by WAIC including hierarchical models assuming an individual behavioral type and99

compare them with non-hierarchical models assuming no such a type, (4) to infer an association of the100

behavioral data with body size by conditioning the behavioral variables by the body size.101
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MATERIALS & METHODS102

The whole data and codes are available from the supplementary material.103

Animal collection104

From December 2015 to April 2017, 40 individuals (21 males, 19 females) of Lauridromia dehaani105

(Brachyura: Dromiidae) (Fig. 1A) were obtained with a gill net at the Sakai fishing port, Minabe town,106

Wakayama, Japan (33◦ 44 'N, 135◦ 20 'E). We conducted behavioral experiments of cap making on 38107

individuals (20 males, 18 females) and video recorded for 2 individuals (4.30 cm and 7.19 cm of the108

carapace widths for each) in a tank filled with filtered natural seawater (about 3.4 % of the salinity) at109

Shirahama Aquarium, Seto Marine Biological Laboratory, Kyoto University (33◦ 41 'N, 135◦ 20 'E),110

from December 2015 to June 2017. For the behavioral experiments, we successfully sampled repeatedly111

from 8 individuals (3 or 5 times for each). Thus, in the other 30 individuals, we sampled one observation112

from one individual. Note that the samples sizes of the behavioral acts for each individual are different,113

but our method is applicable. Before the experiments, all individuals were maintained in the tanks (19.5–114

23.8 ◦C, light on: 8–17, light off: 17–8) of the aquarium for more than two days for acclimation. We115

measured their carapace width (cm) (Fig. 1B) for a proxy for the body size, and divided them into three116

levels depending on whether they lacked any of the fourth and fifth pereiopods: (O) none of the fourth117

and fifth pereiopods were absent, (1) one of them was absent, (2) both of the fourth and fifth of each side118

were absent.119

Experimental setup and procedure120

We prepared white melamine foam manufactured worldwide (most notably by BASF of Germany) and121

often used in a general household (Gekiochi-kun, LEC, Inc.) of three classes of size (S: 20 mm × 30122

mm × 40 mm; M: 30 mm × 60 mm × 85 mm; L: 30 mm × 140 mm × 150 mm). We used this sponge123

because it is easy to sink.124

First, to confirm that the cap making behavior by the crab Lauridromia dehaani is similar to the125

behavior in the reports (Dembowska, 1926; McLay, 1983), we video-recorded the behavior from the two126

crabs. They were used only for the recording in the aquarium (310 mm × 180 mm × 240 mm, W ×127

L × H ). We started the recording from 9 to 10 in the morning, stopped 2 hours after the crab stopped128

cap making. We used red light through a polyvinyl chloride board and excluded another light source by129

enclosing the aquarium. We recorded 5 examples for each crab.130

Second, we performed the experiment of size choice, trimming, and excavating behavior. S size131

sponge was smaller than all crabs, whereas L size was larger than all crabs. Each sponge was put132

pseudo-randomly to either side and the back center of the cage (700 mm × 470 mm × 190 mm, W ×133

L × H, Fig. 1C), which floated in the tank. Then, crabs were introduced to the front center of a cage134

floating in a tank, thereby the distance between each sponge and the crab was equal. We started a trial135

from 9 to 10 in the morning and checked whether a crab carried any sponge once a day. We counted136

the days when the crab carried a sponge. The latency as days to produce a cap is modeled as a random137

variable. Note that the crab was assumed to make a cap at night, because it is considered nocturnal138

(McLay, 1983). If it did, we collected a sponge, otherwise, the crab and three sponges remained in the139

cage. When the crab did not carry any sponge for five days, we stopped the trial. We desiccated all140

sponges that the crabs processed and measured whole area (cm2), and area of the concave part (cm2)141

excavated by a crab from the pictures taken 46 cm above the sponges. The trimmed area and concave142

area are modeled as random variables. First, we performed one trial for one individual (Nanimal = 30),143

but five trials for one individual after February 2017 (Nanimal = 8) to examine the behavioral type after144

we hypothesized that the type would be formed in the behavior.145

Statistical modeling146

In order to quantify the behavioral type in the behavior, we constructed 26 statistical models (Table. 1) for147

the four different aspects: (1) choice of sponge size (6 models), (2) amount of sponge trimmed by cutting148

(8 models), (3) size of cavity (6 models), and (4) latency to produce a cap (6 models). In each case, we149

build the statistical models specifying individual behavioral types as hierarchical structures with parame-150

ters and performed MCMC samplings from the posterior distribution. Also, we conditioned the variables151

with the carapace width, levels of leg absence, and gender. We specified the models in the probabilistic152

programming language Stan (Stan Development Team, 2018). We used non-informative uniform priors153
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for some parameters unless otherwise explicitly described. The performed samplings from the posterior154

distributions using No-U-Turn Sampler (NUTS) implemented as a Hamiltonian Monte Carlo (HMC)155

sampler in Stan. Sampling convergence was visually diagnosed by trace plots and quantitatively via156

the Gelman-Rubin convergence statistic, Rhat (Gelman et al., 1992). All sampled draws were judged157

to be converged when Rhat < 1.10, were used to construct predictive distributions with WAIC on each158

model. All computations were performed in the R statistical environment (R Core Team, 2018), and the159

Stan codes for each model were compiled and executed through the R package rstan (Stan Development160

Team, 2018).161

We compared the predictive performances of the models using WAIC (Watanabe, 2018, 2010b). It162

should be emphasized that WAIC of a hierarchical model can be defined in several ways depending on163

how a predictive distribution is defined. In our case, as we would like to construct a new distribution164

regarding a new act of a new individual, we have to marginalize the intermediate parameters assigned165

to each individual in the statistical model (Watanabe, 2018). This is because we are interested in the166

prediction of a new behavioral act when we get a new individual and get a new behavioral act instead167

of the prediction of a new behavioral act from the individuals sampled in this study. By performing168

this procedure, we can equally compare a hierarchical model with a non-hierarchical model, because the169

focus of the prediction in a non-hierarchical model is on a new behavioral act of a new individual.170

Here we briefly describe the basic procedure based on Watanabe (2018). Let Xn = (X1, . . . ,Xn) be an171

i.i.d. sample from the true distribution and p(x|w) a distribution with w assigned to each individual. Fur-172

thermore, w is assumed to be taken from φ(w|w0) to form a hierarchical structure. Then, our statistical173

model is built like pmodel(x|w0) by marginalizing w out:174

pmodel(x|w0) =
∫

p(x|w)φ(w|w0) dw. (1)

WAIC is a measure for the degree of accuracy of an approximation of a predictive distribution to175

the true distribution generating data. For our hierarchical model, the predictive distribution is defined as176

Ew0 [pmodel(x|w0)]. Then, the marginal-level WAIC for a hierarchical model is defined as:177

WAICh =− 1
N

N

∑
i=1

logEw0 [pmodel(Xi|w0)]+
1
N

N

∑
i=1

logVw0 [pmodel(Xi|w0)] (2)

where Ew0 [ ] and Vw0 [ ] are the average and variance operator of the posterior distribution of w0. w0 is178

estimated so that practically the MCMC sample is used, thus numerical integration is required. In this179

study, the computation is implemented in the ‘function’ block in the Stan codes using a Simpson’s rule180

and the log sum exp function provided in Stan (see supplementary material).181

On the other hand, WAIC for a non-hierarchical model is defined for a statistical model pmodel(x|w):182

WAICnon−h =− 1
N

N

∑
i=1

logEw[pmodel(Xi|w)]+
1
N

N

∑
i=1

logVw[pmodel(Xi|w)] (3)

where Ew[ ] and Vw[ ] are the average and variance operator of the posterior distribution of w. Note that183

the often used conditional-level WAIC is described in the Discussion.184

Choice of material size (model 1 1)185

To provide an overview of specified models, we here describe only the best-performing models in terms186

of WAIC. The other models are summarized in Table 1.187

We formulate a tendency toward a choice as µ[n,m] (m = 1,2,3 for M, L, skip, respectively):188
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µ[n,1] = 0, (4)
µ[n,2] = achoiceL [ID[n]]+bchoiceL ·CarapaceWidth[n]+ cchoiceL ·LegLack[n], (5)
µ[n,3] = dchoice0 + echoice0 ·CarapaceWidth[n]+ fchoice0 ·LegLack[n], n = 1, . . . ,Nact

(6)

where Nact = 68 is the total number of behavioral acts, and ID represents animal identity (from 1 to189

Nanimal =38). µ is linked to the linear predictor in terms of the carapace width, CarapaceWidth and the190

level of absence of leg, LegLack. The choice for M size is fixed to zero. achoiceL is for each individual,191

thus it is hierarchized. dchoice0 is not hierachized. The distribution of achoiceL is defined as the normal192

distribution with the mean achoiceL0 and standard deviation achoiceLs :193

achoiceL [k]∼ Normal(achoiceL0 ,achoiceLs), k = 1, . . . ,Nanimal . (7)

The actual choice Choice is defined as the categorical distribution with the softmax function:194

Choice[n]∼Categorical(so f tmax(µ[n, ])), n = 1, . . . ,Nact . (8)

Thus, in this case, a statistical model pmodel(x|w0) is set using the parameters:195

w0 = (achoiceL0 ,achoiceLs ,bchoiceL ,cchoiceL ,dchoice0 ,echoice0 , fchoice0). (9)

Note that w = achoiceL is marginalized out when we build the predictive distribution, so that it is196

not included in w0. The choice Choice[n] is modeled as a random variable Xn. CarapaceWidth[n] and197

LegLack[n] are the conditioning variables.198

Trimming (model 2 1)199

The probability of a decision whether an animal cut off the sponge is written as ϕcut linked to the linear200

predictor with the carapace width CarapaceWidth and the selected sponge size Choice[n]:201

ϕcut [n] = InverseLogit(acut [ID[n]]+bcut ·CarapaceWidth[n]+ ccut ·Choice[n]) (10)
n = 1, . . . ,Nact . (11)

acut is assigned for each individual. Nact = 51 and ID is from 1 to Nanimal = 30. The distribution of202

acut is defined as the normal distribution with the mean acut0 and standard deviation acuts :203

acut [k]∼ Normal(acut0 ,acuts), k = 1, . . . ,Nanimal . (12)

The prior distribution of acuts is defined as the half t distribution:204

acuts ∼ Student t+(4,0,10). (13)

The mean area of a sponge trimmed by the crab λ is linked to the linear predictor with the log link205

function:206

log(λcut [n]) = dcut [ID[n]]+ ecut ·CarapaceWidth[n]+ fcut ·Choice[n], n = 1, . . . ,Nact . (14)
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dcut is assigned for each individual. The distribution of dcut is defined as the normal distribution with207

the mean dcut0 and the standard deviation dcuts :208

dcut [k]∼ Normal(dcut0 ,dcuts), k = 1, . . . ,Nanimal . (15)

The prior distribution of dcuts is defined as the half t distribution:209

dcuts ∼ Student t+(4,0,10). (16)

Altogether, the area of trimmed sponge is modeled as the variable Trimmed. The distribution of it is210

defined as the zero-inflated Poisson distribution (ZIP) with the parameters ϕcut and λcut :211

Trimmed[n]∼ ZIP(ϕcut [n],λcut [n]), n = 1, . . . ,Nact . (17)

When a crab skips trimming behavior, Trimmed is set to zero even if the sponge size is smaller than212

the defined sizes of M or L due to measurement errors. Note that Trimmed is rounded to integer. We213

consider that the rounding process has no significant impact on the data distribution.214

Cap cavity making (model 3 1)215

To examine how the cap cavity size CavitySize is explained by the carapace width CarapaceWidth,216

the gamma distribution is chosen to represent non-negative value of the cavity size. The mean of the217

distribution is specified by lambdacavity with shape and rate parameters:218

CavitySize[n]∼ Gamma(shape,
shape
λcavity

), (18)

log(λcavity) = acavity[ID[n]]+bcavity ×CarapaceWidth[n], n = 1, . . . ,Nact . (19)

where the rate parameter was given as the shape over the log-linked linear predictor and acavity is the219

intercept for each individual. Nanimal = 30,andNact = 51. The acavity is taken from the normal distribution220

with the mean acavity0 and the standard deviation acavitys :221

acavity[k]∼ Normal(acavity0 ,acavitys), k = 1, . . . ,Nanimal . (20)

latency (model 4 1)222

We assumes that the latency to produce a cap, Days, fits the ZIP distribution which is similar to the223

Trimmed case:224

ϕday[n] = InverseLogit(aday), (21)
log(λday[n]) = bday[ID[n]], (22)
bday[k]∼ Normal(bday0 ,bdays), k = 1, ...,Nanimal , (23)
Days[n]∼ ZIP(ϕday[n],λday[n]), n = 1, ...,Nact . (24)

where Nanimal = 32,Nact = 56. Note that bday is into this model to construct a hierarchical structure.225

6/12

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2020. ; https://doi.org/10.1101/330787doi: bioRxiv preprint 

https://doi.org/10.1101/330787
http://creativecommons.org/licenses/by-nc-nd/4.0/


RESULTS226

We measured and modeled as random variables the four variables: the choice of sponge size, trimmed227

size, cavity size, and latency for completing making sponge. Furthermore, we evaluated the model228

predictability by WAIC (see Materials and Methods).229

Cap making using an artificial sponge230

The behavior of the two crabs was video recorded to confirm the behavioral sequence of cap making231

using an artificial sponge. They grasped either side of the sponge by the second and third pereiopods,232

and trimmed small pieces of the sponge by the chelae (Fig. 2A upper left, upper right, Supplementary233

movie 1). They visited to the two sides of the sponge. To make a cavity the crabs rotated their body234

backward and grasped it by the fourth and fifth pereiopods. By repeating these behaviors, the crabs235

made a groove to cut off a portion of a sponge. On average, it took about 50 minutes to cut the portion,236

and the crabs started excavating as soon as they finished the trimming behavior in 9 of 10 trials except237

for one trial which took 19 minutes.238

Next, the crabs made cavities by tearing off small pieces of a sponge (Fig. 2A bottom, Supplementary239

movie 2). It took 11 minutes on average to excavate the cavity. Then, the crabs rotated their body240

backward in order to catch it with the fourth and fifth pereiopods while they kept the portion grasped by241

second and third pereiopods. Finally, the crabs released the second and third pereiopods from the cap242

and began to carry it (Fig. 2B, C). In the behavior, it often happened that they rotated their body forward,243

dorso-ventrally to make the cavity larger. It is rare to move laterally. They repeated excavating up to244

eleven times per night and it took up to four hours. When the crabs rotated their bodies, the direction245

of rotation was maintained along with the sponge. While the crabs cut the sponge, they actively moved246

around the sponge. In contrast, they persistently stayed under the sponge during excavating.247

Sponge choice248

None of the 38 animals choose the S size sponge, and 7 animals skipped the cap making behavior249

(Fig. 3A). Therefore, we defined the choice as a random variable taking the three values: M, L, or250

skipping. The hierarchical model assuming behavioral types 1 1 (Fig. 3A, B) outperformed the non-251

hierarchical one in terms of WAIC (0.87 to -2.13, Fig. 3A-D, Table 1). The posterior probability of252

the behavioral choices was more widely variable on the model 1 1 than in model 1 6 depending on253

the individual difference specified as achoiceL (Fig. 3B). The probability of choice sampled from the254

posterior distribution is visualized in white lines (Fig. 3A,C). Note that the variability of the choice255

probability in the white curved lines is smaller than the model 1 1 even if the number of lines are the256

same. Although the body size of the animal indicated with the white arrowhead (Fig. 3A) is small,257

it preferably selected the size L. This indicates a large inter-individual difference. In either case of258

hierarchical or non-hierarchical model, the behavioral choice of the sponges was better explained by the259

carapace width (Fig. 3A,C; Table 1). The estimated information gained by the model 1 1 against model260

1 3 is 1.35 (Table 1). This suggests that larger crabs tend to choose L size sponge rather than M size.261

However, the crabs larger than about 9 cm carapace width did not choose the sponges.262

Trimming263

After a choice of M or L size sponge, the crabs decided whether to trim an extra part of the sponge (Fig.264

4A-C). Here, we modeled the size of an area in a sponge that was trimmed (Nanimal = 30). The trimmed265

sponge showed the three patterns (Fig. 4C). They cut off (1) all four corners of a sponge, (2) one corner266

of it elliptically, or (3) two corners of it linearly. The crabs trimmed the white area (Fig. 4C) and started267

excavating a cavity (Fig. 4C). The twenty three crabs skipped the trimming behavior in 33 trials.268

After trimming or skipping, they started excavating. For a behavioral act of trimming, a non-zero269

data point indicating a trimmed size of the sponge was recorded (Fig. 4A,B). The size decreased with270

the increase of the carapace width. If a crab skipped trimming, a data point was recorded at zero (Fig.271

4A), meaning no trimming. When crabs chose M size sponges, almost all crabs except for one individual272

decided not to trim the sponge. Meanwhile, they less trimmed the sponges in relation to the increase of273

their body sizes when they chose the L size sponges.274

The WAIC of the hierarchical model 2 1 was -2.08 and that of comparable non-hierarchical model275

2 6 was 7.40 (Fig. 4D, Table 1), indicating that the hierarchical model is far better than the non-276

hierarchical one.277
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Cavity size278

Six crabs just cut the sponge and did not excavate the sponge. We modeled the size of a cavity in a cap279

(Nanimal = 30) as a random variable taken from the gamma distribution with the log link function (Fig.280

5). The size increased with the carapace width, and the model considering individual behavioral types281

performed best (Table 1). WAIC of the hierarchical model 3 1 is smaller than that of the comparable282

non-hierarchical model 3 2 (4.45 and 4.54, respectively; Fig. 5A,B, Table 1). The individual with the283

arrowhead (Fig. 5A) made relatively large cap cavities, indicating an large inter-individual difference.284

As expected, larger crabs made larger cavities. The difference of WAIC is about 0.1 (Fig. 5B). The285

improvement of the predictability is relatively small against that of sponge choice, suggesting that the286

individual behavioral type would be less in the determination of cavity size.287

Latency288

We modeled the latency for cap making (from the choice of sponge to carrying) by 32 crabs as a random289

variable taken from the zero-inflated distribution (Fig. 6). No obvious relation was found between the290

carapace width and the latency, and a number of crabs had carried the cap by the next day. However,291

the hierarchical model 4 1 outperformed the non-hierarchical model 4 2 (WAIC values, 1.10 and 1.28292

respectively).293

DISCUSSION294

First, we proposed a statistical method applicable to capture an individual as a probabilistic distribution295

structure in the repeatedly measured data. The difficulty measuring appropriateness of a statistical model296

was overcome by a Bayesian approach and WAIC. Second, we applied the framework to the a real297

problem whether individual behavioral types can be captured in a body extending behavior, cap making298

and carrying in the sponge crab. Thus, we demonstrated that the behavioral type existed in the behavioral299

variables: the choice of sponge size, the trimming size, and the cavity size, but not in the latency to300

produce a cap. Simultaneously, we examined the conditioned models on body size, and confirmed that301

behavioral types remained even when conditioned on the body size differences among individuals.302

Statistical modeling from the predictive point of view303

Another statistical measure R2 to quantify the intra- and inter- ‘class’ (‘group’, ‘cluster’ are also used304

interchangeably) variation has been proposed (Nakagawa and Schielzeth, 2010) and used for empirical305

data (e.g. Mitchell et al., 2016). The R2 is a measure of ‘variance explained’ (Nakagawa and Schielzeth,306

2010). The variances are measured by fitting models and taking the ratio of variance parameters. It307

measures the decrease of a variance of a hierarchical model against a null model. Thus, a focus of the308

method is on parameters defined in models.309

Because of the immense complexity in the biological phenomena, it is practically effective to explore310

statistical models as descriptive models from the predictive point of view which focuses a distribution311

of a new sample conditioned on the obtained samples (Akaike, 1985). We took the view because we312

considered it is a straightforward and effective way to model the variability, instead of the focus only313

on the obtained samples such as R2. Akaike (1985) established the foundation of the framework and314

the information criterion AIC is widely used in many scientific fields. However, it is inappropriate315

for mixed models and hierarchical models. The reason is that an essential step of calculating AIC, the316

maximum likelihood estimation is inappropriate for those models (Watanabe, 2005). For the hierarchical317

models, an important assumption does not hold. Specifically, asymptotic normality of the maximum318

likelihood estimator does not hold, because the “mapping from parameters to probability distributions is319

not one-to-one and the set of parameters whose Kullback informations are equal to zero has singularities”320

(Watanabe, 2005). In the situation, AIC does not correspond to the generalization error that we want to321

minimize when we consider appropriateness of a model from the predictive point of view. However,322

recently, the mathematical basis of the measure WAIC that is widely applicable is established even in the323

situation (Watanabe, 2010b, 2018).324

Although WAIC is beginning to be used for evaluating models with empirical data, we should be325

careful to compute the value on a hierarchical model. Watanabe (2018) introduces two different def-326

initions of WAIC depending on two different predictions. The often-used definition of WAIC for the327

hierarchical model is the first case in the book:328
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pposterior(wk|(xk)
l) ∝ φ(wk|w0)

Nact

∏
l=1

pmodel(xlk|wk) (25)

WAICk =− 1
Nact

Nact

∑
l=1

logEwk [pmodel(xlk|wk)]+
1

Nact

Nact

∑
l=1

logVwk [pmodel(xlk|wk)] (26)

WAICconditioned =
Nanimal

∑
k=1

WAICk (27)

k = 1, . . . ,Nanimal ; l = 1, . . . ,Nact (28)

where (xk)
l = (x1

k , . . . ,x
Nact
k ) represents all given data for an individual. Note that the number of behav-329

ioral acts of the k-th animal is the same (balanced) for simplicity here (The number is unbalanced in our330

data). It should be noted that the statistical model pmodel(xlk|wk) is conditioned upon wk assigned to each331

individual. In other words, this model focuses on a new act of the already obtained individuals. Instead,332

to compare the models, our focus is usually on a new act of another individual. In many cases, regarding333

‘animal personality’, we are not usually interested in how our model explain the sampled animals itself.334

Instead, we are interested in a distribution of a focused species. This is the reason why we did not use335

this conditioned-level WAIC. However, it is used with a software without the consideration on this point.336

For example, Mitchell et al. (2016) uses conditioned-level WAIC to compare a hierarchical model with337

a non-hierarchical model. Furthermore, using the measure R2 for the evaluation of the model in terms338

of ‘variance explained’ is focused on how we can minimize the variation in the sample obtained, not339

focused on the prediction of the true distribution (Nakagawa and Schielzeth, 2010). We took the pre-340

dictive point of view and explored a better model not the ‘correct’ model, because it would be a natural341

assumption that a distribution we build never be correct in any empirical modeling.342

Making cost and size choice: why the crab skipped carrying sponge?343

The crabs in our experiments that did not carry caps were larger than those that carried caps. One344

possibility for the reason would be that when they grow up to some extent, the predators might avoid345

the crab and the relative energetic cost to make caps might increase. We speculate that this might be a346

reason why the large crabs did not make nor carry the caps.347

Another possibility is that the sponges used in this experiment were smaller than those of the nec-348

essary size for the crabs. Dembowska (Dembowska, 1926) reported that the proportion of a cap to a349

size of D. personata tended to decrease with the increase of the size of the crabs, and considered that350

this was because there were few sponges that fit the large crabs. Similarly, the large crabs that skipped351

cap making and carrying, would carry a cap if a sponge size would be larger than the L size sponge. In352

addition, no individuals carried the S sponge, because it was too small for all of the crabs to carry. It is353

likely that a younger and smaller crab than that used in this experiment would carry the S sponge.354

Difference of individual behavioral type among behavioral aspects355

We focused a body extending behavior by the sponge crab, because to make the living or non-living356

materials suitable to the animal body, the individual appears to rely on plastic properties in the behavior.357

For another crustacean example of body extending, the hermit crabs are well known to prefer specific358

shells (Bertness, 1980; Hazlett, 1981; Wilber, 1990). Although hermit crabs cannot modify the shells by359

themselves, they are suggested to recognize and learn the shape of extended shells and the surrounding360

terrain (Sonoda et al., 2012). Therefore, the hermit crabs also might have behavioral types.361

McLay (1983) showed in the Cryptodromia hilgendorfi the relationship of the body and cap size362

using a log link function and Gaussian distribution. As shown in the crab, we conditioned the variables363

on the carapace width of the crab Lauridromia dehaani. To consider ‘animal personality’, it is important364

to appropriately condition out the variables assumed to have much information about the behavioral365

variable. The body size is presumed to be an influential variable for cap making behavior.366

Therefore, we conditioned all behavioral variables upon body size and found that the predictability367

improved by adding an assumption of ‘individual’ in all behavioral aspects. The improvement was368

larger in sponge choice rather than in cavity size. Because the cavity size was determined by repeated369

excavation and body rotation, the crab might have used the carapace as a ‘measure’. However, in the370
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choice task, the information processing to measure an appropriate size would be less dependent on the371

measure. We speculate that this makes a room for emerging of individual behavioral types dependent on372

behavioral plasticity unique to an individual.373

FIGURE LEGENDS374

Figure 1. Experimental animal and setup. (A) Lauridromia dehaani; p—propodus of fifth pereiopod;375

d—dactylus of fifth pereiopod; c—chela (1st pereiopod); 2p—second pereiopod; 3p—third pereiopod;376

4p—fourth pereiopod; 5p—fifth pereiopod. (B) Carapace width we measured. (C) Experimental cage377

floating in an aquarium tank with three different sizes of sponges. The drawings are by the authors.378

Figure 2. Cap making and carrying behavior. (A) Cap making behavior. (B–C) Carrying behavior of379

a crab. The drawing is by the authors.380

Figure 3. Sponge choice. (A) Predictive distribution on the hierarchical model 1 1 with data points of381

the behavioral choices, which are M or L size choices or skipping the behavior. The points connected382

by dotted lines represent data from the same individual. The white curved lines are ten samples from383

the posterior distribution in decreasing order from the highest density of a parameter representing a384

probability of a choice. (B) Structure of the model 1 1 in a graphical model. achoiceL is a parameter385

assigned to each individual. The variables in the black and white ellipses represent observed data and386

parameters to be estimated, respectively. (C) Predictive distribution of a choice on the non-hierarchical387

model 1 6. (D) Structure of the model 1 6 in a graphical diagram.388

Figure 4. Trimming. (A) Upper plot: the predictive distribution on the hierarchical model 2 1.389

The white dotted lines connect the data points from the same individual. Lower plot: the predictive390

distribution visualized by re-scaling the color density of the expanded area in the upper plot except for391

the zero in the y-axis. (B) Predictive distribution on the non-hierarchical model 2 6. (C) Outline of392

the trimming process from a choice of a sponge (animals larger than about 9 cm skipped the whole393

behavior), trimming behavior (part of animals skipped this behavior), to cavity making. The drawing is394

by the authors.395

Figure 5. Excavated cavity in a cap. (A) Predictive distribution of a cavity size on the model 3 1. The396

white points connected by dotted lines are from the same individual. (B) Predictive distribution on the397

model 3 1. The drawing is by the authors.398

Figure 6. Latency to produce a cap. (A) Outline of cap making until carrying. (B) Predictive399

distribution of the latency on the model 4 1. Points from the same individual are connected by dotted400

lines. (B) Predictive distribution on the model 4 2. The drawing is by the authors.401
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response variable model hierarchical structure conditioning variables link function distribution WAIC (nat) dWAIC (nat) plot

Choice 1 1 intercept L CW L Leg L CW NO Leg NO softmax categorical -2.13 0.00 Fig.3A
Choice 1 2 intercept L CW L CW NO softmax categorical -1.87 0.26 –
Choice 1 3 intercept L – softmax categorical -0.88 1.25 –
Choice 1 4 intercept L Leg L Leg NO softmax categorical -0.78 1.35 –
Choice 1 5 – CW L CW NO softmax categorical 0.85 2.99 Fig.3C
Choice 1 6 – CW L Leg L CW NO Leg NO softmax categorical 0.87 3.01 –
Trimmed size 2 1 intercept 1 intercept 2 CW Choice logit log ZIP -2.08 0.00 Fig.4A
Trimmed size 2 2 intercept 2 Choice logit log ZIP 0.81 2.89 –
Trimmed size 2 3 intercept 2 CW Choice logit log ZIP 0.86 2.95 –
Trimmed size 2 4 intercept 2 – logit log ZIP 1.23 3.32 –
Trimmed size 2 5 intercept 2 CW logit log ZIP 1.37 3.46 –
Trimmed size 2 6 – CW Choice logit log ZIP 7.40 9.48 Fig.4B
Trimmed size 2 7 – CW logit log ZIP 10.05 12.13 –
Trimmed size 2 8 – – logit log ZIP 12.55 14.63 –
Cap cavity size 3 1 intercept CW log gamma 4.45 0.00 Fig.5A
Cap cavity size 3 2 – CW log gamma 4.54 0.08 Fig.5B
Cap cavity size 3 3 – CW Gender log gamma 4.69 0.24 –
Cap cavity size 3 4 intercept – log gamma 4.71 0.26 –
Cap cavity size 3 5 – CW identity normal 4.75 0.30 –
Cap cavity size 3 6 intercept cw CW log gamma 6.18 1.73 –
Latency for making 4 1 intercept 2 CW logit log ZIP 1.10 0.00 Fig.6A
Latency for making 4 2 intercept 2 – logit log ZIP 1.28 0.18 –
Latency for making 4 3 – – logit log ZIP 1.28 0.19 Fig.6B
Latency for making 4 4 – Choice logit log ZIP 1.30 0.20 –
Latency for making 4 5 – CW logit log ZIP 1.38 0.28 –
Latency for making 4 6 – CW Choice logit log ZIP 1.72 0.62 –

Table 1. Summary of model structures and the predictive performances in WAIC. Abbreviations,
intercept L: intercept in the linear predictor (LP) for the choice of L; intercept 1: intercept in the LP for
the decision of trimming; intercept 2: intercept in the LP for the mean of the trimmed size of the
sponge; cw: slope in the LP for the carapace width; CW: carapace width; Leg: degree of the leg lack;
L and NO: parameters for L sponge and skipping, respectively; Choice: choice whether to cut the

sponge; Gender: gender of the animal; intercept 2: intercept in the LP for the mean of the days to
carrying; Choice: choice of sponge size; ZIP: Zero-inflated Poisson distribution; WAIC: value of
Widely-Applicable Information Criterion per a sample; dWAIC: the difference of the WAIC of the
model against the best-performed model.
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