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Abstract 26 

Single-cell transcriptomic profiling is a powerful tool to explore cellular heterogeneity. However, 27 
most of these methods focus on the 3’-end of polyadenylated transcripts and provide only a 28 
partial view of the transcriptome. We introduce C1 CAGE, a method for the detection of 29 
transcript 5’-ends with an original sample multiplexing strategy in the C1TM microfluidic system. 30 
We first quantified the performance of C1 CAGE and found it as accurate and sensitive as other 31 
methods in C1 system. We then used it to profile promoter and enhancer activities in the cellular 32 
response to TGF-β of lung cancer cells and discovered subpopulations of cells differing in their 33 
response. We also describe enhancer RNA dynamics revealing transcriptional bursts in subsets 34 
of cells with transcripts arising from either strand within a single-cell in a mutually exclusive 35 
manner, which was validated using single molecule fluorescence in-situ hybridization. 36 
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Introduction 37 

Single-cell transcriptomic profiling can be used to uncover the dynamics of cellular states and 38 
gene regulatory networks within a cell population(Trapnell, 2015; Wagner, Regev and Yosef, 39 
2016). Most available single-cell methods capture the 3’-end of transcripts and are unable to 40 
identify where transcription initiates. Instead, capturing the 5’-end of transcripts allows the 41 
identification of transcription start sites (TSS) and thus the inference of the activities of their 42 
regulatory elements. Cap analysis gene expression (CAGE), which captures the 5’-end of 43 
transcripts, is a powerful tool to identify TSS at single nucleotide resolution(Shiraki et al., 2003; 44 
Carninci et al., 2006). Using this technique, the FANTOM consortium has built an atlas of TSS 45 
across major human cell-types and tissues(Forrest et al., 2014), analysis of which has led to the 46 
identification of promoters as well as enhancers in the human genome(Andersson et al., 2014; 47 
Hon et al., 2017). Enhancers have been implicated in a variety of biological processes(Lam et 48 
al., 2014; Li, Notani and Rosenfeld, 2016), including the initial activation of responses to 49 
stimuli(Arner et al., 2015) and chromatin remodeling for transcriptional activation(Mousavi et al., 50 
2013). In addition, over 60% of the fine-mapped causal noncoding variants in autoimmune 51 
disease lay within immune-cell enhancers (Farh et al., 2015), suggesting the relevance of 52 
enhancers in pathogenesis of complex diseases. Enhancers have been identified by the 53 
presence of balanced bidirectional transcription producing enhancer RNAs (eRNAs), which are 54 
generally short, unstable and non-polyadenylated (non-polyA)(Andersson et al., 2014). Single 55 
molecule fluorescence in situ hybridization (smFISH) studies have suggested that eRNAs are 56 
induced with similar kinetics to their target mRNAs but that co-expression at individual alleles 57 
was infrequent(Rahman et al., 2016). However, the majority of enhancer studies have been 58 
conducted using bulk populations of cells meaning that the dynamics of how multiple enhancers 59 
combine to influence gene expression remains unknown.  60 
 61 
The majority of single-cell transcriptomic profiling methods(Picelli, 2017) rely on oligo-dT priming 62 
during reverse transcription, which does not capture non-polyA RNAs transcripts (e.g. eRNAs). 63 
The recently developed RamDA-seq(Hayashi et al., 2018) method uses random priming to 64 
capture the full-length non-polyA transcripts including eRNAs. However, this method is not 65 
strand-specific and unable to pinpoint transcript 5’-ends; thus, it cannot detect the 66 
bidirectionality of eRNA transcription and cannot confidently distinguish reads derived from the 67 
primary transcripts of their host gene (i.e. intronic eRNAs). Methods are typically implemented 68 
for a specific single-cell handling platform (e.g. microwell, microfluidics or droplet-based 69 
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platforms)(Picelli, 2017), because each platform imposes strong design constraints on the 70 
critical steps of cell lysis and nucleic acid handling. The proprietary C1TM Single-Cell Auto Prep 71 
System (Fluidigm) uses disposable integrated fluidic circuits (IFCs) and provides a registry of 72 
publicly available single-cell transcriptomics methods (Supplementary Table 1), which can be 73 
customized. Previously, we introduced nanoCAGE(Plessy et al., 2010), a method requiring only 74 
nanograms of total RNA as start material, based on a template switch mechanism combined 75 
with random priming to capture the 5'-ends of transcripts independent of polyA tails in a strand-76 
specific manner. Here we develop C1 CAGE, a modified version of nanoCAGE customized to 77 
the C1 system to capture the 5'-ends of transcripts at single-cell resolution.  78 
 79 
Current single-cell methods are usually limited in the number of samples that can be multiplexed 80 
within the same run. Thus, experimental designs requiring multiple replicates and different 81 
conditions are prone to batch effects, confounding biological information with the technical 82 
variation of each experiment(Tung et al., 2017). To mitigate batch effects, we took advantage of 83 
the transparency of the C1 system to encode multiple cells perturbation states in a single run by 84 
fluorescent labeling and imaging. 85 
 86 
We apply this method to investigate the response to TGF-β in A549 cells, an adenocarcinomic 87 
human alveolar basal epithelial cell line. TGF-β signaling plays a key role in embryonic 88 
development, cancer progression, host tumor interactions and driving epithelial-to-mesenchymal 89 
transition (EMT)(Massagué, 2008; Ikushima and Miyazono, 2010). We examine the response to 90 
TGF-β in A549 cells to uncover dynamically regulated promoters and enhancers at single-cell 91 
resolution. We observed an asynchronous cellular response to TGF-β in sub-populations of 92 
cells. We also investigated the dynamics of enhancer transcription at single-cell resolution with 93 
validation by smFISH. Our results suggest transcriptional bursting of enhancers as reflected by 94 
high expression of eRNAs in a few cells. Also, while in pooled cells enhancers show 95 
bidirectional transcription, within single-cells transcription at enhancers is generally 96 
unidirectional—i.e. transcription on the two strands seems to be mutually exclusive. 97 
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Results 98 

Development of C1 CAGE  99 

We developed the C1 CAGE method, based on nanoCAGE(Plessy et al., 2010), C1 STRT 100 
Seq(Islam et al., 2014) and C1 RNA-seq(Wu et al., 2014), implementing reverse transcription 101 
with random hexamers followed by template switching and pre-amplification (Figure 1a). The 102 
cDNA is tagmented and the 5’-end of cDNA is specifically amplified by index PCR. The resulting 103 
library is sequenced from both ends, with the forward reads identifying the 5’-end of the 104 
transcript at single nucleotide resolution and the reverse read identifying downstream regions of 105 
the matching transcript. 106 
 107 
To assess the specificity of 5’-end capture, we prepared libraries of A549 cells in the presence 108 
of synthetic “spike-in” RNAs, a set of 92 exogenous control transcripts with defined abundances 109 
developed by the External RNA Controls Consortium (ERCC)(Munro et al., 2014).  We analyzed 110 
the positions of forward reads on these spike-ins and found that ~80% of their 5’-ends align to 111 
the first base (Figure 1b), supporting the specificity of 5’-end capture in C1 CAGE. Of the 112 
remaining reads, about half of them can be explained by “strand-invasion” events, which are 113 
artefacts arising from interruption of first strand synthesis due to complementarity with the 114 
template switching oligonucleotide and can be identified based on the upstream sequence of 115 
the read(Tang et al., 2013). Next, we assessed the quantification accuracy and molecular 116 
detection limit(Svensson et al., 2017). For quantification accuracy, measured as the Pearson 117 
correlation between the input spike-in amounts and the observed read counts, C1 CAGE 118 
displayed a median of 0.79, slightly higher (Welch Two Sample t-test, two-sided: t=4, df=127.6, 119 
p < 0.0001) than C1 STRT Seq (median of 0.74, Figure 1c). For detection limit, measured as 120 
the median number of spike-in molecules required to give a 50% chance of detection, C1 CAGE 121 
displayed a median of 22, which is significantly more sensitive (Welch Two Sample t-test, two-122 
sided: t=-14, df=94.2, p < 2.2e-16) compared with C1 STRT Seq (median of 146, Figure 1d). 123 
Finally, we assessed the ability of C1 CAGE to detect differential expression by comparing 124 
libraries prepared using two reference mixtures of spike-ins with fixed ratios of input amounts at 125 
4, 1, 2/3 and 1/2 fold difference. Fitting a linear model we find an R-squared value of 126 
87%(Figure 1e). These results demonstrate that C1 CAGE specifically captures the 5’-end of 127 
transcripts, has quantification accuracy and detection sensitivity comparable to other C1-system 128 
methods, and reliably detects differential expression with high accuracy. 129 
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 130 
Figure 1:  C1 CAGE method and performance 131 
(a) Schematic of the C1 CAGE method. Tn5 enzymes are loaded with two different adaptors: N 132 
(red) and S (blue). P5, P7: Illumina sequencing adaptors. (b) Percentage of reads aligning to the 133 
5’-end of ERCC spike-ins by nucleotide position. (c, d) Comparison between C1 CAGE and C1 134 
STRT Seq (data from doi:10.1038/nmeth.4220). Red bars show median values. p-values from 135 
Welch two-sided Two Sample t-test shown. (c) Pearson correlation between expected and 136 
observed ERCC spike-in molecules. (d) The number of ERCC spike-in molecules required for a 137 
50 % chance of detection. (e) Observed and expected fold-change ratios between ERCC mix1 138 
and mix2. Linear regression line (red) and R-squared value shown. 139 
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Color multiplexing 140 

Taking advantage of the imaging capacities of the C1 system, we devised a strategy to 141 
multiplex samples within the same C1 CAGE replicate, by labelling cells with different Calcein 142 
AM dyes to encode sample information and monitor cell viability at the same time. Based on this 143 
approach, we multiplexed samples of A549 cells stimulated with TGF-β in a time-course at three 144 
time-points (0, 6, and 24 h, in triplicates) by permuting the Calcein AM dyes for each time point 145 
in each replicate (Figure 2a). The three C1 CAGE replicates were sequenced to a median depth 146 
of 2.4 million raw read pairs per cell. Analyzing the genomic distribution of forward read 5’-ends 147 
per replicate, a mean of 34% and 0.7% of reads were aligned to promoter and enhancer CAGE 148 
clusters, respectively (Figure 2b). Subsampling analysis demonstrates the number of CAGE 149 
clusters detected in most single-cells are saturated at the current sequencing depths, with a 150 
median of 2,788 CAGE clusters detected per cell (Figure 2c). To demultiplex time points, we 151 
localized the cells in their capture chambers on the IFCs and quantified their fluorescence in the 152 
red and green channels, identifying 40, 41 and 70 cells for time points 0, 6 and 24 h, 153 
respectively. Following the scran pipeline(Lun, McCarthy and Marioni, 2016) we removed 15 154 
unreliable cells, arriving at the final set of 136 high quality cells. Initially, we observed a strong 155 
batch effect with principal components analysis (PCA), where cells cluster by replicate (Figure 156 
S1a). However, our experimental design ensured that each replicate contained cells for each 157 
time point, allowing us to correct for this batch effect using linear modelling. After batch 158 
correction cells were clustered by time points rather than by replicate (Figure S1b). After 159 
removing low abundance CAGE clusters, our final dataset detected 18,687 CAGE clusters, 160 
covering 9,809 GENCODE genes (Figure S2; annotation breakdown) and 826 FANTOM5 161 
enhancers. For comparison, we generated corresponding bulk CAGE data using the nAnT-162 
iCAGE method(Murata et al., 2014) for each sample (0, 6, and 24 h, in triplicates) sequenced to 163 
median a depth of 10.7M reads. 164 
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 165 
Figure 2: Multiplexing time course strategy 166 
(a) Different color combinations of cells from each time point are added to each replicate. (b) 167 
Forward read 5’-end counts by annotation category. Mean read percentage per category shown 168 
in brackets. (c) Count of CAGE clusters within each cell after subsampling. Dashed red line at 169 
median (2,788). (d) PCA of cells performed on variable subset of CAGE clusters, percentage of 170 
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variance explained by components shown, cells colored by time point and TSCAN state. (e) 171 
PCA of cells performed on variable subset of CAGE clusters, percentage of variance explained 172 
by components shown, cells colored by expression values for the marker genes ALDH3A1 and 173 
SERPINE1 demonstrating that the dynamics of TGF-β response are captured by the TSCAN 174 
states. 175 

Dynamic TSS regulation upon TGF-β treatment 176 

To identify TSS that are dynamically regulated during TGF-β treatment, we performed 177 
pseudotime analysis on a variable subset of CAGE clusters with TSCAN(Ji and Ji, 2016). 178 
TSCAN divided the pseudotime ordering into four distinct states, which showed considerable 179 
consistency with the time points, as seen by PCA (Figure 2d). We also confirmed the 180 
consistency of the TSCAN states by visualizing the expression levels of two highly variable 181 
CAGE clusters for known EMT marker genes, ALDH3A1 and SERPINE1, which showed a clear 182 
shift in expression levels from 0 h to 24 h (Figure 2e). To understand the influence of the cell 183 
cycle on how TSCAN defined the states, we calculated G2M scores with the cyclone package 184 
using the pre-calculated data trained on human embryonic stem cells (hESCs)(Scialdone et al., 185 
2015; Leng et al., 2015). The clear separation of scores between states 1 and 2 points to the 186 
possibility that half (16/35) of 0 h cells were in proliferative states prior to TGF-β stimulation 187 
(Figure 2d and Figure S3). 188 
 189 
To identify genes that are co-regulated across the TSCAN states, we performed Weighted Gene 190 
Co-Expression Network Analysis (WGCNA)(Langfelder and Horvath, 2008), correlating CAGE 191 
cluster expression levels across cells. We identified five co-expressed modules: Suppressed 192 
(n=1,041), Weak Responding I (n=825) & II (n=164), Early Responders (n=1,775), and Late 193 
Responders (n=2,223). We visualized their trajectories across the pseudotime using eigengene 194 
profiles to represent the average behavior and show two CAGE clusters from each module with 195 
eigengene correlation coefficient of at least 0.3 with p-value less than 0.1 (Figure 3a, b). The 196 
module labels were assigned based on these trajectory visualizations: Suppressed, Early and 197 
Late Responders represent those genes that undergo strong expression changes with TGF-β 198 
activation, whereas Weak Responding I and II represent those with little or no changes in their 199 
transcription.   200 
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 201 
Figure 3:  WGCNA clusters of response to TGFβ 202 
(a) WGCNA results in 5 different modules, 3 of which show clear response behavior to TGF-β 203 
(Suppressed, Early Responders, Late Responders). (b) Example CAGE peaks from each 204 
module. (c) Top three enriched TF binding profiles in each module.  (d) Functional analysis 205 
using edgeR’s implementation of GOseq. Top over-represented GO terms for biological 206 
processes are shown. 207 
 208 
 209 
 210 
 211 
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To understand the biological contexts of these modules, we investigated the enrichment of 212 
transcription factor binding motifs (Mathelier et al., 2016, Arenillas et al., 2016) and Gene 213 
Ontology (GO) terms in each module. Examining motifs enriched in all modules against a 214 
randomly generated GC-matched background, we find that the ETS-related factors are most 215 
prominent, such as ETVn, ETSn, ELKn, FLI and NFYx factors (Figure S4). The ETS family of 216 
transcription factors is well defined to promote metastasis progression in EMT process(Ell and 217 
Kang, 2013). 218 
 219 
Examining each module individually against the combined background of all the other modules 220 
(Figure 3c, d) we observe the Suppressed Module enriched in GO terms related to DNA 221 
replication and the cell cycle. It has been reported that early after TGF-β treatment, the 222 
expression of multiple genes that play key roles in regulating cell cycle progression are 223 
suppressed(Schneider, Tarantola and Janshoff, 2011). We observe suppressed expression of 224 
CCNB2 known to interact with the TGF-β pathway in promoting cell cycle arrest(Liu et al., 1999) 225 
and of ALDH3A1 known to affect cell growth in A549 cells(Moreb et al., 2008). We also observe 226 
enriched motifs for the cell cycle regulators LIN54 and GFI1(Basu et al., 2009; Sadasivam and 227 
DeCaprio, 2013). CAGE clusters in the Suppressed module are more highly expressed in 228 
TSCAN state 1, which may represent cells which have not yet fully undergone TGF-β induced 229 
G1 arrest as explained above. 230 
 231 
Within the Early Responders and Late Responders modules we observe canonical TGF-β 232 
response genes, including KLF6 known to suppress growth through TGF-β 233 
transactivation(Botella et al., 2009) and marker genes for EMT such as SERPINE1 and FASN. 234 
TGF-β is one of the key signal transduction pathways leading to EMT and several lines of 235 
evidence implicate increased TGF-β signaling as a key effector of EMT in cancer progression 236 
and metastasis(Massagué, 2008; Ikushima and Miyazono, 2010; Heldin, Vanlandewijck and 237 
Moustakas, 2012). We observed upregulation of mesenchymal marker genes, with a clear 238 
increase in Vimentin (VIM) expression starting during TSCAN state 2, and expression of N-239 
cadherin (CDH2) not detected until TSCAN state 2, and then expressed within a subset of 240 
cells(Figure S5). 241 
 242 
Within the Late Responders module we observe enrichment for TFAP2 family transcription 243 
factors (TFs) (Figure 3c), suggesting that they might play a role in the late response to TGF-β 244 
signaling. We examined their expression profiles in both the single-cell and bulk data, and found 245 
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TFAP2C to have a strong time-dependent expression profile in bulk data, and sporadic 246 
expression in TSCAN states 1 and 2 but not in the later states(Figure S6). TFAP2C is a known 247 
marker gene in breast cancer biology, its loss resulting in increased expression of mesenchymal 248 
markers associated with the transition from luminal to basal subtypes(Cyr et al., 2015) and the 249 
direct repression of cell cycle regulator CDKN1A(Williams et al., 2009; Wong et al., 2012). 250 
 251 
Examining differences between the Early Responders and Late Responders modules, we find 252 
GO terms relating to cell adhesion enriched in Early Responders genes, and GO terms related 253 
to cell communication and signaling enriched in the Late Responders genes (Figure 3d).  254 
 255 
To further dissect the functional heterogeneity in response to TGF-β, we revisited TSCAN states 256 
analysis and explored states 3 and 4 which we observe 24 h post stimulation (Figure 2d). To 257 
examine differences between the two states, we performed gene set enrichment analysis 258 
amongst CAGE clusters from the Early Responders and Late Responders modules with 259 
Camera(Wu and Smyth, 2012) and find a number of gene sets significantly upregulated in 260 
TSCAN state 4 including Epithelial to Mesenchymal transition (38 genes, FDR=0.003; full 261 
results in Supplementary Table 2). This suggests bi-phasic state in response to TGF-β 24 h post 262 
stimulation. Interestingly, a previous study implicated bi-phasic state with more severe 263 
morphological changes such as cell-to-cell contacts occurring from 10 to 30 h (Schneider, 264 
Tarantola and Janshoff, 2011). Thus, the additional states inferred from the pseudotime analysis 265 
reveal the asynchronous progression cells upon TGF-β treatment, which would not have been 266 
possible with bulk analyses of the three time points. 267 

eRNA in C1 CAGE 268 

Next we asked whether C1 CAGE can detect the dynamic expression of eRNAs. We and others 269 
have reported that bidirectional transcription is associated with enhancer activity(Andersson et 270 
al., 2014). We observe a similar signature of bidirectional transcription at enhancers detected in 271 
pooled C1 CAGE and bulk CAGE data sets (Figure 4a), as well as a similar enrichment of 272 
DNase hypersensitivity and H3K27 acetylation, indicating that C1 CAGE unambiguously 273 
detected the transcription of eRNAs at these active enhancer regions (Figure 4b). To further 274 
examine the bidirectionality of eRNAs at a single-cell level, we selected enhancers with at least 275 
10 reads in at least 5 cells to filter for the most widely and strongly detected enhancers and 276 
avoid bias due to dropout. For each enhancer, we calculated a bidirectionality score in pooled 277 
single-cells ranging from 0 to 1, with 0 being perfectly balanced bidirectional and 1 being 278 
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perfectly unidirectional. Examining a set of enhancers (n=32) with balanced transcription, we 279 
calculated their bidirectionality score within single-cells, where these enhancers were 280 
unidirectionally transcribed (single-cell bidirectionality scores >0.9) (Figure 4c, shown in detail 281 
for one enhancer in Figure 4d), indicating that simultaneous transcription of eRNAs from both 282 
strands is generally not observed within single-cells. 283 
 284 

 285 
Figure 4: Enhancer analysis at single-cell resolution 286 
Comparison of enhancers detected by bulk CAGE and pooled C1 CAGE data (a) showing 287 
bidirectional read profiles smoothed by generalized additive model and (b) epigenetic profiles. 288 
(c) Bidirectionality analysis scores (0: equally bidirectional; 1: fully unidirectional) at selected 289 
enhancers for pooled cells (red dots) and single-cells (blue dots: mean; black bars: standard 290 
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error). (d) Example locus on chromosome 12: read profile histogram (upper box), and read 291 
presence or absence in single-cells (lower box). (e, f, g) Comparison of enhancers and gene 292 
promoters in C1 CAGE and bulk CAGE: (e) Fraction of bulk features detected within each cell, 293 
stratified by bulk expression level, (f) Density plots of the maximum expression levels, (g) 294 
Specificity score distribution in single-cell data. Lower scores: broad expression (expressed in 295 
more cells); higher scores: more specific/enriched expression (fewer cells). 296 
 297 
Although most enhancers were sporadically detected among single-cells, they were detected at 298 
a similar level to promoters in single-cells when controlling for expression level (Figure 4e). To 299 
assess if enhancers are generally lowly expressed among cells or if they are highly expressed 300 
in a subset of cells, we compared the distributions of the maximum expression levels of 301 
enhancers and promoters within single-cells and in the bulk data sets (Figure 4f). While the 302 
expression of enhancers is generally lower than that of promoters in the bulk data sets, they 303 
have similar distributions of expression levels within single-cells. To further evaluate the 304 
specificity of enhancer expression in single-cells, we devised a specificity score ranging from 0 305 
to 1, with 0 being ubiquitously expressed (i.e. broad expression in many cells), and 1 being 306 
specifically expressed (i.e. expression restricted to few cells). We found that enhancers show 307 
significantly higher specificity scores than promoters (Figure 4g; Kolmogorov-Smirnov test, 308 
D=0.36562, p-value<2.2e-16). This suggests that enhancers behave similarly to promoters 309 
which are expressed in transcriptional bursts(Suter et al., 2011; Bahar Halpern et al., 2015) but 310 
have fewer numbers of cells where bursts of expression take place, which in turn are averaged 311 
out by the total population of cells used to obtain the bulk RNA profile. 312 

FISH validation 313 

To validate the ability of C1 CAGE to detect eRNAs in single-cells, we used smFISH(Femino et 314 
al., 1998; Raj et al., 2008) to visualize the expression of these transcripts through the TGF-β 315 
time course in A549 cells. We first selected intergenic enhancers, filtering out those that 316 
overlapped any known transcript models in GENCODEv25, and ranked them by their 317 
expression levels. We then searched for their proximal promoters within the same topologically 318 
associated domain (TAD) as the potential targets of these enhancers. We selected three 319 
enhancers, two of which displayed expression changes across the time-course (Figure S6, S7) 320 
and were adjacent to genes known to be involved in TGF-β response, KLF6 and PMEPA1 321 
(KLF6-eRNA1 at chr10:3929991-3930887 and PMEPA1-eRNA1 at chr20:56293544-56293843, 322 
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respectively), and a third enhancer (PDK2-eRNA1 at chr17:48105016-48105270) adjacent to 323 
PDK2. 324 
 325 
In line with previous reports(Rahman et al., 2016; Shibayama, Fanucchi and Mhlanga, 2017), 326 
smFISH for eRNAs gave rise to punctate spots mainly restricted to the nuclei and always no 327 
greater than the copy number of the chromosome harboring the enhancer, suggesting that 328 
these eRNAs are expressed in low-copy-number and remain at or near their site of transcription. 329 
Targeting eRNAs on both strands with the same color, smFISH displayed expression profiles 330 
similar to C1 CAGE for the KLF6-eRNA1 and PMEPA1-eRNA1 enhancers that were 331 
upregulated in the C1 CAGE time-course data (Figure 5a, b). In contrast, PDK2-eRNA1, whose 332 
expression remained steady in smFISH, decreased in the number of cells with signal across the 333 
time course in C1 CAGE (Figure S8a). 334 
 335 

 336 
Figure 5: Enhancer and promoter profiles in smFISH 337 
(a, b) Proportion of cells with KLF6-eRNA1 and PMEPA1-eRNA1 detected by (a) FISH, (b) C1 338 
CAGE. (c) Proportion of cells with detected gene intron, enhancer locus and cells with spot 339 
overlap at the KLF6 and PMEPA1 loci. (d) Representative images showing gene intron and 340 
enhancer locus detection by FISH. Bar = 5 µm. n=100 per time point. 341 
 342 
 343 
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For validation of our findings that eRNA were expressed unidirectionally within single-cells, we 344 
also targeted the + and – strands of the KLF6-eRNA1 and PMEPA1-eRNA1 eRNAs in separate 345 
colors. In agreement with the C1 CAGE data for these particular enhancers, the majority of the 346 
detected spots belonged to eRNAs from only one strand (Figure S8b). In nuclei where eRNAs 347 
from both strands were detected, spot co-localization was rare, confirming our suggestion that 348 
simultaneous bidirectional transcription of enhancers from single alleles is a rare event. 349 
 350 
Next, we checked for the association of eRNAs with the transcription of nearby genes using 351 
smFISH. Visualization of nearby gene transcription was achieved by targeting only the intronic 352 
portion (i.e. nascent RNA). Colocalization of an enhancer RNA spot with a nascent RNA spot 353 
would suggest the presence of the enhancer RNA at the site of gene transcription, potentially 354 
implicating the enhancer’s role in promoter activity. Interestingly, nascent transcription of nearby 355 
protein coding genes showed similar expression kinetics to the enhancers themselves indicated 356 
by increased co-expression of both the protein coding gene and the nearby eRNA in TGF-β 357 
stimulated cells (Figure 5c, d, S8c). For KLF6-eRNA1 and PMEPA1-eRNA1, we observed time-358 
dependent increase in colocalization and in the number of nuclei with colocalized spots (Figure 359 
5c, d, S9c). In unstimulated cells displaying a basal level of expression of both enhancer and 360 
promoter, colocalization of spots could not be observed. This suggests a stimulus-dependent 361 
co-activation of enhancer and its association with the nearby promoter. However, a significant 362 
portion of transcription sites expressed no enhancer RNA. Possible reasons include a potential 363 
delayed interval between transcription events from an enhancer and promoter, during which 364 
most enhancer RNA is rapidly degraded. It is also possible that other nearby enhancers may 365 
exert their effect on a target promoter. In summary, smFISH could validate enhancer expression, 366 
including strand specificity, in single-cells as detected by C1 CAGE. 367 

Discussion 368 

We examined the response to TGF-β in A549 cells to uncover dynamically regulated promoters 369 
and enhancers at single-cell resolution. We highlight enhancer dynamics at single-cell resolution 370 
and suggest transcriptional bursting of enhancers, and that while enhancers show bidirectional 371 
eRNA transcription in pooled cells, transcripts are generally mutually exclusive. 372 
 373 
Among the eight publicly available transcriptome methods for the C1 platform (Supplemental 374 
table 1), only C1 CAGE provides strand-specific whole-transcriptome coverage: its detection of 375 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2018. ; https://doi.org/10.1101/330845doi: bioRxiv preprint 

https://doi.org/10.1101/330845
http://creativecommons.org/licenses/by/4.0/


16 

5’-ends is independent from transcript length and polyadenylation owing to the use of random 376 
primers. To make the method more accessible, we used a commercially available tagmentation 377 
kit in which the transposase is loaded with two different adapters. This adaptation leads to half 378 
of the tagmentation products being lost in the process of library preparation. The use of custom 379 
loaded transposase, such as in C1 STRT Seq(Islam et al., 2014), would allow reduction of the 380 
final PCR amplification by one cycle and enrich extracted reads in the sequencing library, 381 
however at the expense of not using standard reagents.  382 
 383 
C1 CAGE has single-nucleotide resolution of transcript 5’-ends, as demonstrated by the data on 384 
ERCC spike-ins, where 80% of read one 5’-ends align to the first base. In this study, we did not 385 
use ERCC spike-ins for normalization of endogenous genes, preferring to use size factors 386 
computed from pools of cells(Lun, Bach and Marioni, 2016), as experimental noise due to spike-387 
in preparation may be introduced(Svensson et al., 2017). Notably, we could detect the ERCC 388 
spike-ins even if they are not capped. Nevertheless, C1 CAGE shows a preference for capped 389 
ends, as suggested by the fact that the C1 CAGE library contained only 13% reads from 390 
ribosomal RNAs. While this range of ribosomal RNA is acceptable, further reduction might be 391 
achieved through the use of pseudo-random primers(Arnaud et al., 2016). 392 
 393 
The template-switching oligonucleotides (TSOs) included Unique Molecular Identifier 394 
(UMIs)(Islam et al., 2014), however we have not utilized them for molecular counting, because 395 
the TSOs carried over from the reverse-transcription could prime the subsequent PCR reaction 396 
while tolerating mismatches on the UMI sequence, thus causing a high level of mutation rate (as 397 
evidenced by the fact that most UMIs are seen only once). Nevertheless, PCR duplicates are 398 
partially removed from our data due to the use of paired-end sequencing, as our alignment 399 
workflow collapses the pairs that have exactly the same alignment coordinates. Further 400 
improvements of the C1 CAGE might address the mutation rate in UMIs. However, attempts to 401 
make the TSOs heat-labile by using full RNA composition have not been successful so far (CP 402 
and SK, personal communication). 403 
 404 
Batch effect is a common problem in single-cell RNA-seq, and failing to account for this can 405 
lead to cofounding biological interpretations.  We introduced, for the first time, an image based 406 
approach to decode multiplex samples by using two colors of Calcein AM and their 407 
combinations. Moreover, the platform further allows the usage of a larger number of colors or 408 
alternatives to Calceins, such as MTT, ATP or MitoBright, which are generally used for live cell 409 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2018. ; https://doi.org/10.1101/330845doi: bioRxiv preprint 

https://doi.org/10.1101/330845
http://creativecommons.org/licenses/by/4.0/


17 

monitoring. For instance, we previously used FUCCI fluorescent reporters to detect cell cycle 410 
phases(Böttcher et al., 2016). Other potential applications could include the detection of 411 
cytoplasmic or nuclear localizations of fluorescent-labelled transcription factors, or cell division 412 
counting with fluorescent probes. 413 
 414 
Our cell cycle classification was performed using a model trained on data from H1 hESCs 415 
expressing the cell-cycle indicator FUCCI in the C1 system(Leng et al., 2015). While training 416 
data from phased A549 single-cells would have been preferable, models trained on mouse ESC 417 
have also been applied to other cell types with accuracy(Scialdone et al., 2015). However, 418 
because the hESC training data was obtained from a 3’-end capture protocol, it may contain 419 
different experimental biases that are distinct from our C1 CAGE method. Therefore, these 420 
results should be interpreted with caution, and we did not exclude cells based on this 421 
classification. 422 
 423 
The chemistry implemented in C1 CAGE–template switching, random priming, and interrogation 424 
of 5’-ends–revealed promoter and enhancer activities in lung adenocarcinoma cell line. 425 
Enhancers have previously been defined by a signature of balanced bidirectional transcription in 426 
bulk data(Andersson et al., 2014). Here we suggest that this signature arises due to generally 427 
mutually exclusive transcription from each strand within single-cells. We also suggest for the 428 
first time that while eRNAs appear lowly expressed in bulk data, they can be expressed at 429 
similar levels to gene promoters within single-cells, although they are expressed in a more 430 
restricted subset of cells—i.e. displaying transcriptional bursting. 431 
 432 
Notably, C1 CAGE is not restricted to the use in the C1 platform. Indeed, some of the changes 433 
introduced in C1 CAGE are also available for bulk nanoCAGE libraries in our latest 434 
update(Poulain et al., 2017). Moreover, the C1 CAGE chemistry might be applicable to profile 435 
large numbers of single-cells with droplet based single-cell capture methods. Droplet 436 
technologies are more robust to variations of the cell size, and have higher throughput, although 437 
they do not allow for the association of imaging. Five-prime-focused atlases will yield greater 438 
insights towards promoter and enhancer activities in various biological systems. 439 
 440 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2018. ; https://doi.org/10.1101/330845doi: bioRxiv preprint 

https://doi.org/10.1101/330845
http://creativecommons.org/licenses/by/4.0/


18 

Online Methods 441 

Cell culture and TGF-β stimulation 442 
A549 cells (ATCC CCL 185) were grown at 37 °C with 5 % CO2 in DMEM (Wako, Lot: 443 
AWG7009) with 10 % fetal bovine serum (Nichirei Bioscience, Lot 1495557) and 444 
penicillin/streptomycin (Wako, Lot 168-23191). At 0 h, 106 cells were seeded in 10 cm dishes 445 
(TRP, Cat. num. 93100).  At 24 h, the medium was replaced with DMEM without serum after 3 446 
times washing with PBS (Wako, Lot 045-29795). At 48 h, one third of the dishes were 447 
stimulated by treating with 5 ng/ml TGF-β (R&D systems, USA, Accession #P01137). At 66 h, 448 
the second third was stimulated with the same treatment. At 72 h, cells for each treatment 449 
duration (0 h, 6 h 24 h) were collected and stained with combinations of Calcein AM and Calcein 450 
red-orange, (Thermo Fisher Scientific, L3224 and C34851). Transcriptome alignment of the C1 451 
positive controls against 79 reference genomes of Mycoplasma or Acholeplasma, including 452 
Mycoplasma hominis, confirmed the absence of contamination. 453 
  454 
Cell capture 455 
Calcein stained cells were captured in C1 Single-cell Auto Prep Integrated Fluidic Circuits (IFC) 456 
for mRNA Seq, designed for medium-sized (10 to 17 μm) cells (Cat. Num. 100-5760), following 457 
manufacturer's instructions (PN 100-7168). In brief, 60 μl of 2.5 × 105 cell/ml and 40 μl C1 458 
suspension buffer were mixed (all C1 reagents were from Fluidigm), and 20 μl of this mix was 459 
loaded into a primed IFC, and processed the script “mRNA Seq: Cell load (1772x/1773x)” 460 
  461 
Imaging 462 
After loading, IFCs were imaged on INCell Analyzer 6000 (GE Healthcare). Calcein AM was 463 
excited at 488 nm and imaged with a FITC fluorescence filter (Semrock). For Calcein red-464 
orange, excitation was at 561 nm (TexasRed; Semrock). Eleven focal planes per chamber and 465 
channel were acquired and manually curated to detect empty, dead, singlet, doublet or multiplet 466 
cells in the capture site. In case of single-plane imaging, we used the Cellomics platform like in 467 
Böttcher et al., 201642 (with a green filter (excitation bandwidth: 480-495 nm, emission 468 
bandwidth: 510-545 nm), and with a red filter (excitation bandwidth: 565-580 nm, emission 469 
bandwidth: 610-670 nm (Thermo Scientific)). Processed and raw single-cell images are 470 
available for download from http://single-471 
cell.clst.riken.jp/riken_data/A549_TGF___summary_view.php  472 
  473 
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Lysis, reverse transcription and PCR for C1-CAGE 474 
Single-cell RNA extraction and cDNA amplification were performed on the C1 IFCs following the 475 
C1 CAGE procedure that we deposited in Fluidigm's Script Hub. 476 
(https://www.fluidigm.com/c1openapp/scripthub/script/2015-07/c1-cage-1436761405138-3). In 477 
brief, cells were loaded in lysis buffer (C1 loading reagent, 0.2 % Triton X, 15.2 U Recombinant 478 
Ribonuclease Inhibitor, 37.5 pmol reverse-transcription primer, DNA suspension buffer, ERCC 479 
RNA Spike-In Mix I or II (Thermo Fisher, 4456653) diluted either 20,000 times (protocol revision 480 
B) or 200 times (revision A)), and lysed by heat (72 °C 3 min, 4 °C 10 min, 25 °C 1 min). First-481 
strand cDNAs were reverse transcribed (22 °C 10 min, 42 °C 90 min, 75 °C 15 min) in C1 482 
loading reagent, First Strand buffer, 0.24 pmol dithiothreitol, 15.4 nmol dNTP Mix, betaine, 24.8 483 
U Recombinant Ribonuclease Inhibitor, 175 pmol template-switching oligonucleotide, and 490 U 484 
SuperScript III.  The cDNAs were amplified by PCR (95 °C 1 min, 30 cycles of 95 °C 15 s, 65 °C 485 
30 s and 68 °C 6 min, 72 °C 10 min) in a mixture containing C1 loading reagent, PCR water, 486 
Advantage2 PCR buffer (not SA), dNTP Mix (10 mM each), 24 pmol PCR primer, 50 × 487 
Advantage2 Polymerase Mix. The PCR products (13 μl) were then harvested in a 96-well plate 488 
and quantified with the PicoGreen (Thermo Fisher, P11496) method following the instructions 489 
from Fluidigm's C1 mRNA-Seq protocol (PN 100-7168 I1). On-chip cDNA amplification with 30 490 
PCR cycles yielded 1.0 ng/μl in average from single cell. A subset of the samples were further 491 
controlled by size profiling on the Agilent Bioanalyzer with High Sensitivity DNA Chip. 492 
  493 
Tagmentation reaction, index PCR and sequence 494 
Amplified cDNAs were diluted to approximately 0.2 ng/μl following the C1 mRNA-Seq protocol, 495 
fragmented and barcoded by "tagmentation" using the Nextera XT kit (Illumina, cat. num. FC-496 
131-1096-RN) following the instructions from Fluidigm's C1 mRNA-Seq protocol (PN 100-7168 497 
I1), except that we used custom forward PCR primers (dir#501-508/N701-N712, Supplementary 498 
Table 3). The final purified library was quality-controlled on a High-Sensitivity DNA Chip and 499 
quantified with the KAPA Quantification Kit (Nippon Genetics). Nine pmol were sequenced and 500 
demultiplexed on Illumina HiSeq 2500 High output mode (50 nt paired end). 501 
  502 
CAGE processing 503 
In forward read (Read 1) sequences, linkers were removed and unique molecular identifiers 504 
were extracted using TagDust2(Lassmann, 2015). Reverse read (Read 2) sequences were then 505 
filtered with the program syncpairs (https://github.com/mmendez12/sync_paired_end_reads) to 506 
restore the pairing. The pairs were then filtered against the sequences of the human ribosomal 507 
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RNA locus (GenBank ID U13369.1), and linker oligonucleotides using TagDust2 v2.13 in paired-508 
end mode. They were then aligned to the human genome version hg19 with Burrows Wheeler 509 
Aligner (BWA)'s "sampe" method(Li and Durbin, 2010) with a maximum insert size of 2,000,000. 510 
To map the reads on the ERCC spikes at a single nucleotide resolution, we prepared reference 511 
sequences of the T7 transcription of the ERCC plasmids, which are now available from the 512 
NIST’s website (https://www-513 
s.nist.gov/srmors/certificates/documents/SRM2374_putative_T7_products_NoPolyA_v1.fasta) 514 
(many RNA-seq studies previously published aligned their reads only to the sequence of the 515 
plasmid inserts, which lack transcribed linker sequences, which are essential for aligning CAGE 516 
reads precisely to the 5′ ends). The properly aligned pairs were then converted to BED12 format 517 
with the program pairedBamToBed12 (https://github.com/Population-518 
Transcriptomics/pairedBamToBed12) with the option “-extraG”, and assembled in CAGEscan 519 
fragments with the program umicountFP (https://github.com/mmendez12/umicount/). This 520 
workflow was implemented in the Moirai system (PMID:24884663) and a prototype implemented 521 
in a Jupyter notebook is available on GitHub (https://github.com/Population-Transcriptomics/C1-522 
CAGE-preview/blob/master/OP-WORKFLOW-CAGEscan-short-reads-v2.0.ipynb). The 5′ ends 523 
of the CAGEscan fragments represent TSS in the sense of Sequence Ontology’s term 524 
SO:0000315 (“The first base where RNA polymerase begins to synthesize the RNA transcript”). 525 
  526 
Bulk CAGE 527 
Bulk CAGE data was generated by nAnT-iCAGE method(Murata et al., 2014). Briefly, 5 μg of 528 
total RNA prepared from remaining A549 cells after C1 loading. cDNA was reverse transcribed 529 
using SuperScript III reverse transcriptase, biotinylated and cap trapped to capture 5' completed 530 
cDNAs. Each cDNAs were barcoded and purified. Libraries were sequenced on Illumina HiSeq 531 
2500 High output mode (50 nt single read). 532 
  533 
Image curation and time point demultiplexing 534 
We used the Bioconductor package CONFESS (LOW D and MOTAKIS E (2017). CONFESS: 535 
Cell OrderiNg by FluorEScence Signal. R package version 1.6.0) to detect the cells present in 536 
the capture chambers, and quantify the fluorescence in the Green and Red channels. In 537 
addition, two curators visually screened the images to confirm the presence of cells, and to 538 
detect doublets when focal stacks were available. The final annotation reflects the consensus of 539 
the three curations. The results were then cross-checked with other quality control parameters, 540 
in particular the amount of cDNAs yielded by the C1 runs, and the fraction of spikes and 541 
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ribosomal RNA in the libraries. In case of conflicting results, chamber images were re-inspected 542 
and re-annotated, if necessary. 543 
 544 
ERCC spike-in analysis 545 
Accuracy and molecular detection limits were calculated as in Svensson 2017(Svensson et al., 546 
2017): The amount of input spike-in molecules for each spike, for each sample, in each 547 
experiment was calculated from the final concentration of ERCC spike-in mix in the sample. The 548 
calculation of the accuracy of an individual sample was determined with the Pearson correlation 549 
between input concentration of the spike-ins and the measured expression values. Molecular 550 
detection limit was calculated using the R function glm from the stats package. 551 
 552 
Read Annotation 553 
The annotation used combined FANTOM5 robust cage clusters for promoters 554 
(http://fantom.gsc.riken.jp/5/datafiles/latest/extra/CAGE_peaks/) and enhancers 555 
(http://fantom.gsc.riken.jp/5/datafiles/latest/extra/Enhancers/). Promoter clusters were 556 
subtracted from enhancer clusters and annotated to their nearest GENCODEv25 within 500 bp 557 
where possible. A mask was added to remove rRNA, tRNA, small RNAs, unannotated 558 
promoters. 559 
 560 
Data Processing 561 
After removing low quality cells and multiple single cells captured sites based on imaging data 562 
(SCPortalen)(Abugessaisa et al., 2018), the CAGE reads from the remaining 151 cells that 563 
overlapped the annotation CAGE clusters were summed together to create the raw counts 564 
matrix. This matrix was processed with the scran package(Lun, McCarthy and Marioni, 2016) 565 
version 1.6.6 in R 3.4.3 for quality control, filtering and normalization. Following the guideline 566 
suggested by the authors of scran, we first removed from our analysis 15 cells with 1) library 567 
sizes or feature sizes 3 median absolute deviations (MADs) below their median, or 2) 568 
mitochondrial proportion or spike proportion 3 MADs above their median, leaving us with 136 569 
cells. All the cells that were dropped due to high spike proportion also had low library sizes and 570 
feature counts, whereas this was not necessarily true for those that were dropped due to high 571 
mitochondrial proportion. 14 out of the 15 removed cells were from the same C1 run (library 2), 572 
but there was no noticeable bias towards any particular time point (5, 3, 7 cells from 0h, 6 h, 24 573 
h, respectively). We calculated the cell cycle phase scores using the cyclone method(Scialdone 574 
et al., 2015) for each cell. We filtered out low abundance features that were expressed in less 575 
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than 2 cells or average counts of less than 0.3, leaving us with 18,687 features, of which 826 576 
are FANTOM5 enhancers. These features were normalized with size factors calculated based 577 
on clusters of cells with minimum size of 30. We then performed mean-variance trend fitting 578 
using the whole endogenous feature set, building the sample replicate and Calcein staining 579 
variables into the model. We normalized the expression scores to correct for differences of 580 
sequencing depth, using a pooling-deconvolution approach(Lun, Bach and Marioni, 2016). We 581 
then detrended the data for possible C1 run and Calcein color effects. Lastly, we denoised the 582 
data by removing low-rank principal components. To produce the final normalized expression 583 
levels for downstream analyses, we reduced the technical noise using scran’s denoisePCA 584 
function based on the fitted data, then performed batch effect removal with the replicate and the 585 
Calcein stain as the covariates using limma package’s removeBatchEffect function. We selected 586 
high variance CAGE clusters (HVCs) as those with biological variation above the 75% quantile 587 
and false discovery rate less than 0.05 after decomposing the total variance for each gene into 588 
its biological and technical components using trendVar (scran). We also calculated the pairwise 589 
correlations among the HVCs and marked those with FDR greater than 0.05 as significantly 590 
correlating HVGs. 591 
 592 
To create the pseudotime ordering with TSCAN (version 1.16.0), we selected the input feature 593 
set as the union of the significantly correlating HVCs, the top 100 HVCs and SC3(Kiselev et al., 594 
2017) defined marker genes, totaling 290 CAGE clusters. 595 
 596 
WGCNA 597 
WGCNA version 1.61 was used, with cut height detection threshold of 0.995, minimum module 598 
size of 100, signed network type, and merge cut height of 0.25. To reduce noise, we restricted 599 
ourselves to those features with mean expression greater than the median of the mean 600 
expression across all samples, and biological variation greater than the median. Also, to avoid 601 
having the same gene appearing in multiple clusters due to different promoters of the same 602 
gene being assigned as such, we only included the major promoter (highest sum of normalized 603 
expression across all samples) in the input set, which left us with 6,028 CAGE clusters as the 604 
input set. 605 
 606 
Motif analysis 607 
Motif analysis was performed using CAGEd-oPOSSUM, which employs two separate scoring 608 
systems based on JASPAR 2016 transcription factor binding profiles, searching 500bp either 609 
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side of CAGE clusters: 1) Z-scores, which counts the total number of a given motif found in the 610 
input set, and 2) Fisher score, which counts the number of input regions with the given motif. 611 
JASPAR motifs with information content greater than 8 bits were searched. 612 
 613 
Functional analysis 614 
To see if we could identify any functional characteristics of the genes in each module, we 615 
performed a test of gene ontology term over-representation test using the edgeR’s goana 616 
function, which is an implementation of GOseq(Young et al., 2010). For input, we included those 617 
CAGE clusters that showed correlation coefficient of greater than 0.2 with p-value less than 0.1 618 
with each module’s eigengene. 619 
 620 
Camera gene set enrichment analysis(Wu and Smyth, 2012) was performed testing for 621 
differential expression between TSCAN states 3 and 4. For the input expression table, we 622 
selected the CAGE clusters that were included in the WGCNA analysis and were annotated with 623 
Entrezgene IDs. For the test set, we selected those CAGE clusters that showed correlation 624 
coefficient of greater than 0.2 with p-value less than 0.1 their module’s eigengene from the Early 625 
Responders and Late Responders modules. MSigDB Hallmark gene sets were used.(Liberzon 626 
et al., 2015) 627 
 628 
TADs 629 
Out of 826 enhancers, 692 could be assigned to a topological association domain (TAD) 630 
identified in A549 cells from ENCODE Dataset GSE105600 631 
 632 
FISH 633 
enhancer RNA lengths were estimated from the ENCODE A549 RNA-seq signal(Dunham et al., 634 
2012). We designed oligonucleotide probes consisting of 20 nt targeting sequence using the 635 
Stellaris Probe Designer (Biosearch Tech). These sequences were flanked on both ends by 30 636 
nt “readout sequence” serving as annealing sites for secondary probes that are labeled with a 637 
fluorescent dye(Chen et al., 2015). For each set of probes, all flanking sequences were identical, 638 
both on the 5' and 3' ends (Probes listed in Supplementary Table 4). Positive strand eRNA, 639 
negative strand eRNA and introns from each locus were assigned different flanking sequences 640 
to allow multiplexing. Secondary probes were labeled with either Atto 647 or Cy3 on the 3’ end. 641 
All probe sequences are listed in supplementary table 4. Briefly, cells were seeded onto 642 
coverslips overnight and were fixed in 4% formaldehyde in PBS for 10 min at room temperature. 643 
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After fixation, the coverslips were treated twice with ice-cold 0.1% sodium borohydride for 5 min 644 
at 4°C. Following three washes in PBS, the coverslips were treated with 0.5% Triton X-100 in 645 
PBS for 10 min at room temperature to permeabilize the cells. The coverslips were washed 646 
three times in PBS and treated with 70% formamide in 2x SSC for 10 min at room temperature, 647 
followed by two washes in ice-cold PBS and another wash in ice-cold 2x SSC. The coverslips 648 
were stored at 4°C for no longer than a few hours prior to hybridization. For hybridization, 649 
coverslips were incubated in hybridization buffer containing 252 nM primary probes overnight at 650 
37°C inside a humid chamber. Hybridization buffer consisted of 10% formamide, 10% dextran 651 
sulfate, 2X SSC, 1µg/µl yeast tRNA, 2mM vanadyl ribonucleoside complex, 0.02% BSA. To 652 
remove excess probe, coverslips were washed twice in wash buffer made of 30% formamide, 653 
2x SSC, 0.1% Triton X-100 for 30 min at room temperature and rinsed once in 2x SSC. For 654 
hybridization with secondary probes labeled with fluorescent dyes, coverslips were incubated in 655 
minimal hybridization buffer (10% formamide, 10% dextran sulfate, 2x SSC) containing 30 nM 656 
secondary probes for 3 h at 37°C inside a humid chamber. Coverslips were again washed twice 657 
in wash buffer for 30 min at room temperature and rinsed once in 2x SSC. Coverslips were 658 
mounted on glass slides using ProLong Gold Antifade Mountant with DAPI (Invitrogen). Imaging 659 
was done on a DeltaVision Elite microscope (GE) equipped with a sCMOS camera. Image 660 
processing and analysis were done using FIJI.  661 
 662 
Enhancer Analysis 663 
For bidirectionality and epigenetic marks analysis a set of enhancers was selected overlapping 664 
ReMap(Chèneby et al., 2018) EP300 A549 binding sites. DNase, H3K27ac, H3K4me1 and 665 
H3K4me3 bigwig files were downloaded from the NIH roadmap epigenomics project(Roadmap 666 
Epigenomics Consortium et al., 2015) and processed with computeMatrix scale-regions from 667 
the deeptools package(Ramírez et al., 2016) for enhancer regions. Bidirectional enhancers 668 
were selected with at least 10 reads in at least 5 cells and a bidirectionality statistic was 669 
calculated as: abs(plus strand reads - minus strand reads) / sum(reads) ranging from 0 to 1 with 670 
0 being equally bidirectional and 1 being fully unidirectional. 32 enhancers were selected with 671 
absolute score ≤ 0.5. This score was then calculated within each individual cell for these 672 
enhancers. The specificity score to indicate how broadly/specifically TSS were expressed we 673 

calculated:!"#$%ℎ'(") = +,-. !-/#(00$1"	/	∑(!-/#(00$1"	,%#100	,66	0,'/6(0)  .  674 

 675 
 676 
 677 
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Data Availability. 678 
C1 CAGE sequence data from this study have been submitted to DDBJ (Project ID: 679 
PRJDB5282, Sample ID: SAMD00066188 - SAMD00066475). Alignments were uploaded to the 680 
ZENBU genome browser (Severin et al, 2014, PMID 24727769) and a default view is available 681 
at http://fantom.gsc.riken.jp/zenbu/gLyphs/#config=NMT9yTLnH59gIVssI9WRfD. In these two 682 
submissions the libraries numbered 1, 2 and 3 in this manuscript are numbered 4, 5 and 6, 683 
respectively, for historical reasons. 684 
Code Availability. 685 
Code used in this study is available at https://github.com/Population-Transcriptomics/C1-CAGE-686 
manuscript 687 
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