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Abstract 
 Determination of metabolic fluxes by measurement of time-dependent sampling of 

isotopic enrichments during the administration of labeled substrates provides rich information.  

Because such experiments are resource-intensive and frequently push the limits of sensitivity of 

the measurement techniques, optimization of experiment design can improve feasibility with 

respect to financial and labor costs, time to completion, and increase precision and accuracy of 

the results.  Here we used a previously published set of data acquired in cultured insulinoma cells 

to evaluate contributions to the sensitivity and variability of the rate of citrate synthase (CS).  

Specifically, we calculated changes in uncertainty in CS if sample times were dropped or new 

ones were added, and we observed that some sampling times can be dropped with little effect, 

while improvements can be made with a strategic choice of when to add samples. We measured 

the contributions of data sampled at different times on the sensitivity of CS, finding that CS had 

greater sensitivity at early time points.  We tested the concept that if two estimated parameters 

are correlated significantly, then refining one might constrain the other. In this case, the rate of 

Beta-oxs was found to be correlated with CS, and narrower variability in Beta-ox did indeed 

improve the sensitivity of CS.  The tests described here might be applied at the initial design 

stage and then after a pilot phase to improve sensitivities of targeted fluxes and the reduction of 

materials, time, labor, and other experimental resources.  The correlation analyses can be used to 

consider what orthogonal measurements might be beneficial for further improvement of 

measurements.  While this study used a specific example of a set of time-dependent kinetic 

isotopic measurements, the results illustrate some generalizable behaviors that can be tested in 

other experimental systems. 

Introduction 
Metabolism has been studied with isotopes for nearly a century, including with stable 

isotopes [reviewed in (Lehmann, 2017)].  Such kinetic isotopic measurements have the benefit of 

yielding absolute rates of metabolism, especially when combined with isotopomeric analysis of 

stable isotopes (Alves et al., 2015; Chance et al., 1983; Gruetter et al., 1994; Katz et al., 1993; 

Malloy et al., 1987).  The derivation of rates and assessment of the limits of understanding 

depends on mathematical modeling of the metabolic processes under study.  Metabolic modeling 

serves many purposes including testing our understanding of metabolism and quantifying 

metabolic fluxes. The model is a mathematical expression of our hypotheses about a simplified 

version of the pathways that we endeavor to study.  If the parameters of the model can 

reasonably be adjusted in a way that the model’s behavior approximates the targeted 

experimental observables, then our understanding (i.e., hypotheses) may be correct (Garfinkel, 

1968).  Additionally, if the model approximates the data well,  the simulation can yield estimates 

of the kinetic parameters that govern its behavior, within bounds of uncertainty in those 

estimates, and it is important that the bounds of uncertainty be known.  For metabolic modeling, 

the uncertainties must often be determined using a Monte Carlo approach (Canavos, 1974; 

Kuwabara et al., 1990; Mason et al., 1992), as will be explained. Because isotopic metabolic 

studies are often resource-intensive, in this work we propose a new function of metabolic 

modeling. Simulations can be used to optimize the experiment design for enhanced sensitivity to 

particular model features and minimize uncertainties associated with the values of particular 

metabolic parameters (Mason et al., 1995; Tellinghuisen, 1991). 
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Composition of a Metabolic Model 

 To perform kinetic analyses with time-dependent isotopic labeling studies, several basic 

components are needed: metabolites (pools), substrate sources (drivers), metabolic reactions that 

carry isotope from one metabolite to another (rates), and the measured isotopic labeling data 

(targets).  The pools, drivers, and rates are combined to create a set of mass and isotope balance 

equations, with one of each for every relevant labeling pattern of each metabolic pool that is in 

the model. 

The mass balance equations are mathematical statements of how the total concentration 

of a metabolic pool (‘mass’ referring to its size, not to be confused with its molecular weight) 

changes over time. A mass balance equation has the general form 

 
𝑑𝑃

𝑑𝑡
= (∑ 𝑉𝑖𝑛,𝑖

𝑘

𝑖=1

) − (∑ 𝑉𝑜𝑢𝑡,𝑗

𝑚

𝑗=1

)  [1] 

where 
𝑑𝑃

𝑑𝑡
 is the rate of change of the mass of the metabolic pool, Vin,i is the rate of the ith flow 

into the pool of metabolite P, and 𝑉𝑜𝑢𝑡,𝑗  is the rate of the jth flow out of the pool.  Many isotopic 

labeling measurements are performed at a metabolic steady state, so ∑ 𝑉𝑜𝑢𝑡,𝑗
𝑚
𝑗=1 = ∑ 𝑉𝑖𝑛,𝑖

𝑘
𝑖=1 , and 

consequently the size of the pool P does not change with time. However, in kinetic isotope 

studies the isotopic labeling changes with time, and the isotope balance equations show 

quantitatively how the isotopically labeled fraction of a metabolic pool changes, with the general 

form: 

 
𝑑𝑃∗

𝑑𝑡
= (∑ 𝑓𝑆,𝑖(𝑡)𝑉𝑖𝑛,𝑖

𝑘

𝑖=1

) − 𝑓𝑃(𝑡) (∑ 𝑉𝑜𝑢𝑡,𝑗

𝑚

𝑗=1

) [2] 

where 𝑆, 𝑖 is the ith of k substrates that provide mass for the pool, each at a rate Vin,i,  fS,i is the 

fraction of the ith substrate that is labeled at any instant t,  fP is the fraction of the product P* that 

is labeled at the instant t, and 𝑉𝑜𝑢𝑡,𝑗  is the rate of the jth flow out of the pool.  Because 13C has 

been shown to have a negligible isotope effect (Attwood et al., 1986; Melzer and Schmidt, 1987; 

Tipton and Cleland, 1988), the rate of isotopic inflow from each source is equal to the rate of 

total mass flow from that source, multiplied by the fraction of the flow that is 13C-labeled.  The 

mass and isotope balance equations can then be solved in light of various constraints that are 

placed on the model by mass balance and a priori knowledge from one’s own experiments and 

reliable literature and other sources. 

 Once a metabolic model is created that is able to achieve a reasonable approximation to 

the data, one can begin to approach issues of experimental design in a quantitative way. Isotopic 

labeling studies are usually intensive with respect to time, labor, and materials, and it is common 

for some parts of measurements to approach the limits of sensitivity of the methods of detection.  

Quantitative experimental design considerations have the potential to reduce costs, improve 

sensitivity of the values of metabolic parameters to the data, and increase throughput given 

limited time, money, and resources.  Although estimates of rates are the most common objectives 

for kinetic fitting, such data can and has sometimes been used to measure other parameters, such 

as the concentrations of metabolites in specific cellular compartments and enzyme kinetic 

constants (Patel et al., 2010). 
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Assessment of Parametric Uncertainties 

A key aspect of quantitative understanding of a system is the knowledge of how precisely 

the system’s parameters are known and how much the imprecision can impact the calculated 

outcome.  To this end, an analysis of uncertainty is needed (Kennedy and O'Hagan, 2001).  In 

many experiments, group statistics can be used to ask, for example, what is the standard 

deviation of the height of students who receive vitamin supplements?  However, unlike in a 

group of students, where each individual yields one value for height, in isotopic kinetic studies, 

many individual measurements are needed to be analyzed as a group to yield one value of each 

metabolic parameter, so there is no list of rates for individuals to provide group statistics like a 

mean and standard deviation.  Furthermore, the scatter in the data can be an appreciable fraction 

of the signal.  With relatively large scatter and approximate exponential behavior, the 

uncertainties (i.e., the probability distributions) of the estimated parameters often do not follow 

Gaussian distributions. Hence, a Monte Carlo approach can be used to assess the effects of noise 

in these scenarios.  

If we consider a metabolite with constant inflow of label and steady state conditions, it 

can be modeled by the differential equation: 

 
𝑑𝑃∗

𝑑𝑡
= 𝐸𝑉 − 𝑉

𝑃∗

𝑃
 [3] 

Here, P* is the labeled pool of metabolite, P the total pool, V=Vin = 𝑉𝑜𝑢𝑡 is the rate of inflow of 

label. The solution has the form: 

𝑃∗

𝑃
= 𝐸(1 − 𝑒−𝑘𝑡) [4] 

where E is the enrichment of the source and 𝑘 =
𝑉

𝑃
. We use this model to explore the impact of 

noise on distribution of estimated values of k with E = 1 and k = 0.1 (Mason and Rothman, 

2004). Measurements of P* would, with noise, resemble Fig. 1A, and the scatter of the 

measurements would force the estimated exponential rate constant k to have a range of 

uncertainty.  Monte Carlo analysis is performed by first treating the least-squares, fitted curve as 

the best estimate of the true behavior of the system, and then adding randomly distributed, 

representative noise repeatedly to that best estimate. New fits are then calculated to each of the 

simulations that can be plotted as histograms. This procedure effectively asks what the 

distribution of values would be if the same experiment were performed repeatedly under the 

same conditions.  For the example in Fig. 1, 15,000 simulations were run with noise levels of 

5%, 10%, and 20%, and the resulting distributions of the rate constant k (Fig. 1B) show that as 

the level of the noise increases, the distribution broadens and becomes increasingly non-normal. 

 

Overview of Procedures 

 A published data set from insulinoma cells treated with [U-13C6]-D-glucose at four 

different concentrations (2.5-9 mM) and seven different time points (0-240 min) and central 

carbon metabolites analyzed by LC-MS/MS were used as source data for the simulations (Alves 

et al., 2015).  In the original manuscript, several metabolic rates were calculated from the data 

using the kinetic model of Fig. 2.  Here, experiment sensitivity and efficiency were explored 

using those data and the kinetic model.  In particular, citrate synthase (CS) was examined 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 27, 2018. ; https://doi.org/10.1101/331520doi: bioRxiv preprint 

https://doi.org/10.1101/331520


because it is central to understanding all of the elements of the TCA cycle and consequently a 

key element with respect to cellular energetics, mitochondrial health, and other biomedically 

related issues.  A secondary focus were the rates of beta oxidation of fatty acids (Beta-ox) 

because of their impact on oxidative substrate selection.  The sensitivity of the values of CS and 

Beta-ox to the timing of sampling was investigated, considering whether experimental precision 

might be enhanced by judicious sampling and whether some time samples could be eliminated 

with little effect on precision. 

 

       
Figure 1: Monte Carlo analysis of fitting to an exponential curve, y = E(1 - e-kt), by iteration of 

the values of E and k. (A) Representation of data with 10% noise corresponding to an 

exponential curve with E=1 and k=0.1. (B) Distribution of fitted rate constant ‘k’ for three levels 

of noise, 5%, 10% and 20% of the value of E.  

 
 

Figure 2: Representation of the TCA cycle metabolites and fluxes used in the model (Alves et al., 

2015). Rates and Concentrations are given in Table 1 and Table 2 respectively. 

A 
 

B 
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Methods 
Kinetic modeling for flux analysis 

The source data (Alves et al., 2015) consisted of central carbon metabolites 

(phosphoenolpyruvate (PEP), pyruvate, lactate, citrate, glutamate, succinate, malate, and 

aspartate) from an insulinoma cell line INS-1 832/13 at a range of time following incubation 

with [U-13C6]-D-glucose. Positional enrichments were calculated as described using Mass 

Isotopomer Multi-Ordinate Spectral Analysis (MIMOSA).  The enrichments of pyruvate, citrate, 

glutamate, succinate, and malate were used as target data to be fitted with the differential 

equations that describe the pathway shown in Fig. 2 (Alves et al., 2015). The fitting was 

performed using a python kinetic flux package, PollyPhiTM Absolute (Elucidata, Inc.) described 

in Supplemental Material S1. Two optimization algorithms, sequential least squares 

programming (SLSQP) and least squares, were used to fit the data and obtain the values of 

several fluxes including: citrate synthase (CS), beta oxidation of fatty acids (Beta-ox), exchange 

between citrate/isocitrate and alpha-ketoglutarate (αKG) (ICDH), exchange between 

malate/fumarate and OAA (SC), exchange between αKG and Glutamate (Glutexc), dilution of 

glutamate (Glutdil), and pyruvate carboxylase (PC). The flux values were expressed in terms of 

μM/μM Taurine/min. 

 

Assessment of timing of data acquisition on uncertainty distributions of estimated parameters 

Each target species used in the objective function had data at seven time points, with six 

replicate measurements at each time point. To perform Monte Carlo analyses, the replicates were 

assumed to be part of a normal distribution with a mean and standard deviation equal to the mean 

and standard deviation, respectively, of the measured data for each target at each time point. 

These normal distributions were then randomly sampled 500 times to generate new, artificially 

noisy datasets. Any negative values in these datasets were replaced with zero, just as is done with 

actual enrichment data. Each of these new datasets were fitted with the model independently to 

create a list of 500 different parametric fits and estimate the distribution and correlative 

relationships of flux values.  

Simulating an experiment with data collected at fewer time points 

Data sets with fewer time points were simulated by removing individual time points from 

the experimental target. Monte Carlo simulations were also run with each modified data set to 

obtain new distributions of fluxes.  The purpose was to assess if a more efficient experiment 

could have been performed, one that yielded acceptable precision for the value of CS but with 

fewer data points. 

Simulating an experiment with data collected at more time points 

To assess additional data sampling might be improve the parameter estimations, 

simulated data were generated along the original least-squares fit by creating 15 time points 

spaced uniformly between 0 and 50 minutes.  Here, the goal was to assess how data at any given 

time point impacted the value of CS.  These simulated points were combined with the 

experimental data measured at 60, 120, and 240 minutes, effectively simulating how the 

precision of the value of CS might improve if additional data were acquired at early time points.  

The decision to focus on the early time points arose because at early time points, the enrichments 

are changing more quickly and the kinetics have more impact than later, as the metabolites’ 

labeling approach a steady state. 
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Comparison of distributions achieved with different experiment designs 

The distribution of parameters obtained after Monte Carlo analysis was either plotted 

directly as a histogram or fitted to a beta distribution for visualization. To quantify the 

uncertainty in a given parameter, the distribution of values of that parameter was randomly 

sampled to make 50 groups of 20 values each. The standard deviation of each group was then 

calculated and the average of these 50 standard deviations was used as a quantitative measure of 

parameter uncertainty. 

Determination of sensitivity of parameters to specific components of the data 

A sensitivity analysis was performed to determine which targets and specific time points 

have the largest effects on the estimated flux parameters.  After the best-fit estimates of the 

fluxes were obtained from the experimental data, the sensitivities of those fitted parameters to 

the data were estimated by the following procedure: the time courses of each labeled species 

obtained with the estimated fluxes were assumed to represent the true behavior of the system. 

Then, a fixed positive deviation was introduced in the calculated time course of a given target at 

a given time point, and the optimization algorithm was run again.  This procedure effectively 

poses the question, “If the data were higher at a particular time point, how much would it change 

the estimated fluxes?”  These steps were repeated for each target at each of the seven time points 

one-by-one to obtain new flux values. Sensitivity of a flux was then calculated as 

      𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
%𝛥𝐹𝑙𝑢𝑥

𝛥𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
|𝑡𝑖𝑚𝑒,𝑡𝑎𝑟𝑔𝑒𝑡            [5] 

Correlation analysis from Monte Carlo lists 

The 7 mM glucose group was chosen to illustrate the correlations between fluxes because 

it showed a broader distribution of uncertainty for Beta-ox than did the 9 mM group. Five 

hundred Monte Carlo simulations were performed with and without the 240-minute time point. 

The resulting distributions from these simulations were used to calculate Pearson correlation 

coefficients for pairwise comparison of fluxes. 

Results 

The least-squares fits for the 7mM data set are shown in Fig. 3A, and the resulting flux 

values are given in Table 1.  After least-squares fitting, the distributions of uncertainty for CS 

and Beta-ox were estimated with Monte Carlo iterations consisting of 500 runs per data set. 

These distributions showed a non-normal distribution (Fig. 3B, 3C), as expected from noisy 

datasets (Fig. 1B).  

Time-dependent sensitivity with MIMOSA sampling 

The heatmap in Fig. 4 shows the sensitivities of the estimated CS to the target data for 

each measured species (vertical axis) over the range of time points (horizontal axis), for the 9 

mM glucose condition. The values in the heatmap represent the percentage change in the 

estimated value of CS if the enrichment of a given target at a given time point were higher than 

that measured in the experiment. The magnitude of the sensitivity varies with both the target 

species and time. 

With respect to target species, the highest sensitivities to the CS estimate were 77%, 

72%, and 71%, observed for Citrate Total 4,5, Glutamate Total 4,5, and [4,5-13C2] Citrate, 
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respectively, indicating that tighter measurements of Citrate and Glutamate can lead to tighter CS 

estimates. For many species, especially the ones that have low steady state enrichment, 

sensitivity of CS  

 
Figure 3: Fit and distribution of fitted parameters. (A) Least-square fits (solid lines) of the model 

of Figure 2 to the experimental data (open circles) for the data acquired with 7mM glucose. 

Glutamate Total 4,5 is the sum of all isotopomers of glutamate which have are labeled in carbon 

positions 4 and 5, Citrate Total 4,5 is the sum of all isotopomers of citrate which have a label in 

positions 4 and 5, and Citrate_h+Citrate_i refers to the combination of 

[(1,2,3,4,5)(2,3,4,5,6)(1,2,4,5,6) and (1,3,4,5,6)-13C5]Citrate. Distributions of (B) CS, and (C) 

Beta-ox obtained from 500 Monte Carlo simulations. The histograms have been normalized such 

that the shaded area is equal to one. 

 

was close to zero at all time points, which means that in general metabolites with low labeling 

have little impact on the value of CS. Therefore, the estimation of CS is generally insensitive to 

target species that are less labeled, even though they have lower signal-to-noise ratios. 

For time-dependence, the highest sensitivities observed for any target at 5, 15, 30, 60, 

120, and 240 minutes were 77%, 72%, 59%, 29%, 3%, 7%, respectively. These values indicate 

B 
 

C 
 

A 
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that individual targets at early time points (up to 30 minutes) can have a large impact on the 

estimated values of CS and at later time points, have less effect. The time-dependent sensitivities 

also illustrate that for kinetic studies, the majority of the information is captured when the 

enrichments are changing most rapidly. Since the sensitivity values are calculated for each target 

species used in the objective function, they will change if the target data are changed. 

 
Figure 4: Percentage sensitivity of the estimated CS flux (9mM glucose condition) to the 

experimental targets and time. The colors represent percentage change in CS caused by 

deviations in the enrichment data, with greater color saturation representing large responses of 

CS. 

Effect of altered experimental sampling 

We eliminated data at all time points one by one to quantify the effect of each time on the 

distribution of the estimated value of CS (Fig. 5, S1, S2, and S3).  The data at a given time could 

have an effect on both the mean value and the spread of the distribution (i.e., the tightness of the 

estimated CS). We observed that for 9mM glucose concentration, omission of data at any time 

point, except 60 and 120 minutes, led to a statistically significant change in the distribution of 

CS. In other words, if only six time points were measured at either 0, 5, 15, 30, 120, and 240 

minutes or 0, 5, 15, 30, 60, and 240 minutes, the distribution of CS would have been statistically 

similar to when all seven time points, 0, 5, 15, 30, 60, 120 and 240 minutes, were measured. As 

seen from the sensitivity map in Fig. 4, early time points, 5 and 15 minutes led to maximum 

change in the expected values of CS (Fig. 5A). We also observed that once an isotopic steady 

state is approached, only one time after that needs to be sampled, but it is crucial to have that late 

sample. For example, without the data at 120 minutes, but in the presence of data at 240 minutes, 

the distribution of CS was statistically the same as when the data at both 120 and 240 minutes 
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was present. However, in the absence of data at 240 minutes, but presence of data at 120 minutes 

(where some enrichments have not reached an isotopic steady state), the distributions of CS 

differ (Fig. 5B). If data at both 120 and 240 minutes are absent, the distribution of CS changed 

significantly compared to the case when all time points have been included. The effect of 

removing the 240-minute time point on CS is prominent in the estimated CS for 5mM glucose 

concentration as well (Fig. S2).  As seen in Fig. 5, the removal of a single time point in some 

cases can increase the uncertainty of CS (15 minutes).  Another factor to consider is the potential 

for bias in the expected value, which was seen at some of the time points. Removal of data at 5, 

15, 30, or 240 minutes led to a statistically significant shift in the expected value of CS, which 

reflects the potential for bias in the values of fitted parameters when insufficient data are 

acquired. Taken together, these two points suggest that if the removal of a time point changes 

neither the uncertainty nor the expected value of the parameters of interest, the point is 

unnecessary.  In other cases, in which either the distribution or the expected value changes, the 

point is needed. 

 

 

 
Figure 5.  Distributions of CS (9mM glucose condition) relative to the value obtained when all 

time points are used or some are eliminated. The x-axis represents percentage change in CS 

compared to the average value for the condition where all seven time points (0, 5, 15, 30, 60, 120 

and 240 minutes) have been used.  Note that the curve “all” is centered around zero because its 

expected value is the reference for the test cases.  The Supplemental Material shows the 

corresponding plots for data acquired with 2.5, 5, and 7 mM. 

 

without_t5 

 

without_t15 

 

without_t60 

 

all 

 without_t30 

 

all 

 
without_t120_t240 

 

 without_t120 

 
without_t240 

 

A 
 

B 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 27, 2018. ; https://doi.org/10.1101/331520doi: bioRxiv preprint 

https://doi.org/10.1101/331520


While the analysis of the importance of each time point is useful in retrospect, we 

recognize that the experiment design stage requires general rules of thumb to determine a range 

of time points that are likely to be important for sampling.  To do this, we first defined a 

representative rate constant k for each of the four datasets in our study as the ratio of the primary 

flux through the pathway divided by the concentration of the largest metabolite pool (i.e., 

flux/concentration), and the rate constants were used to estimate labeling half-times t1/2 

(Supplementary Table S1). If we approximate the time courses with these rate constants and 

compare the time of sampling (Fig. S4) used by Alves et al., we find that the experimental 

measurements are well distributed over the entire dynamic range for all four datasets. We expand 

on this concept later in the Discussion, recommending a procedure to choose sample times when 

planning new flux experiments. 

Tightening precision of selected parameters 

When there is a strong correlation between fluxes in a pathway, it suggests that if we 

reduce the uncertainty in any one of these fluxes, the uncertainty in the other correlated fluxes 

should also decrease. We used Beta-ox and CS as examples because these fluxes are strongly 

correlated as evidenced from a comparison of values obtained from the 500 Monte Carlo 

simulations for the 7mM glucose dataset (Fig. 6). We tested our hypothesis by comparing the 

distribution of CS and Beta-ox between two conditions: 1) data collected until the steady state is 

reached for all isotopomers (i.e., last data point collected at 240 minutes), and 2) data collection 

stopped before the steady state is fully established (i.e., last data point collected at 120 minutes). 

We observed that the uncertainty in both CS and Beta-ox was lower in condition 1 compared to 

condition 2. The lower uncertainty was because a clearly defined steady state limits the possible 

values of fluxes and so more strongly constrains the optimization algorithm.  It is worth noting 

that the inclusion of the 240 minute point tightened the uncertainty in Beta-ox more than the 

uncertainty in CS, reflecting the fact that the 240 minute point contains more information about 

Beta-ox than it does about CS.  

As shown in Fig. 6E and F, we also compared the distributions of Beta-ox and CS under 

the following conditions: 1) both Beta-ox and CS were allowed to vary and settle to a best-fit 

estimate, and 2) the value of Beta-ox was constrained to a fraction of CS based on the relative 

mass isotopomer distributions of pyruvate and acetyl CoA at 240 minutes. Compared to the case 

with both Beta-ox and CS varied freely, when Beta-ox was constrained, the uncertainty in CS 

was reduced. This exercise shows that if the relative value of Beta-ox can be determined with 

great precision, then the value of CS or other parameters correlated with the value of Beta-ox 

will be known more precisely. This test was repeated for experimental data limited to times up to 

120 minutes, and constraining Beta-ox led to an even greater reduction in the uncertainty of CS. 

The 240 minute data contain a great deal of information about Beta-ox relative to CS, so the 

additional constraint achieved by fixing the relative rate of Beta-ox contributes only a small 

amount to the precision of CS (Fig. 6F). When the 240 minute point is not used, then Beta-ox is 

less well determined, so the benefit of constraining the value of Beta-ox is greater (Fig. 6E).  

Practically, this means that one could eliminate the 240 minute point if there were an 

independent way to assess Beta-ox. 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 27, 2018. ; https://doi.org/10.1101/331520doi: bioRxiv preprint 

https://doi.org/10.1101/331520


 
Figure 6: Correlation between CS and Beta-ox and the effect of their correlation on their 

uncertainty under different conditions. Correlation between estimated values of CS and Beta-ox 

obtained from Monte Carlo simulation of 7mM glucose condition with data considered from (A) 

0-120 minutes, and (B) 0-240 minutes. Comparison between standard deviation in the estimated 

values of (C) CS and (D) Beta-ox considering data from 0-120 minutes and 0-240 minutes. 

Comparison between the uncertainty in CS with unconstrained and constrained Beta-ox for the 

conditions where data is considered from (E) 0-120 minutes, and (F) 0-240 minutes. 

Discussion 
A common approach for quantifying metabolic fluxes in a pathway involves the use of 

stable isotopic tracers, with subsequent labeling patterns measured at multiple time points. Once 

the data have been collected, biological insights can only be derived after the data have been 

processed for metabolites or their fragments, corrected for natural abundance of the isotopic 

tracer and a model has been fitted to the data to estimate the values of fluxes. Since we do not 

have a direct experimental measure of the fluxes, it is important to determine the statistical 

significance of the estimated fluxes and to identify the experimental variables which have the 

largest effect on the estimated fluxes and the extent of those effects. 
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Some common experimental variables that can affect the accuracy of the estimated fluxes 

are, 1) the number of time points at which data are collected, 2) the placement of the time points 

being measured, 3) the number of replicates at a given time point, 4) any variables or additional 

measurements available to constrain the model, and 5) the information present in the collected 

data (e.g., isotopologue information that is present in LC-MS data or positional (isotopomer) 

information of the labeling patterns that is present in LC-MS/MS data and/or Nuclear Magnetic 

Resonance (NMR) data). It has recently been shown that the information about the position of 

the label in LC-MS/MS data led to more accurate flux estimates compared to only mass 

isotopologue information present in the LC-MS data (Alves et al., 2015). The spread of the 

distribution in flux through PC decreased by about half when isotopomer data were used instead 

of isotopologue data. In the present work, we quantified the effect of experimentally measured 

targets, time points at which data have been collected, and the correlation between parameters on 

the estimated fluxes of the TCA cycle in insulinoma cells (Alves et al., 2015). 

Fig. 7 shows a suggested procedure for piloting and refining experimental sampling, 

including number of samples and their timing to cover a range of potential metabolic rates to 

meet required limits of precision. As we examined the effects of parametric sensitivity to time, 

we observed that certain parameters like flux through CS were defined more precisely by 

inclusion of some time points, such as clear establishment of an isotopic steady state, and 

capturing the rapid change in enrichments at the beginning of the experiment. Therefore, the time 

points to be measured for any given pathway should be distributed such that most, but not all, of 

the data are collected at the beginning, where the label distributions are changing rapidly. It is 

also important to collect some data to establish that an isotopic steady state has been reached. 

Since the time scale of any metabolic process depends on many factors (e.g., the labeled nutrient 

being used, the type of cell, the state of the cell, and the pathway being studied), the optimized 

selection of time points requires an estimate of the time scale of the pathway under investigation. 

As discussed in Results, the labeling times can be estimated from a range of fluxes and 

metabolite concentrations expected from published values or pilot measurements.  If one obtains 

upper and lower bounds of the labeling half-times t1/2min and t1/2max, time points can be selected 

strategically as prescribed in Fig. 7 to achieve accurate kinetic measurements over an anticipated 

range of rates. For piloting, it is often beneficial to begin experimenting with the early estimated 

time points and proceed sequentially through measurements to the later sample times.  The 

benefit of sequential measurements is that the experimenter may discover that the isotopic steady 

state has been established earlier than would be the case for the slowest possible time constant, 

rendering the longest suggested time points unnecessary. One must also consider physiological 

constraints, such as avoiding too long an experiment because of possible undesirable interference 

due to other cellular processes that occur at longer time scales.  

We found that the values of some parameters were correlated, and so we hypothesized 

that improving the precision of a few parameters would allow us to reduce the uncertainty in the 

values of other correlated parameters. We tested this idea for the values of CS and Beta-ox and 

showed that the correlation between these fluxes meant that constraining the value of Beta-ox led 

to a tighter distribution of the estimated CS. This approach is routinely used for metabolic studies  
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Figure 7: A flowchart of suggested steps for designing and refining an experiment. Initial 

estimates of fluxes and concentrations, often from literature, can be used to approximate upper 

and lower labeling half-times t1/2min and t1/2max, using the formula t1/2 = ln(2)/k ~ 0.7/k. The t1/2min 

and t1/2max are used to select specific sampling times as demonstrated in Fig. S5.  Pilot 

experiments with three or more biological replicates are recommended to support statistical 

approximation for estimation of actual t1/2 values and refinement of the time points if needed. If 

feasible, data from orthogonal measurements (e.g., Beta-ox) may constrain fluxes in the kinetic 

analysis. Generally, it is necessary to perform additional measurements to achieve at least 5-6 

replicates at each time point, to perform a more based on required precision for the biological 

questions under consideration. 

 ,           
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of brain, where relative rates are constrained using steady-state measurements obtained with one 

isotope while dynamic rates are assessed with another (Patel et al., 2005). We propose that in 

addition to using the labeling data at steady state, any other measurements (such as nutrient 

uptake or secretion rates) that can be used to constrain fluxes, should when possible be included 

in the experiment design. Another type of orthogonal restraint is the calculation of some of the 

same fluxes using different labeled substrates. 

While we focused the present study around CS and Beta-ox, it is important to note that 

other fluxes in the pathway could behave in somewhat different ways but would be expected to 

follow similar principles. The size of the noise or scatter of the data also affects the shape and 

width of the distributions of uncertainty (Fig. 1B), but that was not directly investigated in the 

present work. For noisy data, uncertainty distributions can be non-normal and the median may be 

better than the mean to approximate the best-fit value (Hooker, 1907).  It is recommended that 

biological replicates should be used at each measured time point to get an estimate of noise in the 

targets and determine its effect. It may become clear that the noise must be reduced if the 

experiment is to yield the required precision. 

We also observed that if the time points are not distributed optimally, then not only the 

spread in the estimated values of the flux (uncertainty) will be affected, but that also the 

estimates of fluxes can be biased up or down. Such bias will not be captured in routine statistical 

analysis of flux estimates, but it should be considered while designing the experiment. Biases can 

also be introduced if there are errors in the recording of sampling times. For example, if a time 

point is recorded as six minutes after the start of isotope exposure but was actually captured at 

five minutes, the estimated fluxes can be significantly overestimated (Supplementary Material 

S6).  

The insights derived in this work are summarized in Fig. 7 and can be applied to reduce 

the use of experimental resources by eliminating acquisition of data that contribute minimally to 

accuracy and precision of the estimated fluxes. The results demonstrate that the fitting 

incorporates results from independent measurements, such as one might obtain with different 

isotopic labeling studies or with other, non-isotopic techniques, can constrain the fitting and 

further enhance the accuracy and precision of the estimated fluxes. Judicious sampling and 

strategic addition of information can improve the feasibility of time-course labeling experiments, 

which are often time and cost intensive due to the price of reagents, large number of samples, 

and the expertise required in sample preparation and data collection. The benefits will vary 

according to the limitations of each experiment.  Some experiments may be limited by budget 

constraints, whereas others may be driven primarily by a need for quick results or high precision. 

We hope that by highlighting the effect of experimental variables on the estimated flux values, 

we have given a set of tools to help researchers in judicious experiment design where they can 

balance labor, use of materials, costs, and time according to their specific experimental needs. 
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Table 1: Absolute flux values obtained from fits in PollyPhiTM Absolute 

Glucose 

(mM) 
Fluxes (M/M Taurine/min) 

CS Beta-ox PC ICDH Glutdil Glutexc SC 

2.5 

5 

7 

0.106±0.008 

0.089±0.002 

0.131±0.003 

0.016±0.000 

0.011±0.000 

0.021±0.003 

0.002±0.000 

0.005±0.000 

0.021±0.001 

0.062±0.009 

0.041±0.004 

0.030±0.005 

0.302±0.030 

0.105±0.003 

0.139±0.005 

7.43±0.5 

20.2±2.2 

36.8±4.5 

7.21±0.5 

20.3±2.0 

37.8±4.8 

9 0.234±0.004 0 0.050±0.001 0.124±0.005 0.268±0.010 62.8±7.1 42.0±1.3 

 

Table 2: Concentrations of metabolites used in the model 

Glucose 

(mM) 
Concentration (M/M Taurine) 

Succinate Pyruvate Citrate Glutamate Malate PEP OAA AcetylCoA KG 

2.5 

5 

0.020 

0.015 

0.004 

0.014 

0.219 

0.27 

3.949 

4.26 

0.380 

0.37 

0.024 

0.023 

0.020 

0.015 

0.020 

0.015 

0.020 

0.015 

7 0.0180 0.0353 0.47 5.09 0.94 0.0564 0.0180 0.0180 0.0180 

9 0.0399 0.0697 1.31 7.63 2.02 0.1137 0.0399 0.0399 0.0399 
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