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Abstract  

We introduce a microfluidic platform that enables single-cell mass and growth rate measurements 

upstream of single-cell RNA-sequencing (scRNA-seq) to generate paired single-cell biophysical and 

transcriptional data sets. Biophysical measurements are collected with a serial suspended microchannel 

resonator platform (sSMR) that utilizes automated fluidic state switching to load individual cells at fixed 

intervals, achieving a throughput of 120 cells per hour. Each single-cell is subsequently captured 

downstream for linked molecular analysis using an automated collection system. From linked 

measurements of a murine leukemia (L1210) and pro-B cell line (FL5.12), we identify gene expression 

signatures that correlate significantly with cell mass and growth rate. In particular, we find that both cell 

lines display a cell-cycle signature that correlates with cell mass, with early and late cell-cycle signatures 

significantly enriched amongst genes with negative and positive correlations with mass, respectively. 

FL5.12 cells also show a significant correlation between single-cell growth efficiency and a G1-S 

transition signature, providing additional transcriptional evidence for a phenomenon previously 

observed through biophysical measurements alone. Importantly, the throughput and speed of our 

platform allows for the characterization of phenotypes in dynamic cellular systems. As a proof-of-

principle, we apply our system to characterize activated murine CD8+ T cells and uncover two unique 

features of CD8+ T cells as they become proliferative in response to activation: i) the level of 

coordination between cell cycle gene expression and cell mass increases, and ii) translation-related gene 

expression increases and shows a correlation with single-cell growth efficiency.  Overall, our approach 

provides a new means of characterizing the transcriptional mechanisms of normal and dysfunctional 

cellular mass and growth rate regulation across a range of biological contexts.  

Background 

Recent experimental advancements have dramatically improved the throughput and cost-efficiency of 

single-cell RNA-sequencing (scRNA-seq) [1-3]. However, gene expression measurements alone only 

provide a portion of the information necessary to characterize complex cellular processes [4, 5]. Thus, 

parallel efforts have focused on linking gene expression measurements with complementary single-cell 

data that can provide further information to help guide analyses and contextualize distinct cellular states. 

For instance, various multi-omic methods have been developed to link measurements such as protein 

abundance, or DNA sequence or methylation, with gene expression from the same single cell [6-9]. Gene 

expression measurements have also been linked to single-cell location within a tissue to enable the study 

of cellular development and differentiation at unprecedented detail [10-12]. Additionally, single-cell 

functional assays have been coupled with expression data to obtain novel insights into the relationships 

among cellular electrophysiology, morphology, and transcription [13]. Taken together, these approaches 

demonstrate the value of linked single-cell data sets to afford a deep understanding of various cellular 

functions and states that may be difficult to obtain through transcriptomic measurements alone.  

Linked gene expression data sets are of particular interest when considering recent technological 

developments that have enabled the precise measurement of various single-cell biophysical properties, 

such as mass and growth rate [14, 15]. As highly integrative metrics of cellular state, these parameters 

offer unique insights into a wide range of biological phenomena, including: i) basic patterns of single-cell 

mass and growth regulation; ii) biophysical changes associated with immune cell activation; and, iii) 

heterogeneity of single-cell drug response in various cancers [16-18]. However, the approaches previously 
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used to collect these biophysical measurements have precluded linking these properties with molecular 

information collected from the same cell.   

Padovan-Merhar et al. recently reported key progress towards this goal, describing an imaging-based 

approach that allows for the enumeration of various transcripts that can be linked with single-cell 

volumetric measurements [19]. This work revealed novel insights into the relationship between transcript 

abundance and cell volume throughout the cell cycle. However, these imaging-based approaches are 

limited to measurements of cell size alone, have a low throughput, and have been coupled primarily with 

hybridization-based approaches that are limited in the total number of genes that can be measured in any 

given cell.  To our knowledge, there have been no methods reported to date that allow for linked 

measurements of cellular mass, growth rate, and transcriptome-wide gene expression from the same cell. 

It has therefore been challenging to characterize the underlying transcriptional mechanisms responsible 

for the cellular mass and growth rate variability observed in a range of normal and dysfunctional biological 

contexts.  

To address these limitations, we have developed a microfluidic platform that enables the measurement 

of single-cell mass and growth rate immediately upstream of scRNA-seq. Here, we describe this platform 

and demonstrate the reproducibility of the linked data sets it generates with a sufficient throughput to 

be applied to a broad range of dynamic biological contexts.  

Results and Discussion 

Serial SMR platform with downstream collection for scRNA-seq 

Our system relies on a modified version of a serial suspended microchannel resonator (sSMR) device that 

has been described previously (Figure 1) [17]. Briefly, the sSMR utilizes an array of high-resolution single-

cell buoyant mass sensors placed periodically along the length of a long microfluidic channel, allowing a 

single cell’s mass to be measured periodically as it traverses the channel. In addition to providing mass 

information, this series of measurements can also be used to determine the mass accumulation rate 

(MAR), or growth rate, of each cell. Real-time access to the data generated by each SMR mass sensor 

allows for peak detection in the final cantilever to be used as an indication of a cell exiting the mass sensor 

array; these peaks trigger the motion of a three-dimensional motorized stage to position a PCR tube 

containing lysis buffer to capture each single cell as it is flushed from the system (Methods).  

The total time required to flush the system’s dead volume and release each single cell (20 seconds for the 

system implementation described here) sets a theoretical maximum throughput for the platform to avoid 

the collection of multiplets. Crucially, to minimize the frequency of failed capture events, we have 

implemented a new fluidic scheme whereby single cells are loaded into the array of mass sensors at fixed 

intervals (Supplementary Figure 1, Supplementary Note 1) [20]. Ultimately, this fluidic scheme allows us 

to achieve a throughput of one cell approximately every thirty seconds (for a throughput of up to 120 cells 

per hour) with minimal failed collection events due to co-release. This offers a two-fold throughput 

improvement over previous implementations of biophysical measurements alone, while offering the 

additional ability to capture each individual cell downstream for scRNA-seq. 

Unique gene expression profiles related to biophysical properties in two murine lymphoblast cell lines 
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To validate our method for collecting linked single-cell biophysical and gene expression data, we first 

measured two murine lymphoblast cell lines (L1210 and FL5.12) that have well-characterized mass and 

growth properties (Figure 2) [15-17]. Single cells collected downstream of the sSMR for scRNA-seq 

consistently yielded high-quality cDNA libraries, with 85 out of 87 individual L1210 cells and 124 out 144 

individual FL5.12 cells with paired biophysical data passing initial quality controls (e.g., number of genes 

detected greater than 4,000, Methods, Supplementary Figure 2).  

In order to determine the transcriptional profiles associated with various biophysical states in these cells, 

we ranked genes by how strongly their expression levels correlated with single-cell biophysical data 

(Spearman’s correlation coefficients, Supplementary Table 1). Both Spearman and Pearson correlation 

methods yielded similar results for all comparisons considered (Supplementary Figure 3). We then utilized 

the GSEA Preranked tool to determine which gene sets showed significant enrichment at either end of 

these ranked lists (FDR<0.05, Methods, Supplementary Table 2) [21]. For both cell types, genes ranked 

by correlation strength with single-cell mass were highly enriched for functional annotations relating to 

cell cycle progression (FDR<0.05, Supplementary Table 2, Figure 2). Specifically, genes related to early cell 

cycle events – such as DNA replication initiation – were more highly expressed in cells with lower masses 

whereas genes related to late cell cycle events – such as chromosome segregation – were more highly 

expressed in larger cells. Interestingly, both cell types revealed a larger number of genes that showed a 

significant positive correlation with mass relative to the number of genes with a significant negative 

correlation (Supplementary Figure 4).  

Genes that showed significant correlation with cell mass in L1210 cells were significantly enriched 

amongst those previously shown to correlate with time since division, an alternative proxy for cell cycle 

progression, in the same cell line (FDR < 0.05, Supplementary Figure 5, Supplementary Note 2). Similarly, 

genes that showed a significant correlation between their expression levels and biophysical properties in 

FL5.12 cells were consistent when measured in a second, independent replicate of the linked biophysical 

and gene expression experiments (FDR<0.05, Supplementary Figure 5, Supplementary Note 2). These 

results demonstrate the quality and reproducibility of transcriptional measurements collected 

downstream of the sSMR. 

To account for the linear relationship between mass and MAR in these cell types (ρ = 0.67 and ρ = 0.56 for 

L1210 and FL5.12, respectively, Figure 2), we focused our analysis on mass-normalized MAR, determined 

by dividing each cell’s MAR by its corresponding mass. This parameter describes a single cell’s growth 

efficiency, which is decoupled from mass-related confounders [18, 22]. For L1210 cells, genes ranked by 

strength of correlation between expression level and growth efficiency did not reveal any statistically 

significant enrichment of functional annotations (FDR>0.05). The FL5.12 cells, however, showed 

significant positive enrichment for functional annotations related to cell cycle progression amongst genes 

ranked by correlation strength with growth efficiency (FDR<0.05, Supplementary Table 2). Specifically, 

subsets of genes implicated in the G1-S transition and DNA replication showed a higher level of expression 

in cells of intermediate mass with the highest growth efficiencies (Methods, Supplementary Figure 6) 

[23]. These results are consistent with previous FL5.12 single-cell growth measurements, which revealed 

an increase in growth efficiency approaching the G1-S transition followed by a decrease later in the cell 

cycle [15].  

Characterizing CD8+ T cell activation with linked biophysical and gene expression measurements  
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Both the L1210 and FL5.12 models present stable distributions of biophysical and transcriptional profiles 

over the course of long-term propagation in bulk culture [24, 25]. However, one of the benefits of the 

sSMR platform is that it offers sufficient throughput to characterize cell populations that may be changing 

in their phenotypes over time. Primary CD8+ T lymphocytes are a prime example of this dynamic behavior, 

as they are known to drastically change their biophysical properties, transcriptional states, and metabolic 

characteristics in response to activation [17, 26, 27].  

In order to characterize their response to activation, we collected single-cell biophysical and gene 

expression profiles for murine CD8+ T cells stimulated in vitro for either 24 or 48h (Figure 3, Methods). 

Although the cells for both time points displayed similar mass distributions, the cells measured after 48h 

of activation showed significantly higher growth efficiencies (P<0.001, Mann-Whitney U-test, Figure 3a,b). 

These two populations showed differential expression patterns consistent with T cell activation, including 

significant upregulation of Granzyme B (Gzmb) and IL-2 receptor (Il2ra and Il2rb) as well as significant 

downregulation of Ccr7 in the 48h population compared to the 24h one (FDR<0.05, Supplementary Table 

3). Similarly, gene set enrichment analysis performed on genes ranked by expression fold change between 

these time points revealed significant enrichment for gene sets related to immune cell effector function 

and glucose metabolism, consistent with functional and metabolic shifts that have been previously 

characterized in activated CD8+ T cells (FDR<0.05, Supplementary Tables 4 and 5) [26, 28].  

Cells activated for 48h also displayed a higher expression of genes related to protein production, including 

those involved in translation initiation and cytosolic ribosome activity (Supplementary Table 5).  Araki et 

al. recently demonstrated a similar trend, noting an increase in translation activity over of the course of 

early T cell activation, as cells become more proliferative [29]. The measurements presented here suggest 

that this increase in translation activity is accompanied by, and potentially is tied to, an increased growth 

efficiency observed at 48h compared to 24h. This population-level relationship between growth efficiency 

and translation-related gene expression was also observable at the single-cell level for cells activated for 

48h. Within this time point, genes ranked by correlation strength with single-cell growth efficiency once 

again showed significant enrichment for functional annotations relating to translation machinery 

(FDR<0.05, Supplementary Table 2). Despite a similar number of genes showing a significant correlation 

with growth efficiency in the 24h time point, these genes did not show any significant functional 

enrichment when ranked by correlation strength (FDR>0.05, Supplementary Figure 4). This result 

suggests that the coordination between single-cell growth efficiency and translation-related gene 

expression occurs later in the course of T cell activation. 

The 48h time point revealed a greater number of genes that showed a significant correlation between 

expression level and cell mass relative to the 24h time point (Supplementary Figure 4). When determining 

the functional role of genes ranked by expression correlation with single-cell mass, only the 48h time point 

demonstrated significant cell cycle functional enrichment (FDR<0.05, Supplementary Table 2). 

Furthermore, a previously described set of genes known to correlate with an activated CD8+ T cell’s time 

since division – a proxy for cell cycle progression – showed a significantly stronger positive correlation 

with cell mass in the 48h population relative to 24h population (P<0.001, Mann-Whitney U-test, Figure 3) 

[25]. It is important to note that the 24 and 48h time points primarily capture cells before and after their 

first division event, respectively [30]. Although cells are accumulating mass, or “blasting”, in the first 24h, 

it is not until roughly 30 hours that cells undergo their first division and begin increasing in number and 

cycling in the traditional sense [30, 31]. Taken together, these results suggest that the level of coordination 
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between cell cycle gene expression and cell mass increases later in T cell activation as cells begin actively 

dividing. 

Conclusion 

The platform presented here enables linked measurements of single-cell biophysical properties and gene 

expression. We have demonstrated the feasibility of resolving distinct transcriptional signatures 

associated with subtle differences in single-cell mass and growth rate for stable L1210 and FL5.12 cell lines 

as well as for activated, proliferating CD8+ T cells. While the primary focus of this work was on conducting 

scRNA-seq downstream of the sSMR, we also envision this platform being a useful tool for linking 

biophysical data with other recently developed approaches that enable DNA sequencing, epigenomic 

characterization, or multi-omic measurements of single cells [6, 7, 32].   

We believe that these linked measurements will offer a novel means of exploring a range of biological 

questions. For instance, when paired with recently developed computational approaches, these linked 

biophysical and transcriptional measurements may offer unprecedented insights into cell cycle regulation 

as well as provide an additional approach for addressing the potentially confounding effects of cell cycle 

in scRNA-seq analyses [33]. Clinically, mass and MAR have proven to be effective biomarkers for 

characterizing cancer cell drug susceptibility at the single-cell level [18, 22]. The ability to link these 

biophysical measurements with gene expression profiling offers the opportunity to move beyond the 

classification of responding and non-responding cells, and begin to explore the molecular mechanisms for 

such behaviors.  
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Methods 

Cell culture and primary cell preparation  

L1210 murine lymphocytic leukemia cells (ECACC) were cultured in RPMI 1640 (Gibco) with 10% fetal 

bovine serum and 1% antibiotic-antimycotic (Gibco). FL5.12 murine pre-B cells (Vander Heiden Lab, MIT) 

were cultured in the same media with the addition of 10 ng/ml IL-3 (R&D Systems). For all growth and 

collection experiments, cells were passaged to a concentration of 5 x 105 cells/ml the night before to 

ensure consistent culture confluence at time of measurement. Naïve, CD8+ T cells were isolated from a 

13 week old, male, C57BL/6J mouse. Splenocytes were subject to red blood cell lysis with ACK buffer 

(Gibco) followed by naïve CD8+ T cell isolation using a MACS-based isolation kit (Miltenyi Biotec). Purified 

cells were cultured in RPMI 1640 (Gibco) with 10% fetal bovine serum, 55 μM 2-mercaptoethanol (Gibco), 

1% antibiotic-antimycotic (Gibco) and 100 U/ml IL2 (Peprotech). The naïve CD8+ T cells were activated in 

vitro with 5 μg/ml plate-bound anti-mouse CD3 (clone: 145-2c11, BioLegend), 0.5 μg/ml plate-bound 

ICAM-1/CD54 (R&D Systems), and 2 μg/ml soluble anti-mouse CD28 (clone: 37.51, BioLegend). Cells were 

seeded at a concentration of 1 x 106 cells/ml in a 96 well plate and activated for either 24 or 48h prior to 

measurement in the sSMR.   

Animals were cared for in accordance with federal, state and local guidelines following a protocol 

approved by the Department of Comparative Medicine at MIT (protocol number 0317-022-20). 

Single-cell growth measurements and collection 

For all experiments, cells were adjusted to a final concentration of 2.5 x 105 cells/ml to load single cells 

into the mass sensor array as described in Supplementary Note 1. Single-cell growth measurements were 

conducted as described previously [17]. In order to exchange buffer and flush individual cells from the 

system, the release side of the device was constantly flushed with PBS at a rate of 15 μL per minute 

(Supplementary Figure 1, P2 to P4). Upon detection of a single-cell at the final cantilever of the sSMR, as 

indicated by a supra-threshold shift in resonant frequency, a set of three-dimensional motorized stages 

(ThorLabs) was triggered to move a custom PCR-tube strip mount from a waste collection position to a 

sample collection position. The location of these motors was written to a file for the duration of the 

experiment in order to annotate single-cell mass and MAR measurements with well position, and thus 

transcriptional profiles, downstream. Each cell was collected in 5 μl of PBS directly in to a PCR tube 

containing 5 μl of 2X TCL lysis buffer (Qiagen) with 2% v/v 2-mercaptoethanol (Sigma) for a total final 

reaction volume of 10 μl. After each 8-tube PCR strip was filled with cells, the strip was spun down at 

1000g for 30 seconds and placed immediately on dry ice. Following collection, samples were stored at         

-80 C prior to library preparation and sequencing.  

scRNA-Seq 

Single-cell RNA isolation, cDNA library synthesis, next generation sequencing, read alignment and gene 

expression estimation were performed as described previously [34]. Briefly, Smart-Seq2 whole 

transcriptome amplification and library preparation were performed on single-cell lysates collected with 

the sSMR [35]. Single-cell libraries were then sequenced on a NextSeq500 using 30-bp paired end reads. 

Cells that exceeded a preliminary complexity threshold (4,000 genes for L1210 and FL5.12 cells, 2,000 
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genes for CD8+ T cells) and had successfully paired biophysical measurements were selected for further 

analysis. Overall, this yielded 85 out of 96 total L1210 cells, 124 out of 192 total FL5.12 cells, and 108 out 

of 192 total CD8+ T cells. These cells selected for analysis were sequenced to an average depth of 

1,698,879 + 106,027 (s.e.m.), 760,919 + 36,679 (s.e.m.), and 1,333,686 + 90,744 (s.e.m.) reads for the 

L1210, FL5.12, and CD8+ T cells respectively. Reads were aligned using TopHat2 and expression estimates 

(transcripts per million; TPM) for all UCSC-annotated mouse genes (mm10) were calculated using RNA-

seq by expectation maximization (RSEM) [36, 37]. The average transcriptome alignments were 67.4 + 0.38 

% (s.e.m.), 64.8+ 0.51 % (s.e.m.), and 57.3 + 1.36 % (s.e.m.) for the L1210, FL5.12, and CD8+ T cells 

respectively. The average number of genes detected was 7,207 + 94 (s.e.m.), 6,891 + 81 (s.e.m.), and 5,149 

+ 159 (s.e.m.) for the L1210, FL5.12, and CD8+ T cells respectively (Supplementary Figure 2).  

Gene expression analysis 

All analysis was performed on log-transformed expression level measurements (ln(TPM+1)). Data pre-

processing was conducted with the Seurat package for R [10]. All genes that were detected in >5% of cells 

were included in the final analysis for each group of cells (L1210, FL5.12, and CD8+ T cells).  

Ranked gene lists were created for each cell population by determining the gene-wise correlation 

coefficient (Spearman) between log-transformed gene expression level and either single-cell mass or 

growth efficiency (Supplementary Table 1). Spearman and Pearson correlation coefficients yielded similar 

results for all conditions measured (Supplementary Figure 3).  Gene set enrichment was computed for 

these ranked lists using the GSEA Preranked tool, implemented with the fgsea package in R 

(Supplementary Table 2) [21, 38].  

Differential expression analysis for the 24 versus 48h CD8+ T cell measurements was performed using the 

FindMarkers function of Seurat with the Wilcoxon rank sum test (Supplementary Table 3). Genes were 

also ranked by log-normalized fold-change expression difference between the 24 and 48h time points and 

analyzed with the GSEA Preranked tool (Supplementary Tables 4 and 5).  

To define the null distribution of correlation coefficients described in Figure 3, we determined the 

Spearman correlation between cell cycle gene expression levels and mass for randomly shuffled data 

sampled from the experimental values (i.e. mismatched single-cell mass and gene expression data). After 

10,000 iterations of this process, we found the average mean and standard deviation values of these 

correlation coefficient distributions which were used to define the null distributions presented.  

  

Figure captions 

Figure 1 | Serial SMR platform with downstream collection for scRNA-seq 

Schematic representation of the serial SMR platform, which includes an array of SMR mass sensors, 

separated by a serpentine delay channel to periodically measure the buoyant mass of a single cell. 

Independent control of the upstream and downstream pressures applied to two bypass channels allows 

for single-cell spacing at the loading entrance of the array (top left of sSMR image) and single-cell isolation 

at the unloading exit (bottom right of sSMR image) (Supplementary Figure 1, Supplementary Note 1). 

Using real-time peak detection at the final mass sensor, a three-dimensional motorized stage is triggered 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 7, 2018. ; https://doi.org/10.1101/331686doi: bioRxiv preprint 

https://doi.org/10.1101/331686
http://creativecommons.org/licenses/by-nc-nd/4.0/


to capture each individual cell directly in to lysis buffer for downstream single-cell RNA-sequencing. Based 

on well location, each cell is subsequently matched to its corresponding biophysical data collected from 

the sSMR including mass and MAR, as schematized in the top-right panel. These linked single-cell data 

sets can then be used to determine gene expression signatures associated with mass and growth rate 

variability, as schematized in the bottom-right panel.  

 

Figure 2 | Linked biophysical and gene expression measurements of single L1210 and FL5.12 cells 

(a) Plot of mass accumulation rate versus buoyant mass for single L1210 cells (top, n = 234) and single 

FL5.12 cells (bottom, n=296) measured in the sSMR. (b) Heat maps showing the relative expression of 

various cell cycle-related genes for subsets of the L1210 (top, n=85) and FL5.12 (bottom, n=124) cells 

depicted in (a) that were captured downstream for scRNA-seq. Cells are ordered by buoyant mass (bar 

plots above heat maps). Entries are colored by row-wise expression level rank where the cell with the 

highest expression level for a particular gene corresponds to yellow and the cell with the lowest 

expression level corresponds to magenta. As a demonstration, the heat map includes genes with 

expression levels that showed a significant correlation with buoyant mass from the chromosome 

segregation (black bar, n=66 and n=50 for the L1210 and FL5.12, respectively) and DNA replication (gray 

bar, n=11 and n=14 for the L1210 and FL5.12, respectively) gene ontology subsets (FDR<0.05, 

Supplementary Figure 4, Supplementary Table 1, Methods).  

 

Figure 3 | Linked biophysical and gene expression measurements of activated murine CD8+ T cells 

(a) Plot of mass accumulation rate versus buoyant mass for murine CD8+ T cells after 24 h (blue points, 

n=59) or 48 h (red triangles, n=49) of activation in vitro. Kernel density plots, using the same color scheme, 

are included on the margins for both populations. (b) Plot of mass-normalized single-cell growth rates 

(growth efficiency) for the same murine CD8+ T cells activated for 24 or 48 hours in vitro. Groups were 

compared with a Mann-Whitney U-test (*** P < 0.001). (c) Box charts showing the Spearman correlation 

coefficients between single-cell mass measurements and the expression of a subset of genes previously 

found to be related to cell cycle in activated CD8+ T cells (300 genes) for cells activated for 24 or 48 hours. 

For comparison, the distribution of Spearman correlation coefficients for the same subset of cells after 

randomly assigning single-cell mass measurements is shown for each time point (Methods). Groups were 

compared with a Mann-Whitney U-test (*** P<0.001, ** P<0.01).  

 

 

Abbreviations 

scRNA-seq: single-cell RNA-sequencing; sSMR: serial suspended microchannel resonator; MAR: mass 

accumulation rate; FDR: false discovery rate 
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Supplementary Figure Captions 

Supplementary Figure 1 | Fluidic regimes for maintaining cell spacing in the sSMR 

(a) Schematic of sSMR presented in Figure 1 denoting the array entrance region used for fluidic simulation 

presented in (b) (dashed box outline). (b) COMSOL fluidic simulations demonstrating the loading (left) and 

flushing (right) fluidic regimes described in Supplementary Note 1. The imaging region used to trigger 

between each fluidic state is outlined (solid box). 

 

Supplementary Figure 2 | Quality metrics for scRNA-seq libraries 

Violin plots and overlaid points showing the number of genes detected (left), sequencing depth (center), 

and transcriptome alignment (right) for each scRNA-seq library prepared for (a) L1210 cells, (b) FL5.12 

cells and (c) CD8+ T cells activated for either 24 or 48h (blue and red outlines, respectively) that passed 

initial quality thresholds and were used for further analysis (Methods).  

Supplementary Figure 3 | Comparison of Pearson and Spearman coefficients for correlations between 

gene expression and biophysical parameters 

Plots of the Pearson coefficient versus Spearman coefficient for expression level correlations with either 

mass (left column) or mass-normalized MAR (right column) for L1210, FL5.12, and CD8+ T cells (24 and 4h 

time points). Each cell type lists the total number of genes being compared and each plot indicates the 

Spearman coefficient between the Spearman and Pearson coefficients across all genes. Each 

measurement set reveals similar gene-level rankings for both Spearman and Pearson coefficients.  

Supplementary Figure 4 | Expression level correlation with biophysical parameters for L1210, FL5.12, and 

CD8+ T cells 

Bar plots denoting the correlation strength of individual gene’s expression levels with either mass (left) or 

mass-normalized MAR (right) for (a) L1210 cells (n = 11,469 genes), (b) FL5.12 cells (n = 11,040 genes), (c) 

CD8+ T cells after 24h of activation (n = 9,015 genes), and (d) CD8+ T cells after 48h of activations (n = 

9,015 genes). Genes are plotted in rank order where genes with highest positive and negative correlations 

with biophysical parameters are found at the left-most and right-most portion of the x axis, respectively. 

For each data set, a null distribution of correlation coefficients was determined by finding the correlation 

between gene expression and mass for randomly permuted data. After 10 iterations, we determined the 

average standard deviation of these distributions of correlation coefficients. Any individual gene that had 

a correlation coefficient with an absolute value greater than twice the standard deviation (P<0.05, 

denoted by the dashed lines in the plots) was considered significant (red bars), all genes presented as blue 

bars fell below this threshold. The number of genes showing a significant positive or negative correlation 

with the biophysical parameter of interest are shown in each plot.  

 

Supplementary Figure 5 | Reproducibility of linked measurements for L1210 and FL5.12 cells 

(a) Enrichment plots for genes with significant positive (left, n = 1,166) or negative (right, n = 134) 

correlations with single-cell mass amongst genes ranked by expression level correlation with time since 

division in L1210 cells – determined by Kimmerling et al. (Supplementary Note 2) [25]. Significant 

enrichment (FDR = 0.0009 and 0.0003 for positive and negative sets, respectively) suggests that a 

consistent cell cycle gene expression signature correlates with both cell mass and time since division in 

L1210 cells. (b) Enrichment plots for genes with significant positive (left, n = 874) and negative (right, n =  
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191) correlations with FL5.12 cell mass amongst a full gene list ranked by expression level correlation with 

FL5.12 cell mass from a second, independent experiment. The significant enrichment here (FDR = 0.0004 

and 0.0016 for positive and negative sets, respectively) demonstrates a reproducible gene expression 

signature corresponding to FL5.12 mass. (c) Same analysis as in (b) for genes that correlated significantly 

with mass-normalized growth rate (growth efficiency, n = 309 and 621 genes for positive and negative 

correlations, respectively) as opposed to mass, demonstrating reproducible growth-related gene 

expression signatures as well (FDR = 0.0002 and 0.0205 for positive and negative sets, respectively).  

 

Supplementary Figure 6 | Cell cycle gene expression versus growth rate in FL5.12 cells  

Plot of mass versus mass-normalized growth rate (growth efficiency) for a subset of the FL5.12 cells 

depicted in Figure 2 that were captured downstream for scRNA-seq (n = 124). Points are colored by G1/S 

score rank with highest expression score corresponding to red and lowest expression score corresponding 

to blue. The “cell cycle G1/S phase transition” gene ontology term was found to be significantly enriched 

amongst genes ranked by correlation with growth efficiency. To determine the G1/S transition scores for 

single FL5.12 cells we found the average of mean-centered, z-score scaled expression values for the 

leading-edge genes of the “cell cycle G1/S phase transition” gene ontology term – these are the genes 

that, when included, give rise to the highest enrichment score for this term (n = 40 genes) [21].  

 

Supplementary Notes 

Supplementary Note 1 | Maintaining minimum cell spacing in mass sensor array 

Loading single cells into the mass sensor array at a fixed, minimum spacing requires the implementation 

of active switching between two distinct fluidic states. Initially, equivalent pressures are applied to the 

upstream and downstream ports on the bypass channel leading in to the array (Supplementary Figure 1, 

ports P1 and P3). In this “loading” configuration, all streamlines are directed into the array and therefore 

cells in the bypass channel will enter the array. An imaging region at the entrance to the mass sensor array 

(outlined in Supplementary Figure 1) is used as an indication of when a cell has been successfully loaded. 

Real-time optical peak detection within this region is used to switch from this loading fluidic state to a 

“flushing” regime wherein the upstream pressures (P1) is increased and the downstream pressure (P3) is 

decreased such that a vast majority of streamlines continue along the bypass channel with a small fraction 

entering the array. Because cells are of finite size and occupy several streamlines, they are directed along 

the bypass channel and not drawn in to the array. Importantly, during this process the pressure at the 

entrance to the mass sensor array is maintained at a fixed value, therefore any cells that have entered the 

array continue to flow at a constant speed. Therefore, although the volumetric flow rate is maintained 

across the array while flushing, no additional cells are loaded. After a desired amount of time has elapsed 

the system is automatically returned to the loading configuration to obtain the next cell for measurement.  

Supplementary Note 2 | Determining reproducibility of gene signatures related to mass and MAR 

In order to determine the reliability and reproducibility of the linked biophysical and gene expression 

profiles, it was important to compare these signatures with additional results collected from independent 

experiments. For L1210 cells, single-cell gene expression profiles had previously been collected for cells 
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with known times since division (TSD), a proxy for cell cycle progression [25]. We therefore hypothesized 

that the list of genes with expression levels that correlated significantly with single-cell mass (an 

alternative proxy for cell cycle progression) would show significant overlap with genes that correlated 

strongly with TSD. To determine the extent of this similarity, we constructed two test gene sets for gene 

set enrichment analyses: one which included genes with a significant positive correlation with cell mass 

and another which included genes with a significant negative correlation with cell mass (Supplementary 

Figure 5a, Supplementary Table 2). These gene subsets were compared to the full L1210 gene list 

measured previously, with genes ranked by how strongly their expression levels correlated with TSD. 

Genes with a significant positive correlation with mass were significantly over-represented amongst genes 

that showed a positive correlation with TSD in prior measurements (FDR<0.05). Similarly, genes with a 

significant negative correlation with mass were significantly over-represented amongst genes that 

showed a negative correlation with TSD (FDR<0.05). These results indicate that similar sets of genes are 

correlated with both TSD and single-cell mass, suggesting consistency between the measurements 

collected here and those collected previously.  

Next, we sought to perform a similar comparison for FL5.12 cells. However, in contrast to L1210 cells, no 

single-cell gene expression measurements had been collected for these cells previously. We therefore 

conducted a second, independent experiment where single-cell mass and MAR measurements were 

collected upstream of scRNA-seq for FL5.12 cells (Supplementary Figure 5b,c). Using this independent 

data set, we generated full gene lists that were ranked by correlation strength with either mass or mass-

normalized MAR.  Then we once again constructed test gene sets, this time containing genes from the 

original FL5.12 data set with significant correlations (both positive and negative) with either mass or mass-

normalized MAR (P<0.05). Following the same analysis described above, we found that gene sets 

correlating with both mass and mass-normalized MAR showed significant overlap between both replicate 

experiments (FDR<0.05). This once again demonstrates the reproducibility of the gene expression 

signatures that correlate with single-cell biophysical properties.  

 

Supplementary Material  

 

Supplementary Table 1 | Gene lists ranked by correlation with either mass or mass-normalized MAR for 

L1210, FL5.12, and CD8+ T cells (24 and 48h activations) with corresponding Spearman correlation 

coefficients. Genes that are either significantly positively or negatively correlated with the biophysical 

measurement of interest are highlighted in red.  

 

Supplementary Table 2 | Gene set enrichment reports for all the ranked gene lists presented in 

Supplementary Table 1. Enrichments were generated using the fgsea tool in R. Only gene sets with a false 

discovery rate (FDR) value less than 0.05 are included. 

 

Supplementary Table 3 | List of significantly differentially expressed genes between the 24 and 48h time 

points for the activated CD8+ T cells with corresponding FDR values and log-normalized fold change 

values. Negative values indicate genes expressed at a higher level in the 48h time point.  
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Supplementary Table 4 | CD8+ T cell gene list ranked by log-normalized fold change in gene expression 

between the 24 and 48h activation time points. Negative values indicate genes expressed at a higher level 

in the 48h time point.  

 

Supplementary Table 5 | Gene set enrichment report for the ranked gene list presented in 

Supplementary Table 4. Enrichments were generated using the fgsea tool in R. Only gene sets with a false 

discovery rate (FDR) value less than 0.05 are included. 
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