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Abstract
Although combination therapy has been a main-
stay of cancer treatment for decades, it remains
challenging, both to identify novel effective com-
binations of drugs and to determine the opti-
mal combination for a particular patient’s tumor.
While there have been several recent efforts to
test drug combinations in vitro, examining the im-
mense space of possible combinations is far from
being feasible. Thus, it is crucial to develop data-
driven techniques to computationally identify the
optimal drug combination for a patient. We in-
troduce TreeCombo, an extreme gradient boosted
tree-based approach to predict synergy of novel
drug combinations, using chemical and physical
properties of drugs and gene expression levels of
cell lines as features. We find that TreeCombo
significantly outperforms three other state-of-the-
art approaches, including the recently developed
DeepSynergy, which uses the same set of features
to predict synergy using deep neural networks.
Moreover, we found that the predictions from our
approach were interpretable, with genes having
well-established links to cancer serving as impor-
tant features for prediction of drug synergy.

1. Introduction
Combination drug therapy, which has been utilized in can-
cer treatment since the 1960s (DeVita & Schein, 1973), is
preferred to monotherapy in most cases for a variety of
reasons. It has been shown to overcome inherent patient
resistance to anti-cancer drugs in cases where monotherapy
cannot, and also to prevent the development of acquired
drug resistance (Lopez & Banerji, 2017). It also has been
shown to lead to a decrease in dose-related toxicities while
increasing cancer cell elimination through additive or syn-
ergistic effects (Chabner & Thompson, 2018). However,
finding new effective combinations of drugs is a complex
undertaking since there exists a huge number of possible
drug combinations and this number increases each time a
new drug is developed. The current strategy for discovering

effective drug combinations is largely based on physicians’
experience as they try new combinations in clinic; patient’s
molecular data is rarely utilized (Day & Siu, 2016).

While the space of possible drug combinations is too large to
be tested exhaustively, there have been recent efforts to mea-
sure the efficacy of drug combinations via high-throughput
screening (O’Neil et al., 2016; Menden et al., 2018). How-
ever, it is unfeasible to exhaustively test the immense space
of possible combinations, which clearly motivates the need
for a data-driven approach to discovering effective combina-
tions of drugs. The aforementioned datasets from in vitro
screens enabled development of such approaches, and there
have been a variety of prior attempts to use machine learn-
ing methods to predict the most synergistic combinations of
anti-cancer drugs (Li et al., 2015). A recent study (Preuer
et al., 2018) improved predictions by applying deep learning
to a large dataset of drug combinations from Merck (O’Neil
et al., 2016).

We present TreeCombo, which aims to predict the synergy
scores of drug combinations using extreme gradient boosted
trees (XGBoost) (Chen & Guestrin, 2016), and explain these
predictions using a recent feature attribution method devel-
oped for tree models (Lundberg et al., 2018). When ap-
plied to data from cancer cell lines (O’Neil et al., 2016),
TreeCombo achieves a 10% performance improvement over
the best-performing state-of-the-art approach DeepSynergy.
Moreover, the genes highly ranked by TreeCombo are highly
relevant to known cancer mechanisms. We believe that
TreeCombo exhibits a promising potential for personalized
medicine (Nature Medicine, 2017) by enabling: (1) identifi-
cation of effective novel drug combinations for individual
patients based on their molecular profiles and (2) advance
our understanding of the mechanisms by which drug syn-
ergy occur by interpretable drug synergy predictions.

2. Methods
2.1. Background

XGBoost (Chen & Guestrin, 2016) is a relatively recent ma-
chine learning library designed to provide “efficient, flexible
and portable” implementations of gradient boosted trees.
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XGBoost is based on ensembles of classification and re-
gression trees (CARTs), which are obtained by recursively
partitioning input data and fitting a real-valued prediction
model within each partition. Successive trees are fit on the
residuals of the previous trees, and ensemble predictions are
obtained by taking the sum of the weighted scores predicted
by each tree in the model. XGBoost has been shown to be
a powerful prediction model for structured data in various
applications (Aibar et al., 2017; Rothschild et al., 2018;
de Wiele, 2017).

To interpret predictions of TreeCombo, we used TreeSHAP,
an algorithm that calculates fast exact tree solutions for
SHAP (SHapley Additive exPlanation) values (Lundberg
et al., 2017). These feature attribution values have the ad-
vantage of being guaranteed to be the unique solutions that
are consistent (i.e., their value never decreases when the true
impact of that feature is increased) and locally accurate.

2.2. Data

We trained TreeCombo on the high-throughput combination
screening data from O’Neil et al. (2016). This data con-
sists of over 22,000 samples, where each sample is one of
583 two-drug combinations tested in 39 cancer cell lines
from different tissues of origin. For each sample, cell line
viability was measured in response to a four-by-four dos-
ing regimen of a unique 2-drug combination. From these
measurements, drug synergy values were calculated accord-
ing to a Loewe additivity model as described in Preuer
et al. (2018) and standardized (i.e., made zero-mean and
unit variance). As input features, we used drug physical
and chemical features (e.g., molecular connectivity finger-
prints, presence or absence of toxicophore structures) and
cell line gene expression levels as used by Preuer et al.
(2018). Filtering out features with no variance across sam-
ples led to 2,431 features per drug and 3,984 features per
cell line. Thus, each sample, consisting of a cell line and a
2-drug combination, was described by a total of 8,846 fea-
tures. Gene expression levels, which were measured using
Affymetrix HG-U219 arrays, were accessed from Array-
Express (http://www.ebi.ac.uk/arrayexpress) with accession
number E-MTAB-3610.

2.3. Experimental Setup

We compared TreeCombo to: (1) Elastic Net, a regularized
linear regression method, (2) Random Forest which uses
ensembles of trees like TreeCombo, and (3) DeepSynergy
which uses deep neural networks (DNNs). We used scikit-
learn (Pedregosa et al., 2011) implementations of Elastic Net
and Random Forest. We recreated the DeepSynergy model
in Keras (Chollet et al., 2015) with TensorFlow backend,
using the architecture described by Preuer et al. (2018).

To ensure that our models generalized to unseen combina-

tions of drugs, we tested TreeCombo and the alternative
methods using five-fold cross-validation experiments. To
enable comparison of the performance of our model to the
performance of DeepSynergy (Preuer et al., 2018), we strat-
ified the data in the same way as that study: for each of
the 583 unique combinations of two anti-cancer drugs, we
ensured that each combination only appeared in one of the
five folds. Then, for each of the five held-out test folds, we
trained TreeCombo and the alternative methods using the
samples from the remaining four test folds, and predicted
the synergy scores for the samples in the test fold.

To determine the best hyperparameters for each of the four
models, we tuned the models using a separate validation
dataset for each fold. These validation sets each consisted
of 25% of the training data that had also been stratified to
contain unique drug combinations that were not present in
the rest of the training set. For ElasticNet, we tuned α, the
mixing parameter determining the weights of L1 vs. L2
regularization; for Random Forest, we tuned the number
of used trees; for DeepSynergy, we looked at the ten best-
performing hyperparameter settings for the DNN as reported
in (Preuer et al., 2018). The ten best hyperparameter settings
for DeepSynergy had been obtained by an exhaustive tuning
over a wide range of possible hyperparameters, including
three different schemes for preprocessing features, nine
different network architectures, four different learning rates,
and two different dropout settings.

We found that TreeCombo was substantially more robust
to hyperparameter changes, which allows the model to
be tested in different settings much more quickly. For
TreeCombo, we tuned our model over several maximum
tree depths (4, 6, 8, 10, 12) and learning rates (0.05, 0.10,
0.15). The best performance on the validation set was at-
tained using a maximum tree depth of 6, a learning rate of
0.05, and 1000 estimators, with an early stopping parameter
used to prevent overfitting.

We then used TreeSHAP (Lundberg et al., 2018) to calculate
feature importance values for each of our predictions in each
test fold and retrained models using only the n most impor-
tant features, for varying n. We observed that TreeCombo’s
performance only slightly decreased even when most of the
least important features were dropped. We then performed
a literature search for the genes with the highest importance
averaged over five folds.

3. Results
3.1. Prediction Performance

To evaluate the performance of our model, we compared
TreeCombo to the following methods for synergy prediction:
(1) ElasticNet, a regularized linear regression method, (2)
Random Forests, an ensemble machine learning method,
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Table 1. Comparison of methods based on average prediction per-
formance across five folds ± one standard deviation across folds.

MODEL MSE RANK CORRELATION

ELASTIC NET 0.852 ± 0.11 0.46 ± 0.03
RANDOM FOREST 0.600 ± 0.09 0.64 ± 0.02
DEEPSYNERGY 0.576 ± 0.09 0.66 ± 0.02
TREECOMBO 0.519 ± 0.08 0.70 ± 0.02

and (3) DeepSynergy, a recently published deep learning
approach to the drug synergy prediction problem. We com-
pared these approaches by two different evaluation mea-
sures: (1) mean squared error (MSE) and (2) rank correla-
tion of actual synergy scores vs. predicted synergy scores.
Prediction quality was averaged across five test folds in a
five fold cross-validation experiment (See Section 2.3 for
the details).

Table 1 compares different methods’ performance in pre-
dicting drug synergy. Averaged across the whole dataset,
TreeCombo significantly outperformed the three baseline
models. Additionally, for each of the five folds used as
left-out test data, TreeCombo outperformed all alternatives.
When measured by MSE, TreeCombo’s predictions im-
proved by 10% over the next best model, and when mea-
sured by rank correlation, TreeCombo’s predictions im-
proved by 6% over the next best model.

To further investigate the quality of predictions made by
TreeCombo, we compared the distributions of predicted syn-
ergy scores to the distributions of actual synergy scores by
cell lines (Figure 1a,b). While the prediction MSEs varied
across cell lines, with some cell lines being predicted more
accurately than others, the synergy distributions were cap-
tured well and the median MSEs were very similar between
the predicted and actual scores across cell lines. To see how
well our model predicted the synergy ranking of different
combinations of drugs within cell lines, we also plotted the
Spearman correlation between TreeCombo predictions and
the actual synergy scores by cell line (Figure 1c). The or-
dering of the cell lines in Figure 1c is the same as in Figure
1a,b, and we observed that the ranking of drug combinations
were not predicted more poorly in the cell lines with high
MSE, and that the correlations were fairly consistent across
all cell lines, predominantly ranging between 0.6 and 0.75.

3.2. Feature Selection

One major advantage of using a tree-based method to model
our data is the ease of interpretability of our model using
the feature attribution method TreeSHAP (Lundberg et al.,
2018). TreeSHAP allows for the calculation of fast exact
solutions for the unique feature attribution values guaranteed

RankPredicted SynergyActual Synergy Rank
Correlation

a) b) c)

Figure 1. (a, b and c) Box plots of the distribution of the actual (as
provided by O’Neil et al. (2016)) vs. TreeCombo-predicted syn-
ergy scores for each cell line. Each point represents the measured
or predicted synergy score of a unique two-drug combination. Cell
lines in both plots are ordered along the y-axis by their MSE as
measured in one fold of the held out test data. The rank correlation
column shows Spearman’s correlation value between the actual
and predicted synergy scores for each cell line.

to be consistent and locally accurate. For each of the five
models trained for TreeCombo (one for each of the five held-
out test folds), we calculated the SHAP values for all of our
features. We then selected the most important features for
each independent model by selecting the features with the
largest average magnitude over all predictions. Using only
the top 1,000 or 2,000 features (11% and 22% of all features,
respectively), we re-trained the models. We observed that
performance is well-preserved using only this small subset
of features (Table 2), indicating that the features highly
ranked by TreeSHAP were truly important for an accurate
prediction. When we used 2,000 most important features
selected by TreeSHAP to retrain the models, we observed
only a 1.2% increase in mean MSE across five folds, while
with 2,000 features at random, we observed a 6.5% increase.
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Table 2. TreeCombo performance using a subset of features.

FEATURES USED MSE PERFORMANCE DROP

ALL 0.519 –
2000 FROM TREESHAP 0.525 1.16%
2000 BY RANDOM 0.553 6.55%
1000 FROM TREESHAP 0.528 1.73%
1000 BY RANDOM 0.543 4.62%

3.3. Feature Interpretability

Most Important Features: While it is important to be able
to identify drug combinations that are likely to be syner-
gistic, it is also important to understand why our model
predicts the synergy of these combinations to be high. Thus,
we examined 100 most important features based on their
importance identified by TreeSHAP and averaged across
all predictions and folds to determine their plausibility as
predictors of synergistic anti-cancer effects.

Of the 100 features with highest mean importance across all
folds and samples, 83 were drug-based features. These pre-
dominantly included structural molecular descriptors like
3D-MoRSE descriptors and the eigenvalues of the drug
connectivity matrix. The remaining 17 most important fea-
tures were expression levels of genes, seven (KLF6, CRIP2,
RPS11, CTSH, ONECUT2, SNHG8, and CDH3) of which
had been linked to cancer in various studies (Hoffmann et al.,
2016; Lo et al., 2011; Cheung et al., 2011; Rauch et al.,
2006; Sun et al., 2014). The fact that KLF6, a well-known
tumor suppressor, was assigned a large feature importance
exhibited a high biological plausibility. KLF6 expression
levels have been linked to cancers from many different tis-
sues present in our dataset, including breast cancer (Hatami
et al., 2013), colorectal cancer (Reeves et al., 2004), skin
cancer (Cai et al., 2014), prostate cancer (Chiam et al.), and
lung cancer (Ito et al., 2004).

Combination-specific Features: We also examined feature
importances at the level of individual drug combinations.
For example, sorafenib and erlotinib are used in combina-
tion to treat non-small cell lung cancer (Lim et al., 2016).
Erlotinib specifically targets the epidermal growth factor
receptor, while sorafenib targets the vascular endothelial
growth factor (VEGF) receptor. For this combination of
drugs, the most important gene expression feature for pre-
dicting synergy in our model was epithelial membrane pro-
tein 2 (EMP2), a gene whose expression positively regulates
VEGF (Gordon et al., 2013). EMP2 expression was not
in the 100 most important features when averaged over all
combinations, showing the power of a method for which
individual prediction-level feature attribution can be applied.

Explanation-based Clustering: Finally, we examined
whether clustering the genes by their feature importance

values (identified by TreeSHAP) across different drug com-
binations would lead to biologically meaningful groups.
Gene expression features with similar importances across
drug combinations would be expected to share similar bi-
ological functions or pathways which would be targeted
by these drug combinations. For each of the five folds
of our model, we calculated the mean importance of each
gene expression feature across cell lines. We then clus-
tered the genes using k-means clustering with k = 20
such that each cluster contained around 200 genes. Then
we tested for enrichment of particular gene ontology (GO)
terms within the clusters using Fisher’s exact test with FDR
multiple test correction, using the over-representation test
tool (Mi et al., 2017) on http://pantherdb.org/.
We found that clustering by SHAP values led to biologi-
cally interpretable clusters of gene features. For instance,
the first cluster was enriched for genes annotated with the
GO terms “programmed cell death” and “apoptotic pro-
cess” (q = 2.55× 10−3, 8.52× 10−4). These make sense
as pathways that would be important predictors of drug com-
bination synergy, as they influence cells’ susceptibility to
being killed. As expected, the GO terms enriched for the
second cluster were distinct from the ones enriched for the
first cluster, and included terms like “regulation of innate im-
mune response” and “regulation of protein serine/threonine
kinase activity” (q = 1.26× 10−2, 1.29× 10−2).

4. Discussion
We present TreeCombo, a powerful XGBoost-based ap-
proach that outperforms existing machine learning ap-
proaches in predicting synergistic combinations of drugs.
Beyond its superiority in terms of prediction accuracy,
TreeCombo has several advantages over the alternative meth-
ods, specifically over the commonly used DNN-based ap-
proaches. Tree-based models are substantially easier to
prototype compared to DNNs since they require less hy-
perparameter tuning or feature preprocessing. Moreover,
by using a tree-based model, we could easily incorporate
feature importances from TreeSHAP into our model. This
allowed us to train an almost equally powerful model using
only 11% of the provided data and to make straightforward
biological interpretations of our results.

There are various directions to improve and extend
TreeCombo. Most importantly, we plan to apply it to drug
combination screens from primary patient cells. Such a
model would be more representative of clinical cases and
would increase our model’s potential for precision medicine.
We also will explore explanation-based biclustering, where
feature importances are clustered by both expression feature
and drug combination. Testing for over-represented path-
ways in these biclusters will help elucidate potentially novel
molecular mechanisms of the drug synergy phenotype.
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