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Sensory data about most natural task-
relevant variables are entangled with task-
irrelevant nuisance variables. The neurons that
encode these relevant signals constitute a non-
linear population code. Here we present a theo-
retical framework for quantifying how the brain
uses or decodes its nonlinear information. Our
theory obeys fundamental mathematical limi-
tations on information content inherited from
the sensory periphery, identifying redundant
codes when there are many more cortical neu-
rons than primary sensory neurons. The the-
ory predicts that if the brain uses its nonlin-
ear population codes optimally, then more in-
formative patterns should be more correlated
with choices. More specifically, the theory pre-
dicts a simple, easily computed quantitative
relationship between fluctuating neural activ-
ity and behavioral choices that reveals the de-
coding efficiency. We analyze recordings from
primary visual cortex of monkeys discriminat-
ing the distribution from which oriented stimuli
were drawn, and find these data are consistent
with the hypothesis of near-optimal nonlinear
decoding.

1 Introduction

How does an animal use, or ‘decode’, the information
represented in its brain? When the average responses
of some neurons are well-tuned to a stimulus of inter-
est, this is straightforward. In binary discrimination
tasks, for example, a choice can be reached simply by
a linear weighted sum of these tuned neural responses.
Yet real neurons are rarely tuned to precisely one vari-
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able: variation in multiple stimulus dimensions influ-
ence their responses. As we show below, this can dilute
or even abolish the mean tuning to the relevant stimu-
lus. The brain cannot simply use linear computation,
nor can we understand neural processing using linear
models.

To see this problem in a simple case, imagine a sim-
plified model of a visual neuron that includes an ori-
ented edge-detecting linear filter followed by additive
noise, with a Gabor receptive field like simple cells in
primary visual cortex (Figure 1A). If an edge is pre-
sented to this model neuron, different rotation angles
will change the overlap, producing a different mean.
This neuron is then tuned to orientation.

However, when the edge has the opposite polarity,
with black and white reversed, then the linear response
is reversed also. If the two polarities occur with equal
frequency, then the positive and negative responses
cancel on average. The mean response of this linear
neuron to any given orientation is therefore precisely
constant, so the model neuron is untuned.

Notice that stimuli aligned with the neuron’s pre-
ferred orientation will generally elicit the highest or
lowest response magnitude, depending on polarity.
Edges evoking the largest response to one polarity will
also evoke the smallest response to its inverse. Thus,
even though the mean response of this linear neuron is
zero, independent of orientation, the variance is tuned.

To estimate the variance, and thereby the orientation
itself, the brain can compute the square of the linear
responses. This would allow the brain to estimate the
orientation independently from polarity. This is con-
sistent with the well-known energy model of complex
cells in primary visual cortex, which use squaring non-
linearities to achieve invariance to the polarity of an
edge [1].

Generalizing from this example, we identify edge po-
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larity as a ‘nuisance variable’ — a property in the world
that alters how task-relevant stimuli appear but is, it-
self, irrelevant for the current task (here, perceiving
orientation). Other examples of nuisance variables in-
clude the illuminant for guessing surface color, posi-
tion for object recognition, expression for face identi-
fication, or pitch for speech recognition. Generically,
nuisance variables make it hard to extract the task-
relevant variables from sense data, which is the central
task of perception [2–5]. For example, cells in early
visual cortex are not tuned to object identity, since the
object could appear at any location and V1 has not yet
extracted the complex combinations of features that re-
veal object type independent of the nuisance variable
of position. (Of course, what is a nuisance for one task
might be a target variable in another task, and vice
versa.)

The prevailing neuroscience view of this disentan-
gling process is deterministic: the output of a com-
plex (often multi-stage) nonlinear function identifies
the variables of interest [2, 3, 6]. Here we take a sta-
tistical perspective: the brain learns from its history of
sensory inputs which statistics of its many sense data
can be used to extract the task-relevant variable. In the
orientation estimation task above, the relevant statistic
was not the mean but the variance.

Just because a neural population encodes informa-
tion, it does not mean that the brain decodes it all.
Here, encoding specifies how the neural responses re-
late to the stimulus input; similarly, decoding specifies
how the neural responses relate to the behavioral out-
put. To understand the brain’s computational strategy
we must understand how encoding and decoding are re-
lated, i.e. how the brain uses the information it has.
These are distinct processes, so the brain could encode
a stimulus well while decoding it poorly, or vice-versa.
As we will see, our statistical perspective provides a
simple way of testing the hypothesis that the brain’s
decoding strategy is efficient, based on whether neural
response patterns that are informative about the task-
relevant sensory input are also informative about the
animal’s behavior in the task.

2 Results

2.1 Task, stimuli, neural responses, actions

To specify our mathematical framework for nonlinear
decoding, we model a task, a stimulus with both rel-
evant and irrelevant variables, neural responses, and
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Figure 1: Simple nonlinear code for orientation induced
by two polarities. (A) Receptive field for a linear neu-
ron. (B) Four example images, each with an orienta-
tion s ∈ [0, π) and a polarity ν ∈ {−1,+1}. (C) The
mean response of the linear neuron is tuned to orienta-
tion if polarity were specified (conditional mean, red).
But when the polarity is unknown and could take either
value, the mean response is untuned (marginal mean,
black). (D) Tuning is recovered by the marginal vari-
ance even if the polarity is unknown (blue).

behavioral choices.
In our task, an agent observes a multidimensional

stimulus (s, ν) and must act upon one particular rel-
evant aspect of that stimulus, s, while ignoring the
rest, ν. The irrelevant stimulus aspects serve as nui-
sance variables for the task (ν is the Greek letter ‘nu’
and here stands for nuisance). Together, these stimu-
lus properties determine a complete sensory input that
drives some responses r in a population of N neurons
according to the distribution p(r|s, ν).

We consider a feedforward processing chain for the
brain, in which the neural responses r are nonlinearly
transformed downstream into other neural responses
R(r), which in turn are used to create a perceptual
estimate of the relevant stimulus ŝ:

(s, ν)→ r → R→ ŝ (1)

We model the brain’s estimate as a linear function of
the downstream responses R. Ultimately these esti-
mates are used to generate an action that the experi-
menter can observe. We assume that we have recorded
activity only from some of the upstream neurons, so
we don’t have direct access to R, only a subset of r.
Nonetheless we would like to learn something about the
downstream computations used in decoding. In this
paper we show how to use the statistics of cofluctua-
tions in r, s, and ŝ to estimate the quality of nonlinear
decoding.

We first develop the theory for local or fine-scale es-
timation tasks: the subject must directly report its
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estimate ŝ for the relevant stimuli near a reference s0,
and we measure performance by the variance of this es-
timate, σ2ŝ . This fine-scale continuous estimation pro-
vides the simplest mathematical framing of the prob-
lem. In later sections we then generalize the problem to
allow for binary discrimination as well as coarse tasks.
These binary and coarse discriminations are not con-
ceptually different from fine estimation, but some of the
relevant mathematical quantities are just a bit trickier.

2.2 Signal and noise

The population response, which we take here to be the
spike counts of each neuron in a specified time window,
reflects both signal and noise, where signal is the re-
peatable stimulus-dependent aspects of the response,
and noise reflects trial-to-trial variation. Convention-
ally in neuroscience, the signal is often thought to be
the stimulus dependence of the average response, i.e.
the tuning curve f(s) =

∑
r r p(r|s) = 〈r|s〉 (angle

brackets denote an average over all responses given
the condition after the vertical bar). Below we will
broaden this conventional definition to allow the signal
to include any stimulus-dependent statistical property
of the population response.

Noise is the non-repeatable part of the response,
characterized by the variation of responses to a fixed
stimulus. It is convenient to distinguish internal noise
from external noise. Internal noise is internal to the an-
imal, and is described by response distribution p(r|s, ν)
when everything about the stimulus is fixed. This
could also include uncontrolled variation in internal
states [7–10], like attention, motivation, or wander-
ing thoughts. External noise is variability generated
by the external world, or nuisance variables. Whether
this should count as ‘noise’ is somewhat contentious.
In some instances, most people readily describe exter-
nal variation as noise, as for a ‘white noise stimulus’
or a random dot kinematogram. In other cases people
might be more reticent to label this variability as noise,
as for the uncontrolled polarity of an edge (Figure 1) or
the lighting of a three-dimensional scene. Regardless
of the name, external variability leads to a neural re-
sponse distribution p(r|s) where only the relevant vari-
ables are held fixed. Both types of noise can lead to
uncertainty about the true stimulus.

Trial-to-trial variability can of course be correlated
across neurons. Neuroscientists often measure two
types of second-order correlations: signal correlations
and noise correlations [11–19]. Signal correlations mea-

sure shared variation in mean responses f(s) averaged
over the set of stimuli s: ρsignal = Corr(f(s)). (Inter-
nal) noise correlations measure shared variation that
persists even when the stimulus is completely identical,
nuisance variables and all: ρnoise(s, ν) = Corr(r|s, ν).

For multidimensional stimuli, however, these are
only two extremes on a spectrum, depending on how
many stimulus aspects are fixed across the trials to be
averaged. We propose an intermediate type of corre-
lation: nuisance correlations. Here we fix the task-
relevant stimulus variable(s) s, and average over the
nuisance variables ν: ρnuisance(s) = Corr(f(ν)|s). In-
cluding both internal and external (nuisance) noise cor-
relations gives Corr (r|s).

Critically, but confusingly, some so-called ‘noise’ cor-
relations and nuisance correlations actually serve as
signals. This happens whenever the statistical pat-
tern of trial-by-trial fluctuations depends on the stim-
ulus, and thus contain information. For example, a
stimulus-dependent noise covariance functions as a sig-
nal. There would still be true noise, i.e. irrelevant trial-
to-trial variability that makes the signal uncertain, but
it would be relegated to higher-order fluctuations [20]
such as the variance of the response covariance (Figure
2D, Table 1). Stimulus-dependent correlations, princi-
pally due to nuisance variation, lead naturally to non-
linear population codes, as we will explain below.

2.3 Nonlinear encoding by neural popula-
tions

Most accounts of neural population codes actually ad-
dress linear codes, in which the mean response is tuned
to the variable of interest and completely captures all
signal about it [21–25]. We call these codes linear be-
cause the neural response property needed to best es-
timate the stimulus near a reference (or even infer the
entire likelihood of the stimulus, Supplement S.1.2.2) is
a linear function of the response. Linear codes for dif-
ferent variables may arise early in sensory processing,
like orientation in V1, or after many stages of compu-
tation [2, 5], like for objects in inferotemporal cortex.

If any of the relevant signal can only be extracted
using nonlinear functions of the neural responses, then
we say that the population code is nonlinear.

It is illuminating to take a statistical view: unlike
a linear code, the information is not encoded in mean
neural responses but instead by higher-order statistics
of responses [15, 26]. These functional and statistical
views are naturally linked because estimating higher-
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order statistics requires nonlinear operations. For in-
stance, information from a stimulus-dependent covari-
ance Q(s) =

〈
rr>|s

〉
can be decoded by quadratic op-

erations R = rr> [27–29]. Table 1 compares the rele-
vant neural response properties for linear and nonlinear
codes.

linear nonlinear quadratic

raw data r R(r) rr>

signal Mean(r|s) Mean(R|s) Mean(rr>|s)
noise Cov(r|s) Cov(R|s) Cov(rr>|s)

Table 1: Neural response properties relevant for lin-
ear and nonlinear codes. In each case, the brain must
estimate the stimulus from a single example of neural
data, but the relevant function of that data is linear for
linear codes, and nonlinear for nonlinear codes (such as
the quadratic example in the last column). The noise
and signal can be quantified by the corresponding co-
variance and stimulus-dependent changes in the corre-
sponding means (i.e. the tuning curve slope).

A simple example of a nonlinear code is the
exclusive-or (XOR) problem. Given the responses of
two binary neurons, r1 and r2, we would like to de-
code the value of a task-relevant signal s = XOR(r1, r2)
(Figure 2A). We don’t care about the specific value of
r1 by itself, and in fact r1 alone tells us nothing about
s. The same is true for r2. The signal is actually re-
flected in the trial-by-trial correlation between r1 and
r2: when they are the same then s = −1, and when
they are opposite then s = +1. The correlation, and
thus the relevant variable s, can be estimated nonlin-
early from r1 and r2 as ŝ = −r1r2.

Some experiments have reported stimulus-dependent
internal noise correlations that depend on the sig-
nal, even for a completely fixed stimulus without any
nuisance variation [30–34]. Other experiments have
turned up evidence for nonlinear population codes by
characterizing the nonlinear selectivity directly [6, 35,
36].

More typically, however, stimulus-dependent corre-
lations arise from external noise, leading to what we
call nuisance correlations. In the introduction (Figure
1) we showed a simple orientation estimation exam-
ple in which fluctuations of an unknown polarity elim-
inate the orientation tuning of mean responses, rele-
gating the tuning to variances. Figure 2B–E shows
a slightly more sophisticated version of this example,
where instead of two image polarities, we introduce

spatial phase as a continuous nuisance variable. This
again eliminates mean tuning, but introduces nuisance
covariances that are orientation tuned.

One might object that although the nuisance covari-
ance is tuned to orientation, a subject cannot com-
pute the covariance on a single trial because it does
not experience all possible nuisance variables to av-
erage over. This objection stems from a conceptual
error that conflates the tuning (signal) with the raw
sense data (signal+noise). In linear codes, the subject
does not have access to the tuned mean response 〈r|s〉
either, just a noisy single-trial version of the mean,
namely r. Analogously, the subject does not need ac-
cess to the tuned covariance, just a noisy single-trial
version of the second moments, rr> (Table 1). In this
simple example, the nuisance variable of spatial phase
ensures that quadratic statistics contains relevant in-
formation about the orientation, just like complex cells
in V1 [1].

2.4 Decoding and choice correlations

To study how neural information is used or decoded,
past studies have examined whether neurons that are
sensitive to sensory inputs also reflect an animal’s be-
havioral outputs or choices [37–45]. However, this
choice-related activity is hard to interpret, because it
may reflect decoding of the recorded neurons, or merely
correlations between them and other neurons that are
decoded instead [46].

In principle, we could discount such indirect rela-
tionships with complete recordings of all neural activ-
ity. This is currently impractical for most animals,
and even if we could record from all neurons simulta-
neously, we would struggle to acquire enough trials to
fully disambiguate how neural activities directly influ-
ence behavior.

To understand key principles of neural computation,
however, we may not care about all detailed patterns of
decoding weights and their underlying synaptic connec-
tivity. Instead we may want to know only certain prop-
erties of the brain’s strategies. One important property
is the efficiency with which the brain decodes available
neural information as it generates an animal’s choices.

Conveniently, testable predictions about choice-
related activity can reveal the brain’s decoding effi-
ciency, in the case of linear codes [25]. Next we review
these predictions, and then generalize them to nonlin-
ear codes.
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Figure 2: Nonlinear codes. (A) Simple example in which a stimulus s is the XOR of two neural responses (top).
Conditional probabilities p(r1, r2|s) of those responses (bottom) show they are anti-correlated when s = +1 (red)
and positively correlated when s = −1 (blue). This stimulus-dependent correlation between responses creates a
nonlinear code. The remaining panels show that a similar stimulus-dependent correlation emerges in orientation
discrimination with unknown spatial phase. (B) Gabor images with two orientations and three spatial phases.
(C) Mean responses of linear neurons with Gabor receptive fields are sensitive to orientation when phase is
fixed (arrows), but point in different directions for different spatial phases. When phase is an unknown nuisance
variable, this mean tuning therefore vanishes (black dot). (D) The response covariance Cov(r1, r2|s) between
these linear neurons is tuned to orientation even when averaging over spatial phase. Response covariances for
four orientations are depicted by ellipses. (E) A continuous view of the covariance tuning to orientation for a
pair of neurons.
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2.5 Choice correlations predicted for opti-
mal linear decoding

We define ‘choice correlation’ Crk as the correlation
coefficient between the response rk of neuron k and
the stimulus estimate (which we view as a continuous
‘choice’) ŝ, given a fixed stimulus s:

Crk = Corr(rk, ŝ|s) (2)

This choice correlation is a conceptually simpler and
more convenient measure than the more conventional
statistic, ‘choice probability’ [47], but it has almost
identical properties (Methods 4.2) [25,46].

Intuitively, if an animal is decoding its neural infor-
mation efficiently, then those neurons encoding more
information should be more correlated with the choice.
Mathematically, one can show that choice correlations
indeed have this property when decoding is optimal
[25]:

Copt
rk

=
d′rk
d′

(3)

where d′ and d′rk are, respectively, the stimulus dis-
criminability [48] based on the entire population r or
on neuron k’s response rk (Methods 4.2). This rela-
tionship holds for a locally optimal linear estimator,

ŝ = w · r + c (4)

for any stimulus-independent noise correlations, re-
gardless of their structure.

Another way to test for optimal linear decoding
would be to measure whether the animal’s behavioral
discriminability matches the discriminability for an
ideal observer of the neural population response. Yet
this approach is not feasible, as it requires one to mea-
sure simultaneous responses of many, or even all, rele-
vant neurons. In contrast, the optimality test (Eq 3) re-
quires measuring only non-simultaneous single neuron
responses, which is vastly easier. Neural recordings in
the vestibular system are consistent with near-optimal
decoding according to this prediction [25].

2.6 Nonlinear choice correlations for opti-
mal decoding

However, when nuisance variables wash out the mean
tuning of neuronal responses, we may well find that a
single neuron has both zero choice correlation and zero
information about the stimulus. The optimality test
would thus be inconclusive.

This situation is exactly the same one that gives rise
to nonlinear codes. A natural generalization of Equa-
tion 3 can reveal the quality of neural computation on
nonlinear codes. We simply define a ‘nonlinear choice
correlation’ between the stimulus estimate ŝ and non-
linear functions of neural activity R(r):

CRk = Corr(Rk(r), ŝ|s) (5)

(Methods 4.2), where Rk(r) is a nonlinear function of
the neural responses. If the brain optimally decodes
the information encoded in the nonlinear statistics of
neural activity, according to the simple nonlinear ex-
tension to Eq 4,

ŝ = w ·R(r) + c (6)

then the nonlinear choice correlation satisfies the equa-
tion

Copt
Rk(r)

=
d′Rk(r)

d′
(7)

where d′Rk(r) is the stimulus discriminability provided

by Rk(r) (Methods 4.2.1).
As an example of this relationship, we return to

the orientation example. Here the response covari-
ance Σ(s) = Cov(r|s) depends on the stimulus, but
the mean f = 〈r|s〉 = 〈r〉 does not. In this model,
optimally decoded neurons would have no linear cor-
relation with behavioral choice. Instead, the choice
should be driven by the product of the neural re-
sponses, R(r) = vec(rr>), where vec(·) is a vectoriza-
tion that flattens an array into a one-dimensional list
of numbers. Such quadratic computation is what the
energy model for complex cells is thought to accom-
plish for phase-invariant orientation coding [1]. Fig-
ure 3 shows linear and nonlinear choice correlations
for pairs of neurons, defined as Crirj = Corr(rirj , ŝ|s).
When decoding is linear, linear choice correlations are
strong while nonlinear choice correlations are near zero
(Figure 3A,B). When the decoding is quadratic, here
mediated by an intermediate layer that multiplies pairs
of neural activity, the nonlinear choice correlations are
strong while the linear ones are insignificant (Figure
3C,D).

2.7 Which nonlinearity?

If the brain’s decoder optimally uses all available in-
formation, choice correlations will obey the prediction
of Eq. 7 even if the specific nonlinearities used by the
brain differ from those selected for evaluating choice
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Figure 3: Linear and nonlinear choice correlations suc-
cessfully distinguish network structure. A linearly de-
coded population (A) produces nonzero linear choice
correlations (B), while the nonlinear choice correla-
tions are randomly distributed around zero. The situ-
ation is reverse for a nonlinear network (C), with in-
significant linear choice correlations but strong nonlin-
ear ones (D). Here the network implements a quadratic
nonlinearity, so the relevant choice correlations are
quadratic as well, Cjk = Corr(rjrk, ŝ|s).

correlations (Methods 4.2.2). The prediction is valid
as long as the brain’s nonlinearity can be expressed as
a linear combination of the tested nonlinearities (Meth-
ods 4.2.2). Figure 4 shows a situation where informa-
tion is encoded by linear, quadratic and cubic suffi-
cient statistics of neural responses, while a simulated
brain decodes them near-optimally using a generic neu-
ral network rather than a set of nonlinearities matched
to those sufficient statistics. Despite this mismatch we
can successfully identify that the brain is near-optimal
by applying Eq 7, even without knowing the simulated
brain’s true nonlinear transformations.

2.8 Redundant codes

It might seem unlikely that the brain uses optimal, or
even near-optimal, nonlinear decoding. Even if it does,
there are an enormous number of high-order statistics
for neural responses, so the information content in any
one statistic could be tiny compared to the total infor-
mation in all of them. For example, with N neurons
there are on the order of N2 quadratic statistics, N3

cubic statistics, and so on. With so many statistics
contributing information, the choice correlation for any
single one would then be tiny according to the ratio in
Eq 7, and would be indistinguishable from zero with

reasonable amounts of data. Past theoretical studies
have described nonlinear (specifically, quadratic) codes
with extensive information that grows proportionally
with the number of neurons [15, 27]. This would in-
deed imply immeasurably small choice correlations for
large, optimally decoded populations.

A resolution to these concerns is information-
limiting correlations [24]. The past studies that de-
rive extensive nonlinear information treat large cortical
populations in isolation from the smaller sensory pop-
ulation that would naturally provide its input [15, 27].
Yet when a network inherits information from a much
smaller input population, the expanded neural code be-
comes highly redundant: the brain cannot have more
information than it receives [49]. Noise in the input is
processed by the same pathway as the signal, and this
generates noise correlations that can never be averaged
away [24].

Previous work [24] characterized linear information-
limiting correlations for fine discrimination tasks by de-
composing the noise covariance into Σ = Σ0 + εf ′f ′

>
,

where ε is the variance of the information-limiting com-
ponent and Σ0 is noise that can be averaged away with
many neurons.

For nonlinear population codes, it is not just the
mean that encodes the signal, f(s) = 〈r|s〉, but rather
the nonlinear statistics F (s) = 〈R(r)|s〉. Likewise, the
noise does not comprise only second-order covariance
of r, Cov(r|s), but rather the second-order covariance
of the relevant nonlinear statistics, Γ = Cov(R(r)|s)
(Section 2.2). Analogous to the linear case, these cor-
relations can be locally decomposed as

Γ = Cov(R(r)|s) = Γ0 + εF ′F ′
>

(8)

where ε is again the variance of the information-
limiting component, and Γ0 is any other covariance
which can be averaged away in large populations. The
information-limiting noise bounds the estimator vari-
ance σ2ŝ to no smaller than ε even with optimal decod-
ing.

Neither additional neurons nor additional decoded
statistics can improve performance beyond this bound.
As a direct consequence, when there are many fewer
sensory inputs than cortical neurons, many distinct
statistics Rk(r) will carry redundant information. Un-
der these conditions, many choice correlations CRk can
be substantial even for optimal nonlinear decoding:
the discriminabilities d′Rk of redundant statistics can
be comparable to the discriminability d′ of the whole
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Figure 4: Identifying optimal nonlinear decoding by a generic neural network using nonlinear choice correla-
tions. Neural responses r are constructed to encode stimulus information in polynomial sufficient statistics up
to cubic order (Methods Eq. 13). These responses are decoded by an artificial nonlinear neural network or
polynomial nonlinearities, and we evaluate the quality of the decoding using polynomial nonlinearities for both
cases. (A) Architecture of a network that uses ReLU nonlinearities trained to extract the relevant information.
(B) Architecture of a second network that instead uses polynomial nonlinearities to extract the relevant infor-
mation. (C, D) Choice correlations based on polynomial statistics show that both networks’ computations are
consistent with optimal nonlinear decoding (Methods 4.2.2), even though the simulated networks used different
implementations to extract the stimulus information. Horizontal axis shows optimal choice correlations (Eq 7);
vertical axis shows measured choice correlations (Eq 5).
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population, producing ratios d′Rk/d
′ that are not small

(Figure 5).

2.9 Decoding efficiency revealed by choice
correlations

Even if decoding is not strictly optimal, Eq. 7 can
be satisfied due to information-limiting correlations.
Decoders that seem substantially suboptimal because
they fail to avoid the largest noise components in
Γ0 can be nonetheless dominated by the bound from
information-limiting correlations. This will occur
whenever the variability from suboptimally decoding
the noise Γ0 is smaller than the information-limiting
variance ε. Just as we can decompose the nonlinear
noise correlations into information-limiting and other
parts, we can decompose nonlinear choice correlations
into corresponding parts as well, with the result that

Csub
R ≈ αCopt

R + χR (9)

where χR depends on the particular type of suboptimal
decoding (Supporting Information S.3.2). The slope α
between choice correlations and those predicted from
optimality is given by the fraction of estimator variance
explained by information-limiting noise, α = ε/σ2ŝ .
This slope therefore provides an estimate of the effi-
ciency of the brain’s decoding.

Figure 5 shows an example of a decoder that would
be highly suboptimal without considering redundancy,
but is nonetheless close to optimal when information
limits are inherited.

In realistically redundant models that have more
cortical neurons than sensory neurons, many decoders
could be near-optimal, as we recently discovered in ex-
perimental data for a linear population code [25]. How-
ever, even in redundant codes there may be substan-
tial inefficiencies and information loss [50], especially
for unnatural tasks [51].

2.10 Application to experimental data

We applied our optimality test to data recorded with
Utah arrays from primate visual cortex (V1) during a
nonlinear decoding task (Section 4.4). Monkeys faced a
Two-Alternative Forced Choice task (2AFC) in which
they categorized an oriented grating based on whether
it came from a wide or narrow distribution of orienta-
tions [52] (Figure 6A,B). The categorical target vari-
able s is therefore the variance of the orientation dis-
tribution.
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Figure 5: Information-limiting noise makes a network
more robust to suboptimal decoding. (A) A simulated
optimal decoder produces measured choice correlations
that match our optimal predictions (blue, on diago-
nal). In contrast, when a noise covariance Γ0 permits
the population to have extensive information, then a
suboptimal decoder, such as the example here that is
blind to higher-order correlations (w ∝ F ′), exhibits a
pattern of choice correlations that does not match the
prediction of optimal decoding (red, off-diagonal). As
in Figure 4, horizontal axis shows optimal choice corre-
lations (Eq 7) and vertical axis shows measured choice
correlations (Eq 5). (B) However, when information
is limited, the same decoding weights are less detri-
mental, and thus exhibit a similar pattern of choice
correlations as an optimal decoder.
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This is a coarse discrimination task, since the re-
sponse statistics change significantly with the stimulus.
As for fine discrimination, we again find that when de-
coding is optimal, random fluctuations in choices are
correlated with neural responses to the same degree
that those responses can discriminate between stim-
uli. However, this relationship is slightly more com-
plicated for coarse discrimination, since the response
statistics change significantly with the stimulus. For
this reason we need to use a slightly more complicated
measure of choice correlation that we call Normalized
Average Conditional Choice Correlation (NACCC, Eq
17). However, the end result is the same: choice cor-
relations for optimal decoding are equal to the ratio of
discriminabilities (Eq 7). Again there is a correction
factor of order 1 for binary choices instead of continu-
ous estimation (Methods 4.2.1, Supplemental Informa-
tion S.6.3).

V1 responses contain information about orientation
[53]. Here we found that V1 responses also contain
some linear information about the orientation variance
(Figure 6C: blue dots are spread out on the horizon-
tal axis). Since these neurons have linear informa-
tion, they have already performed some useful nonlin-
ear transformations of the input within their receptive
field.

However, because neural responses in this brain area
can be linearly decoded to compute orientation, a good
decoder for the orientation variance would naturally
be quadratic in those responses. Indeed, we found
information in the quadratic statistics of neural re-
sponses, δr2i and δriδrj (Figure 6C: many red and green
dots are scattered on the horizontal axis), suggest-
ing that downstream nonlinear computations could ex-
tract additional information from the neural responses.
Here we first eliminate the linear information when
we compute these neural nonlinear statistics by using
δri = ri − 〈ri|ŝ1〉, where ŝ1 = wopt · r + c is the opti-
mal estimate decoded only from a linear combination
of available neural responses.

We also found that these quadratic statistics con-
tained substantial nonlinear information about the be-
havioral choice (Figure 6C, scatter on vertical axis). In
general, there is no guarantee that the particular non-
linear statistics that are informative about the stimulus
are also informative about the choice. Our theory of
optimal decoding predicts specifically that these quan-
tities should be directly proportional to each other.

Indeed, in two monkeys, we found that nonlinear
choice correlations were highly correlated with nonlin-

ear information (Figure 6C).

Remarkably, when we compare the measured nonlin-
ear choice correlations to the ratio of discriminabilities
after adjusting for the binary data (Methods ??), the
slopes of this relationship for the two animals were near
the value of 1 that Eq 7 predicts for optimal decoding
(Figure 6C).

We next examine the origin of the nonlinear choice
correlations.

First, to evaluate whether internal noise correlations
contribute nonlinear information or choice correlations,
we created a shuffled data set that removed internal
noise correlations while preserving external nuisance
correlations. That is, we independently selected re-
sponses to trials with matched target stimulus (vari-
ance), nuisance (orientation), and choice, and repeated
our analysis on these shuffled data (Figure 6D). The
observed relationship between predicted and observed
choice correlations was the same as in the original test,
indicating that nuisance variations were sufficient to
drive the nonlinear information and decoding.

Second, we shuffled the external nuisance correla-
tions by randomly selecting responses to trials with
matched target stimulus and choice, but now using
unmatched nuisance variables, and again repeated the
analysis (Figure 6E). In other words, we picked re-
sponses from different trials that came from the same
signal category (wide or narrow) and elicited the same
choice but had different orientations, and we picked
these trials (and thus their stimulus orientations) in-
dependently for neurons i and j. The strong statistical
relationship observed between predicted and measured
nonlinear choice correlations vanished with this shuf-
fling, indicating that the nuisance variation was nec-
essary for the nonlinear information and nonlinear de-
coding.

These shuffle controls removed noise correlations and
nuisance correlations, respectively. Combining the con-
clusions from these controls, we find no evidence that
the brain optimally decodes any stimulus-dependent
internal noise correlations in this task. Recent analy-
ses of these same data found that internal noise did in
fact influence the monkeys’ behavioral choices [54], but
this effect was subtle and only apparent when examin-
ing the entire neural population simultaneously. In our
analysis this effect is buried in the noise, so our method
is not sensitive enough to tell if these large-scale pat-
terns induced by internal noise are used optimally or
suboptimally. However, we can detect that the brain
contains information that is encoded nonlinearly due to
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Figure 6: Nonlinear information and choice correlations in a variance discrimination task, for neural data from
two monkeys. (A) Example oriented grating and saccade targets. (B) The orientations of the gratings were
drawn from a narrow or wide distribution, and the monkey had to guess which by saccading to the appropriate
target. (C) Neurons contain linear and nonlinear information about the task variable. This is revealed by
the Normalized Average Conditional Choice Correlations (NACCC) predicted for optimal decoding, which are
proportional to the measured signal-to-noise ratios (Eq 17) for each neural response pattern (blue ri, green δr2i ,
red δriδrj). Color saturation indicates statistical significance (Methods 4.4). (D) These neurons also contain
significant information about the animal’s choice, as computed by the measured NACCC. (E) The measured
and optimal NACCCs are highly correlated, with a proportionality near 1 (lines). Each point represents one
response pattern (e.g. δriδrj) in one session. Top and bottom panels are data from two different monkeys. These
two plotted quantities are strongly correlated (0.76, 0.65, 0.53 for linear, square and cross terms for monkey 1;
0.80, 0.83, 0.72 for monkey 2). (F) Shuffling internal noise correlations while preserving nuisance correlations
maintains the relationship between prediction and nonlinear choice correlations, implying that internal noise
is not responsible for the correlations. (G) Shuffling nuisance correlations across trials (Methods 4.4) nearly
eliminates the relationship between measured and predicted nonlinear choice correlations (0.76, 0.05, 0.04 for
monkey 1; 0.80, 0.10, 0.11 for monkey 2), implying that nuisance variation creates the nonlinear code.
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external nuisance variation, and that this information
is indeed decoded near-optimally by the brain.

One monkey performed slightly worse than an ideal
observer, with a probability correct of 0.76, compared
to the ideal of 0.82 (Methods 4.4) — even while
its decoding was near-optimal, with an efficiency of
0.96±0.04 (mean ± 95% confidence intervals). This
suggests that information is lost in the encoding stage
somewhere between the stimulus and the recorded neu-
rons, and not downstream of those neurons. The
other monkey had similar overall performance (prob-
ability correct of 0.74) but worse decoding efficiency
(0.75±0.08 mean ± 95% confidence intervals). This
suggests the second monkey’s task performance has
limitations arising downstream of the recorded neu-
rons.

3 Discussion

This study introduced a theory of nonlinear population
codes, grounded in the natural computational task of
separating relevant and irrelevant variables. The the-
ory considers both encoding and decoding — how stim-
uli drive neurons, and how neurons drive behavioral
choices. It showed how correlated fluctuations between
neural activity and behavioral choices could reveal the
efficiency of the brain’s decoding. Unlike previous theo-
ries [15,27], ours remains consistent with biological con-
straints due to the large cortical expansion of sensory
representations by incorporating redundancy through
nonlinear information-limiting correlations. Crucially,
this theory provides a remarkably simple test to deter-
mine if downstream nonlinear computation decodes all
that is encoded.

Alternative methods to estimate whether animals de-
code their information efficiently rely upon comparing
behavioral performance to performance of an ideal ob-
server that can access the entire population. Even with
impressive advances in neurotechnology, this challenge
remains out of reach for large populations. In contrast,
our proposed method to test for optimal decoding has
a vastly lower experimental burden. It requires only
that a few cells be recorded simultaneously while an
animal performs a task.

On the negative side, this simple test does not offer a
complete description of neural transformations. It in-
stead tests just one important hypothesis about their
functional role — that the brain performs optimal de-
coding. However, the theory does provide a practical

way to estimate decoding efficiency. The brain may
not be optimal, but instead may be satisfied by a more
modest decoding efficiency. In this case, more work is
needed to understand which suboptimalities the brain
tolerates for satisfactory performance [55].

3.1 Which nonlinearities should we test?

If all neural signals are decoded optimally, then all
choice correlations for any function of those signals
should also be consistent with optimal decoding, since
they contain the same information (Figure 4). Yet for
the wrong or incomplete nonlinearities that do not dis-
entangle the task-relevant variables from the nuisance
variables, the test may be inconclusive, just as it was
for linear decoding of a nonlinear code: the chosen non-
linear functions may not extract linearly decodable in-
formation nor have any choice correlation.

The optimal nonlinearities would be those that col-
lectively extract the sufficient statistics about the rele-
vant stimulus, which will depend on both the task and
the nuisance variables. In complex tasks, like recogniz-
ing object from images with many nuisance variables,
most of the relevant information lives in higher-order
statistics, and therefore require more complex nonlin-
earities to extract. In such high-dimensional cases, our
proposed test is unlikely to be useful. This is because
our method expresses stimulus estimates as sums of
nonlinear functions, and while that is universal in prin-
ciple [56], that is not a compact way to express the
complex nonlinearities of deep networks. Relatedly, it
may be difficult to see statistically significant infor-
mation or choice correlations for nonlinear statistics
that provide many small contributions to the behav-
ioral output. Alternatively, with guidance from trained
neural network models, our method could potentially
judge whether those nonlinearities provide a good de-
scription of neural decoding. This decoding perspective
would complement studies that demonstrate a match
between the encodings of brains and artificial neural
networks [6, 57].

The best condition to apply our optimality test is
in tasks of modest complexity but still possessing fun-
damentally nonlinear structure. Some interesting ex-
amples where our test could have practical relevance
include motion detection using photoreceptors [58], vi-
sual search with distractors (XOR-type tasks) [29,59],
sound localization in early auditory processing before
the inferior colliculus [60], or context switching in
higher-level cortex [61].
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3.2 Limitations

For efficient decoding in a learned task, the optimal-
ity test (7) is necessary but not sufficient. If the brain
neglects some of informative sufficient statistics, and
we don’t test these neglected statistics either, then we
could find the brain is consistent with our optimal de-
coding test, yet still be suboptimal. Only if the test
is passed for all statistics will the test be conclusive.
For an extreme example, a single neuron might pass
the test, but if other neurons don’t, then the brain is
not using its information well. On a broader scale, one
might find that all individual responses rk pass the op-
timality test, while products of responses rjrk fail. This
would be consistent with linear information being used
well while distinct quadratic information is present but
unused; on the other hand this outcome would not be
consistent with quadratic statistics that are uninfor-
mative but decoded anyway, since that would increase
the output variance beyond that expected from the lin-
ear information. Future work will demonstrate how we
can use identify properties of suboptimal decoders [55]
with nonlinear choice correlations.

Our approach is currently limited to feedforward pro-
cessing, which unquestionably oversimplifies cortical
processing. The approach can be generalized to re-
current networks by considering spatiotemporal statis-
tics [55]. Nonetheless, feedforward models do a fair
job of capturing the representational structure of the
brain [6].

Feedback could also cause suboptimal networks to
exhibit choice correlations that seem to resemble the
optimal prediction. If the feedback is noisy and
projects into the same direction that encodes the stim-
ulus, such as from a dynamic bias [62], then this could
appear as information-limiting correlations, enhancing
the match with Eq 7. This situation could be disam-
biguated by measuring the internal noise source provid-
ing the feedback, though of course this would require
more simultaneous measurements.

3.3 Choice correlations from internal ver-
sus external noise

Since many stimulus-dependent response correlations
are induced by external nuisance variation, not in-
ternal noise, we might not find informative stimulus-
dependent noise correlations upon repeated presenta-
tions of a fixed stimulus. Indeed, our analysis found no
evidence of internal noise generating nonlinear choice
correlations (Figure 6). Those correlations may only be

informative about a stimulus in the presence of natural
nuisance variation. For example, if a picture of a face is
shown repeatedly without changing its pose, then small
expression changes can readily be identified by linear
operations; if the pose can vary then the stimulus is
only reflected in higher-order correlations [5].

In contrast, we should see some nonlinear choice cor-
relations even when nuisance variables are fixed. This
is because neural circuitry must combine responses
nonlinearly to eliminate natural nuisance variation,
and any internal noise passing through those same
channels will thereby influence the choice. Although
they may be smaller and more difficult to detect than
the fluctuations caused by the nuisance variation, this
influence will manifest as nonlinear choice correlations.
In other words, nonlinear noise correlations need not
predict a fixed stimulus, but they may predict the
choice (Supplementary Information S.4).

For optimal decoding, the choice correlations mea-
sured using fixed nuisance variables will differ from Eq
7, which should strictly hold only when there is natural
nuisance variation. This is implicit in Eq 7, since the
relevant quantities are conditioned only on the relevant
stimulus s while averaging over the nuisance variations
ν and internal noise. However, under some conditions,
a related prediction for nonlinear choice correlations
holds even without averaging over nuisance variables
(Supplementary Information S.4).

3.4 Conclusion

Despite the clear importance of computation that is
both nonlinear and distributed, and evidence for non-
linear coding in the cortex [29, 31–33], most neuro-
science applications of population coding concepts have
assumed linear codes and linear readouts [6, 25, 37, 63,
64]. The few that directly address nonlinear popu-
lation codes either have an impossibly large amount
of encoded information [15,27], or investigate abstract
properties unrelated to structured tasks [65]. Some ex-
perimental studies have been able to extract additional
information from recorded populations using nonlinear
decoders [29,66], but the inferred properties of such de-
coders are based on recordings being a representative
sample that can be extrapolated to larger populations.
Unknown correlations and redundancy prevents that
from being a reliable method [20,67].

Our method to understand nonlinear neural decod-
ing requires neural recordings in a behaving animal.
The task must be hard enough that it makes some
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errors, so that there are behavioral fluctuations to
explain. Finally, there should be a modest number
of nonlinearly entangled nuisance variables. Unfortu-
nately, many neuroscience experiments are designed
without explicit use of nuisance variables. Although
this simplifies the analysis, this simplification comes at
a great cost, which is that the neural circuits are being
engaged far from their natural operating point, and
far from their purpose: there is little hope of under-
standing neural computation without challenging the
neural systems with nonlinear tasks for which they are
required. In this context, it is especially noteworthy
that a mismatch between choice correlations and the
optimal pattern might not indicate that the brain is
suboptimal, but instead that the nuisance variation in
the experimental task may not match the natural tasks
the brain has learned. For this reason it is important
for neuroscience to use natural tasks, or at least nat-
uralistic ones, when aiming to understand computa-
tional function [68].

Our statistical perspective on feedforward nonlinear
coding in the presence of nuisance variables provides
a useful framework for thinking about neural compu-
tation. Furthermore, choice-related activity provides
guidance for designing interesting experiments to mea-
sure not only how information is encoded in the brain,
but how it is decoded to generate behavior.
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RM, Hauk O, Kriegeskorte N (2019) Recurrence
required to capture the dynamic computations of
the human ventral visual stream. arXiv preprint
arXiv:190305946 .

[58] Poggio T, Koch C (1987) Synapses that compute
motion. Scientific American 256: 46–53.

[59] Ma WJ, Navalpakkam V, Beck JM, Van Den Berg
R, Pouget A (2011) Behavior and neural basis of
near-optimal visual search. Nature neuroscience
14: 783.

[60] Davis KA, Ramachandran R, May BJ (2003) Au-
ditory processing of spectral cues for sound local-
ization in the inferior colliculus. Journal of the As-
sociation for Research in Otolaryngology 4: 148–
163.

[61] Saez A, Rigotti M, Ostojic S, Fusi S, Salzman
C (2015) Abstract context representations in pri-
mate amygdala and prefrontal cortex. Neuron 87:
869–881.

[62] Haefner RM, Berkes P, Fiser J (2016) Perceptual
decision-making as probabilistic inference by neu-
ral sampling. Neuron 90: 649–660.

[63] Ma WJ, Beck JM, Latham PE, Pouget A (2006)
Bayesian inference with probabilistic population
codes. Nature neuroscience 9: 1432.

[64] Graf AB, Kohn A, Jazayeri M, Movshon JA (2011)
Decoding the activity of neuronal populations in
macaque primary visual cortex. Nature neuro-
science 14: 239.

[65] Babadi B, Sompolinsky H (2014) Sparseness and
expansion in sensory representations. Neuron 83:
1213–1226.

[66] Maynard E, Hatsopoulos N, Ojakangas C, Acuna
B, Sanes J, Normann R, Donoghue J (1999)

Neuronal interactions improve cortical population
coding of movement direction. Journal of Neuro-
science 19: 8083–8093.

[67] Kanitscheider I, Coen-Cagli R, Kohn A, Pouget
A (2015) Measuring fisher information accurately
in correlated neural populations. PLoS computa-
tional biology 11: e1004218.

[68] Pitkow X, Angelaki DE (2017) Inference in the
brain: statistics flowing in redundant population
codes. Neuron 94: 943–953.

[69] Berens P, Ecker AS, Gerwinn S, Tolias AS, Bethge
M (2011) Reassessing optimal neural population
codes with neurometric functions. Proceedings
of the National Academy of Sciences 108: 4423–
4428.

[70] Tolias AS, Ecker AS, Siapas AG, Hoenselaar
A, Keliris GA, Logothetis NK (2007) Recording
chronically from the same neurons in awake, be-
having primates. Journal of neurophysiology 98:
3780–3790.

[71] Bethge M, Rotermund D, Pawelzik K (2002) Op-
timal short-term population coding: when fisher
information fails. Neural computation 14: 2317–
2351.

[72] Kang I, Maunsell JH (2012) Potential confounds
in estimating trial-to-trial correlations between
neuronal response and behavior using choice prob-
abilities. Journal of neurophysiology 108: 3403–
3415.

17

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 5, 2020. ; https://doi.org/10.1101/332353doi: bioRxiv preprint 

https://doi.org/10.1101/332353
http://creativecommons.org/licenses/by/4.0/


4 Online Methods

4.1 Encoding models

4.1.1 Orientation estimation with varying spa-
tial phase

Figure 1 illustrates how nuisance variation can eliminate a neu-
ron’s mean tuning to relevant stimulus variables, relegating the
neural tuning to higher-order statistics like covariances. In this
example, the subject estimates the orientation of a Gabor im-
age, G(x|s, ν), where x is spatial position in the image, and s
and ν are the orientation and spatial phase (nuisance) of the
image, respectively (Supplemental Material S.1.1). The model
visual neurons are linear Gabor filters like idealized simple cells
in primary visual cortex, corrupted by additive white Gaussian
noise. Their responses are thus distributed as r ∼ P (r|s, ν) =
N(r|f(s, ν), εI), where ε is the noise variance and the mean
f(s, ν) = 〈r|s, ν〉 =

∑
r r p(r|s, ν) is determined by the overlap

between the image and the receptive field.

When the spatial phase ν is known, the mean neural response
contains all the information about orientation s. The brain can
decode responses linearly to estimate orientation near a reference
s0.

When the spatial phase varies, however, each mean response
to a fixed orientation will be combined across different phases:
f(s) = 〈r|s〉 =

∑
r r p(r|s) =

∫
dν
∑

r r p(r|s, ν)p(ν). Since
each spatial phase can be paired with another phase π radians
away that inverts the linear response, the phase-averaged mean is
f(s) = 0. Thus the brain cannot estimate orientation by decod-
ing these neurons linearly; nonlinear computation is necessary.

The covariance provides one such tuned statistic. We define
Covij(r|s, ν) as the neural covariance for a fixed input image
(noise correlations), and Covij(r|s) as the neural covariance when
the nuisance varies (nuisance correlations). According to the law
of total covariance,

Covij(r|s) =

∫
dν (Covij(r|s, ν) + δfi(s, ν)δfj(s, ν))p(ν) (10)

where δfi(s, ν) = fi(s, ν) − 〈fi(s, ν)〉ν . Supplementary Informa-
tion S.1.1 shows in detail how Covij(r|s) is tuned to s.

4.1.2 Exponential family distribution and suf-
ficient statistics

We assume the response distribution conditioned on the relevant
stimulus (but not on nuisance variables) is approximately a mem-
ber of the exponential family with nonlinear sufficient statistics,

p(r|s) = b(r) exp(H(s) ·R(r)−A(s)) (11)

where R(r) is a vector of sufficient statistics for the natural pa-
rameter H(s), b(r) is the base measure, and A(s) is the log-
partition function. The sufficient statistics contain all of the in-
formation about the stimulus in the population response, and all
other tuned statistics may be derived from them.

Estimation and inference are closely connected in the expo-
nential family. In Supplemental Material S.1.2.2, we show that
the optimal local estimation can be achieved by linearly decoding
the nonlinear sufficient statistics, ŝ = w>R(r)+c. The decoding

weights minimize the variance of an unbiased decoder,

wopt ∝H ′(s) ∝ Γ−1F ′ (12)

where F ′ = ∂ 〈R(r)|s〉 /∂s is the sensitivity of the statistics to
changing inputs, and Γ = Cov(R|s) is the stimulus-conditioned
response covariance — which generally includes nuisance corre-
lations (Section 2.2).

4.1.3 Quadratic encoding

In a quadratic coding model, the distribution of neural responses
is described by the exponential family with up to quadratic suffi-
cient statistics, R(r) = {ri, rirj} for i, j ∈ {1, . . . , N}. A familiar
example is the Gaussian distribution with stimulus-dependent co-
variance Σ(s). In order to demonstrate the coding properties of a
purely nonlinear neural code, here we assume that the mean tun-
ing curve f(s) is constant, while the stimulus-conditional covari-
ances Σij(s) depend smoothly on the stimulus. We can quantify
the information content of the neural population using Equation
61.

4.1.4 Cubic encoding

In our cubic coding model, the distribution of neural responses
is described by the exponential family with up to cubic sufficient
statistics, R(r) = {ri, rirj , rirjrk} for i, j, k ∈ {1, . . . , N}.

We approximate a three-neuron cubic code first using purely
cubic components, and we then apply a stimulus-dependent affine
transformation to include linear and quadratic statistics. The
pure cubic code is used for a vector z with sufficient statistics

zizjzk (and a base measure e−‖z‖
4

to ensure the distribution is
bounded and normalizable).

p(z|s) = 1
Z

exp
(
−‖z‖4 + γs zizjzk

)
(13)

We approximate this distribution by a mixture of four Gaussians.
The mixture is chosen to reproduce the tetrahedral symmetry of
the cubic distribution (Supplementary Figure S1), which allows
the cubic statistics of responses to be stimulus dependent, leaving
stimulus-independent quadratic and linear statistics.

To generate larger multivariate cubic codes for Figure (S1), for
simplicity we assume the pure cubic terms only couple disjoint
triplets of variables, and sample independently from an approxi-
mately cubic distribution for each triplet. To convert this purely
cubic distribution to a distribution with linear and quadratic in-
formation, we shift and scale these cubic samples z in a manner
dependent on s:

r = f(s) + Σ1/2(s)z (14)

where f(s) and Σ(s) describes the desired signal-dependent mean
and covariance (see Supplemental Material S.1.4).

4.2 Nonlinear choice correlations

For fine discrimination tasks, the nonlinear choice correlation be-
tween the stimulus estimate ŝ = w>R + c and one nonlinear
function Rk (the kth element of the vector R) of recorded neural
activity r is

CRk = Corr(Rk(r), ŝ|s) =
(Γw)k√

Γkkw>Γw
(15)
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where w>Γw = σ2
ŝ is the estimator variance.

When the relevant response statistics change appreciably over
the stimulus range used in the task, such as for the coarse vari-
ance discrimination task in Section 2.10), the relevant quantities
change slightly. The optimal linear decoder of nonlinear statis-
tics, ŝ = w ·R+c, has weights obtained through linear regression:

w ∝ Γ̄−1∆F (16)

where Γ̄ = 〈Cov (R|s)〉s is the average conditional covariance
between R given the stimulus s. The differences from Eq 12 are
Γ→ Γ̄ and F ′ = dF /ds→ ∆F /∆s.

These differences are reflected in a slightly modified measure of
correlation that we call Normalized Average Conditional Choice
Correlations (NACCC),

BRk =
〈Cov(Rk, ŝ|s)〉s√

〈Var(R|s)〉s 〈Var(ŝ|s)〉s
=

(Γ̄w)k√
Γ̄kkw>Γ̄w

(17)

Note that Eq 17 is not actually a correlation coefficient, and
may exceed the interval [−1, 1] if Var(ŝ|s) and Var(Rk|s) are
anticorrelated over s. As the stimulus range in a coarse task
decreases, and the noise distribution p(R|s) becomes independent
of the stimulus, then Eq 17 converges toward Eq 15.

The choice correlation for binary choices differs slightly from
that for continuous estimation, for both fine and coarse discrim-
ination tasks, by a factor ζ that is typically of order 1 (Supple-
mental Materials S.6.1).

4.2.1 Optimality test

Substituting the optimal weights (Eq 12) into (15), the optimal
nonlinear choice correlation becomes

Copt
Rk(r) =

(
ΓΓ−1F ′

)
k√

ΓkkF
′>Γ−1F ′

=
F ′k√
Γkk

σŝ =
d′Rk(r)

d′
(18)

where d′Rk(r) = F ′k∆s/
√

Γkk is the fine discriminability provided
by Rk(r) for a stimulus difference of ∆s. The same argument
holds for coarse discrimination, where Γ̄ in Eq 17 is canceled by
Γ̄−1 in the optimal weights (Eq 16), yielding Bopt

Rk(r) = d′Rk/d
′.

For fine-scale discrimination, optimal choice correlations can
be written in many equivalent ways that reflect the simple rela-
tionships between four quantities often used to represent informa-
tion: discriminability d-prime is proportional to the square root
of the Fisher information d′ = ∆s

√
J [69]; estimator variance is

bounded by the inverse of the Fisher information, σ2
ŝ ≥ 1/J ; dis-

crimination threshold is proportional to the estimator standard
deviation, θ =

√
σ2
ŝ with proportionality given by the threshold

condition.

In different experiments (binary discrimination, continuous es-
timation), it can be most natural to express this optimal decoding
prediction as ratios of different measured quantities:

Copt
Rk

=
d′Rk
d′

=
θ

θRk
=

√
σ2
ŝ

σ2
ŝ,Rk

=

√
JRk
J

(19)

These quantities reflect information between the stimulus and
the neural or behavioral responses. Supplemental material S.5
shows how this can be computed easily for general binary discrim-
ination using the total correlation between the responses and the

stimuli, DRk = Corr (Rk, s), or a continuously varying behavioral
choice ŝ and the stimuli, Dŝ = Corr (ŝ, s):

d′ =
2√

D−2 − 1
≈ 2D (20)

and likewise for d′Rk . When the behavioral choice is binary rather
than continuous, the correlations are modified by a factor δ near
1 (Supplemental Information S.6.3). For our experimental con-
ditions, δ ≈ 1.2± 0.2.

4.2.2 Nonlinear choice correlation to analyze
an unknown nonlinearity

In Figure 4, we generated neural responses given sufficient
statistics that are polynomials up to third order, R(r) =
{ri, rirj , rirjrk} (Methods 4.1.4). Our model brain decodes the
stimulus using a cascade of linear-nonlinear transformations, with
Rectified Linear Units (ReLU(x) = max(0, x)) for the nonlinear
activation functions. We used a fully-connected ReLU network
with two hidden layers and 30 units per hidden layer. We trained
the network weights and biases with backpropagation to estimate
stimuli near a reference s0 based on 20000 training pairs (r, s)
generated by the cubic encoding model. This trained neural net-
work extracted 91% of the information available to an optimal
decoder.

4.3 Information-limiting correlations

Only specific correlated fluctuations limit the information con-
tent of large neural populations [24]. These fluctuations can ul-
timately be referred back to the stimulus as r ∼ p(r|s + ds),
where ds is zero mean noise, whose variance 1/J∞ determines
the asymptotic variance of any stimulus estimator. These
information-limiting correlations for nonlinear computation can
be characterized by the covariance of the sufficient statistics,
Γ = Cov(R|s) conditioned on s; the information-limiting compo-
nent arises specifically from the signal covariance Cov(F (s)|s).
Since the signal for local estimation of stimuli near a reference
s0 is F ′(s) = d

ds
〈R(r)|s〉, the information-limiting component of

the covariance is proportional to F ′F ′
>

:

Γ = Γ0 +
1

J∞
F (s)′F (s)′

>
(21)

Here Γ0 is any covariance of R that does not limit information in
large populations. Substituting this expression into (61) for the
nonlinear Fisher Information, we obtain

J = F ′Γ−1F ′ =
1

1/J∞ + 1/J0
(22)

where J0 = F ′Γ−1
0 F ′ is the nonlinear Fisher Information allowed

by Γ0. When the population size grows, the extensive informa-
tion term J0 grows proportionally, so the output information will
asymptote to J∞.

4.4 Application to neural data

All behavioral and electrophysiological data were obtained from
two healthy, male rhesus macaque (Macaca mulatta) monkeys
(L and T) aged 10 and 7 years and weighting 9.5 and 15.1 kg,
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respectively. All experimental procedures complied with guide-
lines of the NIH and were approved by the Baylor College of
Medicine Institutional Animal Care and Use Committee (permit
number: AN-4367). Animals were housed individually in a room
located adjacent to the training facility on a 12h light/dark cy-
cle, along with around ten other monkeys permitting rich visual,
olfactory, and auditory social interactions. Regular veterinary
care and monitoring, balanced nutrition and environmental en-
richment were provided by the Center for Comparative Medicine
of Baylor College of Medicine. Surgical procedures on monkeys
were conducted under general anesthesia following standard asep-
tic techniques.

Monkeys faced a Two-Alternative Forced Choice (2AFC) to
guess whether an oriented drifting grating stimulus came from a
narrow or wide distribution of orientations, centered on zero with
standard deviations σ+ = 15◦ and σ− = 3◦. Visual contrast was
set to 64%. Each trial was initiated by a beeping sound and the
appearance of a fixation target (0.15◦ visual angle) in the center
of the screen. The monkey fixated on a fixation target for 300ms
within 0.5◦–1◦ visual angle. The stimulus appeared at the center
of the screen. After 500ms, colored targets appeared randomly on
the left and right, and the monkey then saccades to one of these
targets to indicate its choice (red and green targets correspond
to narrow and wide distributions).

After the monkey was fully trained, we implanted a 96-
electrode microelectrode array (Utah array, Blackrock Microsys-
tems, Salt Lake City, UT, USA) with a shaft length of 1 mm
over parafoveal area V1 on the right hemisphere. The neu-
ral signals were pre-amplified at the head stage by unity gain
preamplifiers (HS-27, Neuralynx, Bozeman MT, USA). These
signals were then digitized by 24-bit analog data acquisition
cards with 30 dB onboard gain (PXI-4498, National Instru-
ments, Austin, TX) and sampled at 32 kHz. The spike detec-
tion was performed offline according to a previously described
method [8, 70]. Code for spike detection is available online at
github.com/atlab/spikedetection. For each behavioral ses-
sion and in both monkeys, 95 multiunit neural responses rk were
measured by spike counts in the 500 ms preceding the saccade
target onset.

The animals did not perform well on all days, so for further
analysis we selected sessions where the performance exceeded 0.7
for monkey 1 (85% of all sessions) and 0.75 for monkey 2 (68%
of all sessions).

The task-relevant stimulus s is the large or small variance
s± = σ2

± of the distribution over orientations. Orientation is
a nuisance variable ν, drawn from p(ν|s) = N (ν|0, s), which
has sufficient statistics that are quadratic in ν. If the orienta-
tion itself can be estimated locally from linear functions of the
neural responses, then the stimulus can be decoded quadrati-
cally from those neural responses, ŝ = ν̂2. A binary guess
about the variance is given by ŝ± = sgn (ν̂2 − θ2) where θ
is the animal’s orientation threshold. This threshold is opti-
mal where the two stimuli are equally probable: p(ν|s+) =
p(ν|s−), implying that θ2

opt = (log s+ − log s−) /
(
s−1
− − s

−1
+

)
.

The probability of correctly guessing the orientation variance is
1
2

(p(ŝ± = +|s+) + p(ŝ± = −|s−)), where these probabilities can
be computed from the cumulative normal distribution on the cor-
rect side of the optimal orientation threshold, p(ŝ± = +|s+) =
2
∫∞
θopt

dν p(ν|s+) = erfc
(
θopt/

√
2s+

)
; similarly, p(ŝ± = −|s−) =

1 − erfc(θopt/
√

2s−). Using values of s± for our task, this gives
an optimal fraction correct of 0.82.

We computed choice correlations using NACCC (Eq 17), and
discriminability based on total correlations between stimulus and
response (Eq 20). We adjusted the optimal prediction by a con-
stant factor ζ to account for binary choices using the equations
in Supplement S.5, with thresholds estimated by logistic regres-
sion between choice and the absolute value of the stimulus ori-
entation. We estimated the slopes of the relationship between
measured and predicted choice correlation using the angle of the
principal component of the bivariate data. We computed stan-
dard deviations for these quantities by bootstrapping 100 times.

For our two shuffle controls testing whether correlations be-
tween neurons were informative about the stimulus or choice, we
selected responses independently from ri ∼ p(ri|s, ν, ŝ) (Figure
6D) or ri ∼ p(ri|s, ŝ) (Figure 6E).

We evaluate statistical significance of the measured and pre-
dicted optimal choice correlations using p-values for null distribu-
tions based on 100 shuffled choices and 100 shuffled stimuli, while
preserving correlations between neural responses. Both null dis-
tributions are approximately Gaussian with zero means, so we
compute the p-value of the choice correlations with respect to
the corresponding Gaussian, p = 1− 1

2
erfc(−|x|/

√
2σx) where x

is the quantity of interest and σx is its standard deviation.
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Supplemental material

S.0 Overview

This supplemental material contains mathematical details and
proofs of the central ideas presented in the main text.

S.1 Encoding models

S.1.1 Orientation estimation task with phase as nuisance
S.1.2 Exponential family distributions
S.1.3 Quadratic codes
S.1.4 Cubic codes

S.2 Information-limiting correlations
S.3 Analyzing decoding quality
S.4 Choice correlations from internal and external sources
S.5 Coarse discrimination and choice correlations
S.6 Orientation variance discrimination task

S.1 Encoding models

S.1.1 Orientation estimation task with
varying spatial phase

In Figure 2B, the subject’s task is to estimate orientation s near
a reference s0, based on images G of Gabor patterns given by

G(x|s, ν) = e−‖x‖
2

cos (k · x+ ν) (23)

where k = κ(cos s, sin s). Here the target s is the orientation of
the pattern, ν is a nuisance variable reflecting the spatial phase,
x is the pixel location in the image, and k is a spatial frequency
vector with amplitude κ = ‖k‖. We assume the spatial receptive
field of simple cell j in primary visual cortex is also described by
a Gabor function

RFj(x, sj , νj) = e−‖x‖
2

cos (kj · x+ νj) (24)

kj = κ(cos sj , sin sj) (25)

where each neuron has a preferred orientation sj , spatial phase
νj , and spatial frequency kj . Here for simplicity we assume that
all neurons’ preferred spatial frequencies have the same amplitude
κ that matches the input image.

We model the mean neuronal responses by the overlap be-
tween the image and their linear receptive field. This overlap
determines the tuning curve of each neuron:

fj(s, ν) =

∫
dxG(x|s, ν)RFj(x, sj , νj)

=
[
e−

1
4
κ2 cos (s−sj) cos (ν + νj)

+ e+ 1
4
κ2 cos (s−sj) cos (ν − νj)

] π
4
e−

1
4
κ2

(26)

This expression can be written in the form:

fj(s, ν) = Aj(s) cos (ν + ψj(s)) (27)

using the stimulus-dependent response amplitude

Aj(s) = C
√

2 cosh 2βj(s) + 2 cos 2νj (28)

and phase

ψj(s) = νj − αj(s) (29)

where we define the quantities

C =
π

4
exp

(
−1

4
κ2

)
(30)

βj(s) =
1

4
κ2 cos(s− sj) (31)

αj(s) = tan−1 exp (βj(s)) sin 2νj
exp (−βj(s)) + exp (βj(s)) cos 2νj

(32)

Equation 27 reveals that the mean response of each neuron
traces out a sinusoidal oscillation in ν, where the amplitude and
phase depend on s and the specific neuron j. The mean tuning for
each pair of neurons therefore traces out an ellipse as a function
of the nuisance variable, the input’s spatial phase. When we
average over the ellipse generated by the nuisance variable ν, the
mean tuning to s is abolished — but the response covariances
(nuisance correlations) remain tuned to s.

Assuming each neuron’s response variability is drawn inde-
pendently from a standard Gaussian N (0, 1), we can write the
response distribution as

P (r|ν, s) = N (f(s, ν), I) (33)

If the spatial phase ν were fixed and known, the brain could
estimate the orientation just from the mean tuning of the neural
responses. However, if the spatial phase is unknown and varies
between stimulus presentations uniformly from 0 to 2π, the mean
tuning f(s) can be expressed as

fj(s) = 〈rj |s〉 =

∫
rj p(rj |s)drj (34)

=

∫∫
rj p(rj |s, ν) p(ν) drj dν (35)

=

∫
fj(s, ν)p(ν) dν (36)

=
1

2π

∫
fj(s, ν) dν (37)

=
Aj(s)

2π

∫ 2π

0

cos (ν + ψj(s)) dν (38)

= 0 (39)

This shows that there is no signal in the mean responses.

However, the brain can perform quadratic computations to
eliminate the nuisance variable. We can define Covij [r|s, ν] as
the neural covariance (noise correlations) when everything in the
image is fixed, and Covij [r|s] as the neural covariance when the
nuisance is unknown and free to vary (nuisance correlations).
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Then Covij [r|s] is

Covij [r|s] = 〈(ri − fi(s))(rj − fj(s))|s〉 (40)

= 〈rirj |s〉 =

∫∫
rirj p(r|s)dridrj (41)

=

∫
dν

∫∫
rirj p(r|s, ν)p(ν)dridrj (42)

=

∫
dν p(ν)〈rirj |s, ν〉 (43)

=

∫
dν p(ν) (Covij [r|s, ν] + fi(s, ν)fj(s, ν)) (44)

=
1

2π
δij +

1

2π

∫
dνfi(s, ν)fj(s, ν) (45)

=
1

2π
δij +

1

2π
Dij(s) (46)

where Dij(s) is given by

Dij(s) =

∫
dνfi(s, ν)fj(s, ν)

=

∫
dν Ai(s) cos (ν + ψi(s))Aj(s) cos (ν + ψj(s))

= π cos(ψi(s)− ψj(s))Ai(s)Aj(s)

(47)

Here when we compute Equation 47, we used the trigonometric
identity: 2 cos(x) cos(y) = cos(x+y)+cos(x−y), and

∫
cos(2ν+

ψi + ψj)dν = 0.

This demonstrates that the neural covariance Covij [r|s] de-
pends on the orientation s. While linear computation is useless
for estimating orientation since the mean responses are untuned
(34), quadratic (or higher-order) nonlinear computations can be
used to estimate the orientation.

S.1.2 Exponential family distributions

For a stimulus s and a response r, the conditional probability is
a member of the exponential family when

p(r|s) = b(r) exp
(
Θ(s)>R(r)−A(s)

)
(48)

where Θ(s) are the natural parameters, R(r) are the sufficient
statistics, A(s) and b(r) are the log normalizer and base measure.
The statistics R(r) are called sufficient because they contain all
the information needed to estimate the stimulus s.

S.1.2.1 Fisher information

One measure of information content that a population response
contains about a stimulus is the Fisher information J(s) [15,21–
24,26]. The Fisher information is given by

J = −
〈
∂2

∂s2
log p(r|s)

〉
r|s

(49)

=

〈(
∂

∂s
log p(r|s)

)2
〉

r|s

(50)

For distributions p(r|s) in the exponential family with sufficient
statisticsR(r), we can compute these quantities analytically. We
denote the mean of the sufficient statistics as F (s) = 〈R(r)|s〉.

This mean 〈R|s〉 can be obtained by differentiating A(s) by the
natural parameters Θ(s),

F =
∂A(s)

∂Θ(s)
(51)

Equation 51 can give us the first and second derivatives of A(s)
over s.

A′ =
∑
i

∂A

∂Θi

dΘi

ds
= Θ′>F (52)

A′′ = Θ′′>F + Θ′>F ′ (53)

Thus we can compute two definitions of Fisher information.

J = −
〈
∂2

∂s2
logP (r|s)

〉
P (r|s)

(54)

= A′′ −Θ′′>F (55)

= Θ′>F ′ (56)

and

J =

〈(
∂

∂s
logP (r|s)

)2
〉
P (r|s)

(57)

= Θ′>(〈RR>〉 − FF>)Θ′ (58)

= Θ′>ΓΘ′ (59)

where Γ = Cov[R(r)|s].
Since the two definition are equivalent, we have

Θ′ = Γ−1F ′ (60)

Substituting Equation 60 into Equation 59, we find the Fisher
Information for the exponential family [20]

J = F ′>Γ−1F ′ (61)

S.1.2.2 Optimal estimation in the exponential
family

Again assuming responses come from this distribution, we want
to compute the maximum likelihood stimulus, ŝ, near a reference
stimulus s0:

ŝ = argmax
s

p(r|s) (62)

= argmax
s

log p(r|s) (63)

= argmax
s

Θ(s)>R(r)−A(s) (64)

A Taylor expansion around the reference yields

Θ(s)>R(r)−A(s)

≈ [Θ>R−A]

+[Θ′>R−A′](s− s0)

+ 1
2
(s− s0)>[Θ′′>R−A′′](s− s0) + · · ·

(65)

where all functions and derivatives are evaluated at s0. We find
the maximum ŝ by differentiating with respect to s and setting
the result equal to zero:

0 = [Θ′>R−A′] + (ŝ− s0)[Θ′′>R−A′′] (66)
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The solution is

ŝ = s0 −
Θ′>R−A′

Θ′′>R−A′′
(67)

Since r is a random quantity, we can express R as a mean and
a deviation away from that mean: R = 〈R|s0〉+ δR = F + δR.
In this case, Θ′′>R − A′′ = Θ′′>F − A′′ + Θ′′>δR, where the
mean term is precisely the negative Fisher Information −J(s0). If
the trial-to-trial fluctuations in the uncertainty are small relative
to the average uncertainty then this Fisher term will dominate.
Then we have

ŝ = w>R+ c (68)

where

w =
Θ′

J
=

Γ−1F ′

F ′>Γ−1F ′
(69)

and where we used the results from Equations 61 and 60, with
Γ = Cov(R|s0) and F = 〈R|s0〉. Thus, in this limit, the optimal
estimator for s is a linear decoding of the sufficient statistics
R(r).

S.1.3 Quadratic codes

In a purely quadratic coding model (no linear information),
the distribution of neural responses is described by the ex-
ponential family with quadratic sufficient statistics, p(r|s) ∼
exp [Θ(s)>R(r)] where R(r) = (. . . , rirj , . . .). A familiar exam-
ple is a Gaussian distribution with stimulus-dependent covari-
ance: p(r|s) = N(f ,Σ(s)).

As a concrete example we construct a covariance that rotates
with stimulus s. Any covariance matrix needs to be positive
semidefinite. We build Σ(s) by setting the eigenvalues to be pos-
itive and s-independent and eigenvectors to form an orthogonal
basis that rotates with s:

Σ(s) = V (s)ΛV (s)> (70)

where V (s) = expAs is a rotation matrix in which A = −A>
is a real antisymmetric matrix with pure imaginary eigenvalues,
and Λ is a diagonal matrix composed of all positive eigenvalues
of Σ(s).

To calculate the Fisher Information (Equation 61), we need to
first calculate the derivative of the mean F ′ = ∂

∂s
〈R(r)|s〉 and

covariance Γ = Cov[R(r)|s] of the quadratic sufficient statistics.
Because the mean of r is not dependent on the stimulus in

this example, we can compute F ′ij = 〈rirj |s〉′ = Σ′ij(s), where
Σ′ij(s) is the derivative of the covariance of r,

Σ′(s) = UeΩs(ΩX −XΩ)e−ΩsU† (71)

where † denotes a conjugate transpose. Here Ω is a diagonal
matrix of eigenvalues for A, U is an orthogonal matrix of the
eigenvectors of A, and X = U†ΛU .

The elements in Γ can be expressed as Γij,kn = 〈rirjrkrn|s〉−
〈rirj |s〉 〈rkrn|s〉. We can use the following identity for a Gaussian
to compute this fourth-order quantity:

〈rirjrkrn|s〉 = 〈rirj |s〉 〈rkrn|s〉+ 〈rjrn|s〉 〈rirk|s〉
+ 〈rirn|s〉 〈rjrk|s〉

(72)

where

〈rirj |s〉 = Σij + fifj (73)

Substitution of the response covariance (Equation 70) into Equa-
tion 72 allows us to calculate the covariance Γ of the quadratic
sufficient statistics, and thereby to estimate the stimulus and
Fisher information for this quadratic code.

S.1.4 Cubic codes

In Figure S1 we assume the brain encodes the stimulus using a
cubic code. A simple cubic code in z = (zi, zj , zk) ∈ R3 can be
written as

p(z|s) = 1
Z

exp
(
γ(s)zizjzk − ‖z‖4

)
(74)

where we include the base measure e−‖z‖
4

to ensure normaliz-
ability (Figure S1A).

For mathematical convenience, we approximate this code by
a mixture of Gaussians.

p(z|s) ≈
4∑
a=1

p(a)p(z|a, s) (75)

=
∑
a

1

4
N (z|µa(s),Ma(s)) (76)

where
ma(s) =

s√
1 + s2

va (77)

and

Ma(s) =
I + s2vav

>
a

(1 + s2)2
(78)

The vectors va reflect the four corners of the tetrahedron, va,i =
±1, to match the tetrahedral symmetry of the pure cubic code
(Equation 74, Figure S1). To sample from this distribution, we
randomly choose a component a and then sample from the gaus-
sian N (z|ma(s),Ma(s)) conditioned on that component.

This distribution has zero mean and identity covariance but a
nontrivial skewness tensor, and qualitatively matches the corre-
sponding distribution for the true exponential family distribution
with cubic sufficient statistics (Figure S1).

Exponential family

A B C D

Mixture of gaussians

Figure S1: Multivariate skewed distributions. (A) Isoprobability
contour of an exponential family distribution with cubic statistics
in three dimensions, drawn from p(z|s) ∝ exp (sz1z2z3 − ‖z‖4).
(B) Isoprobability contour for a mixture of four gaussians (Eq
76). (C,D) Samples drawn from the mixture form, with s = 1, 2.

For simplicity, we consider pure cubic codes with non-
overlapping cliques of three variables.

p(z|s) =
∏
α

p(zα|s) =
∏
α

p(zα1 , zα2 , zα3 |s) (79)

To convert this purely cubic distribution into a distribution
with linear and quadratic information as well, we simply shift
and scale the distribution in a manner dependent on s:

r = f(s) + Σ1/2(s) zΣ1/2(s) (80)

z ∼ 1

Z(s)
exp

∑
ijk

γijk(s)zizjzk − ‖z‖4
 (81)

These affine transformations can be incorporated directly into
each component of the mixture of gaussians,

p(r|a, s) = N (r|f(s) +ma(s),Σ1/2(s)Ma(s)Σ1/2(s)) (82)
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Note that the linear and quadratic information terms are inde-
pendent of the component a.

S.2 Information-limiting correla-
tions

Information-limiting correlations [24] describe variability that
cannot be averaged away because they are indistinguishable from
changes in the stimulus. These fluctuations can ultimately be re-
ferred back to the stimulus, to appear as r ∼ p(r|s+ ds), where
ds is zero mean noise with variance 1/J∞ which determines the
uncertainty of stimulus. Applying the law of total covariance, we
can decompose the covariance of nonlinear statistics R(r) condi-
tioned on the stimulus into two parts:

Γ =Covr,ds(R(r)|s)
= 〈Covr(R(r)|s, ds)〉ds + Covds 〈R(r)|s, ds〉r

(83)

where 〈·〉 indicates an expectation value over the subscripted vari-
able. The first term can be computed as follows,

〈Covr(R(r)|s, ds)〉ds = 〈Γ(s+ ds)〉ds (84)

≈
〈
Γ0 + dsΓ′

〉
ds

(85)

= Γ0 (86)

Here we denote the covariance ofR(r) given s and ds as Γ(s+ds).
The second equality used a Taylor expansion of Γ(s+ds) around
s. The third equality used the fact that the mean of ds is zero.
Γ0 is the covariance of R in the absence of information-limiting
correlations. The second term in Equation 83 can be expressed
as

Covds 〈R(r)|s, ds〉r (87)

= Covds(F (s+ ds)) (88)

≈ Covds(F (s) + dsF ′(s)) (89)

=
1

J∞
F ′(s)F ′(s)> (90)

Here we have written the mean of R(r) given s and ds as F (s+
ds). The second equality used a first-order expansion of F (s+ds)
around s. The third equality used the fact that the variance of
ds is 1/J∞.

Equation 83 can therefore be written as

Γ = Γ0 +
1

J∞
F (s)′F (s)′

>
(91)

which is a rank-one perturbation of the covariance Γ0.
To compute the nonlinear Fisher Information, JR(r) =

F ′>Γ−1F ′, we can use the Sherman-Morrison lemma to compute
Γ−1:

Γ−1 = Γ−1
0 −

Γ−1
0 F ′F ′>Γ−1

0

J∞ + F ′Γ−1
0 F ′>

(92)

Substituting these equations into the nonlinear Fisher Informa-
tion (Equation 61) and simplifying, we obtain

JR(r) =
1

1/J∞ + 1/J0
(93)

Here J0 = F ′>Γ−1
0 F ′ is the nonlinear Fisher Information in the

absence of information-limiting correlations. When the popula-
tion size grows, the term J0 grows proportionally [15, 26], so for
large populations the output information saturates at J∞.

S.3 Analyzing decoding quality

S.3.1 Unknown nonlinearities

The true nonlinearity that the brain uses to estimate the stimulus
is unknown. Thus a crucial question in our decoding analysis is,
which nonlinearities to consider? One reasonable set is polynomi-
als in r, i.e. a Taylor series expansion of the neural nonlinearities,
Ψ(r) = (ri, rirj , rirjrk, ...).

The locally optimal decoder is a weighted sum of the sufficient
statistics R(r) (Equation 68):

ŝopt = w ·R(r). (94)

However, the brain might choose a different nonlinear basis g(r):

ŝbrain = v · g(r). (95)

As long as the brain’s nonlinear function spans the same func-
tion basis as the sufficient statistics, we can still get all of the
information about stimulus from neural population. This allows
us to use choice correlation between brain’s estimate ŝbrain and
our analysis nonlinearity Ψ(r) to check the optimality condition
(Equation 7).

In Figure 4, we assumed that the optimal nonlinear basis func-
tion R is polynomial nonlinearity up to third order, R(r) =
(ri, rirj , rirjrk, ...). We used cubic codes described in Methods
4.1.4 to generate neural responses for which R(r) are sufficient
statistics for the stimulus. In this simulation, 18 neuronal re-
sponses (six cliques of size 3) were generated using cubic codes.

Our model brain decodes the stimulus using a cascade of
linear-nonlinear transformations, with Rectified Linear Units
(ReLU(x) = max(0, x)) for the nonlinear activation functions.
We used a fully-connected ReLU network with two hidden layers
and 30 units per hidden layer,

ŝbrain = v · r(3) + b(3) (96)

r(3) = ReLU(W (2)r(2) + b(2)) (97)

r(2) = ReLU(W (1)r(1) + b(1)) (98)

r(1) = r (99)

We trained the neural network with 20000 response samples
generated from a cubic code driven by stimuli near the refer-
ence s0. We optimized the estimation performance for the neu-
ral network using backpropagation to find weights {W (`)}, biases
{b(`)}, and readout vector v that minimized the mean squared
error. Our trained neural network performed near-optimally, ex-
tracting 91% of the Fisher information compared to optimal de-
coding based on the true sufficient statistics.

Feigning ignorance of our simulated brain’s true decoder, we
applied the nonlinear choice correlation test (Equation 7) using
monomial nonlinearities Ψ(r) up to third order, e.g. ri, rirj ,
r2
i rj , r

3
k, etc. The simulated choice correlations were calculated

by Equation 5, where R(r) = Ψ(r) based on neural responses
driven by the reference stimulus s0, and the stimulus estimate was
ŝbrain. The optimal choice correlation is computed using Equa-
tion 7, where

√
JΨ(r) = d′Ψ/∆s = ∆FΨ

∆s σΨ
, and

√
J ≈ 1/σŝbrain .

We computed ∆FΨ based on neural population responses r+

and r− driven by stimuli s+ = s0 ±∆s/2. The change in mean
was ∆FΨ = 〈Ψ(r+)〉 − 〈Ψ(r−)〉, and the average variance was
σ2

Ψ = 1
2
Var(Ψ(r+)) + 1

2
Var(Ψ(r−)). The trained neural net-

work’s estimate ŝbrain has a variance σ2
ŝbrain

near the reference
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stimulus s0. Based on these quantities, Figure 4 shows that we
can successfully identify that the brain is near-optimal.

S.3.2 Decoding efficiency

A decoder that would be suboptimal for one population code
could be near-optimal in the presence of information-limiting
noise. In this case, nonlinear choice correlations can be decom-
posed into a sum of two terms, one from the information-limiting
component and the other from the rest of the noise [25]:

CRk =
(Γw)k
σkσŝ

=
(Γ0w + 1

J∞
F ′F ′>w)k

σkσŝ
(100)

For unbiased decoding, w>F ′ = 1. Some manipulation gives [25]

CRk =
(Γ0w)k
Γ0kσ0ŝ

σ0ŝ

σŝ

Γ0k

Γk
+
F ′k
σk
σŝ

1/J∞
σ2
ŝ

(101)

where Γ0k = (Γ0)kk ≈ Γkk for small information-limiting noise
variance 1/J∞ � Γ0k (which nonetheless can have a large ef-
fect on information despite the small variance), and where σ0ŝ

is the standard deviation of the estimate produced by the same
suboptimal decoder w in the absence of information-limiting cor-
relations, i.e. when the covariance of the sufficient statistics is
Γ0. The variance of ŝ can itself be decomposed into two terms
as well:

σ2
ŝ = w>Γw = w>Γw +

1

J∞
w>F ′F ′>w (102)

= σ2
0ŝ + 1/J∞ (103)

where we assume unbiased decoding, which implies w>F ′ = 1.
This expression allows us to represent the ratio σ0ŝ

σŝ
as

σ0ŝ

σŝ
=

√
1− 1/J∞

σ2
ŝ

=
√

1− α (104)

with α = 1/J∞
σ2
ŝ

. Substituting these into (Eq 101) we find that

the choice correlation for a suboptimal decoder in the presence of
information-limiting correlations is a weighted sum of the choice
correlations for optimal and suboptimal decoding:

Csub
R ≈ αCopt

R + Csub
R

√
1− α (105)

Here Csub
R and Copt

R are, respectively, the choice correlations for
suboptimal decoding without information-limiting noise (so Γ =
Γ0), and choice correlations for optimal decoding.

The slope α between choice correlations and those predicted
from optimal decoding is equal to the fraction of estimator vari-
ance explained by information-limiting noise. This slope there-
fore provides an estimate of the efficiency of the brain’s decoding.

S.4 Choice correlations from inter-
nal versus external noise

The response covariance that drives fluctuations in choices could
arise from internal or external (nuisance) variability, or both.
Choice correlations predicted for optimal decoding differ depend-
ing on whether we condition on the nuisance variables or not. In
the main text, we described optimal choice correlations under the

distribution p(r|s). This includes variations caused by external
nuisance variables, which is sensible since this is what the brain’s
decoder must handle. However, it is also potentially informative
to examine how purely internal variability correlates with choice,
as this is often how choice correlations are assessed. In this sec-
tion, we derive the choice correlations driven by purely internal
noise, for a decoder that learned to remove external nuisance
variation as well.

For simplicity we assume that the nonlinear sufficient statis-
tics R(r) are linearly tuned to both the stimulus s and a scalar
nuisance variable ν,

R(r) = F ′s+G′ν + η (106)

where F ′ and G′ characterize the sensitivity of R(r) to stimulus
s and nuisance ν, and an internal noise source η has zero mean
with covariance H. We assume the brain has a prior over the
nuisance variation, p(ν), with zero mean and variance ξ. The
total covariance for internal and external fluctuations is then

Γ = H + ξG′G′
>

(107)

When we measure choice correlations while fixing the nuisance
variables in the experiment, we assume the brain retains its de-
coding strategy accounting for both internal noise and unknown
nuisance variation, and not the optimal decoding strategy when
the nuisance is fixed and known. These decoding weights are

w =
Γ−1F ′

J1
(108)

where the denominator J1 = F ′
>

Γ−1F ′ is the Fisher information
about s when there is natural nuisance variation following p(ν).
For distributions in the exponential family, this information sat-
urates the Cramer-Rao bound on an estimator’s variance, so that
J1 = 1/σ2

ŝ . [71] The normalization by J1 ensures the decoding is
locally unbiased. These weights are used to estimate the stimulus
according to

ŝ = w>R(r) + b (109)

Choice correlations in this fixed-nuisance experiment will be
denoted by a lowercase c:

csub
Rk = Corr(Rk, ŝ|s, ν) (110)

We include the superscript csub as a reminder that these choice
correlations do not follow the optimal pattern when the decoder
is not matched to only the purely internal variability, as here.

We can express these choice correlations as:

csub
Rk =

Cov(Rk, ŝ|s, ν)

σRk|s,nσŝ|s,n
(111)

The covariance between ŝ and R is

Cov(R, ŝ|s, ν) = 〈Rŝ|s, n〉 (112)

= 〈RR>|s, n〉w (113)

=
HΓ−1F ′

J1
(114)

For the scalar nuisance variable we assume here, we can use the
Sherman-Morrison lemma to decompose the inverse of the to-
tal covariance into a rank-one perturbation of the internal noise
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inverse covariance:

Γ−1 = (H + ξG′G′
>

)−1 (115)

= H−1 − H−1G′G′
>
H−1

1/ξ +G′
>
H−1G′

(116)

Substituting this inverse covariance into Equation 112, we obtain

Cov(R, ŝ|s, ν) (117)

=
1

J1
H(H−1 − H−1G′G′

>
H−1

1/ξ +G′H−1G′
> )F ′ (118)

=
1

J1
(F ′ − G′G′

>
H−1F ′

1/ξ +G′H−1G′
> ) (119)

This last expression can be rewritten using elements of the Fisher
information matrix, whose inverse bounds the covariance of any
joint estimator of the signal and nuisance variables, (ŝ, ν̂):

J(s, ν) =

[
J11 J12

J12 J22

]
=

[
F ′
>
H−1F ′ F ′

>
H−1G′

G′
>
H−1F ′ G′

>
H−1G′

]
(120)

With these substitutions, we have

Cov(R, ŝ|s, ν) =
1

J1

(
F ′ − J12

1/ξ + J22
G′
)

(121)

The denominator of Equation 111 involves the variance of the
sufficient statistics,

σ2
Rk|s,n = Hkk (122)

and the variance of the brain’s decoder,

σ2
ŝ = w>Hw

= w>(Γ− ξG′G′>)w

=
1

J1
− J2

12

ξJ2
1

1

(1/ξ + J22)2
(123)

where we used the following results:

w>G′G′
>
w =

(
F ′Γ−1

J1
G′
)2

=
1

J2
1

(
F ′H−1G′ − F

′Γ−1G′G′H−1G′

1/ξ +G′H−1G′

)2

=
1

J2
1

(
J12 −

J12J22

1/ξ + J22

)2

=
J2

12

ξ2J2
1

1

(1/ξ + J22)2
(124)

Combining the results from Equation 121, 123 and 122, we
can compute Equation 111

csub
Rk = Corr(Rk, ŝ|s, ν)

=
Cov(Rk, ŝ|s, ν)

σRk|s,nσŝ|s,n

=

1
J1

(
F ′k − J12

1/ξ+J22
G′k

)
√
Hkkσŝ|s,n

(125)

The optimal choice correlation when there is natural nuisance
variation (Eq 7) is given by

Copt
Rk

=

√
J1,Rk

J1
=

F ′k
σRk|s

√
J1

(126)

where J1,Rk = F ′k/σRk|s is the Fisher Information in Rk
about s when there is natural nuisance variation, and σRk|s =√
Hkk + ξG′2k is the standard deviation of the statistic Rk, again

when there is natural nuisance variation.

The choice correlations for the same decoder differ under ex-
perimental conditions with and without nuisance variation: Copt

Rk

and csub
Rk

. We find that the nuisance-conditioned choice correla-

tions csub
Rk

relate to the optimal nuisance-averaged choice correla-

tions Copt
Rk

according to

csub
Rk = βkC

opt
Rk
− γk (127)

where we have defined the following constants:

βk =
σRk|s
σRk|s,n

1√
J1σŝ|s,n

=

√
Hkk + ξG′2k

Hkk

1√
J1σŝ|s,n

=

√
Hkk + ξG′2k

Hkk

1√
1− J2

12
ξJ1

1
(1/ξ+J22)2

‘ (128)

and

γk =
G′k√
Hkk

J12

(1/ξ + J2)J1σŝ|s,n
(129)

The slope βk and offset γk of the relationship between these
two types of choice correlations (Equation 127) depends on the
amount of nuisance variation compared to internal noise and the
suboptimality of the brain’s decoding strategy. When the signal
and nuisance can be disentangled, that is, estimated nearly in-
dependently using the statistics R(r), then J12 is small and the
choice correlations driven purely by internal fluctuations closely
match the optimal choice correlations in the presence of nuisance
variation (Figure S2A). In contrast, when nuisance variations re-
main partialy confused with the signal, then J12 is large and the
choice correlations for fixed nuisance variables may differ from the
optimal pattern seen when allowing nuisance variables to change
from trial to trial (Figure S2B).

For the simulations in Figure S2, we set the sufficient statis-
tics to be linear R(r) = r for simplicity. Neural responses
were generated from a Gaussian distribution with a stimulus-
dependent mean and identity covariance H = I: p(r|s, ν) =
N (F ′s + G′ν, I). In Figure S2A, F ′ and G′ are set to be or-
thogonal to ensure J12 = F ′>H−1G′ = 0. They are picked
from the eigenvector of a symmetric matrix A>A, where A is a
matrix whose elements are generated from uniform distribution
bounded by 0 and 1. In Figure S2B, each element in F ′ and G′

is drawn from a uniform distribution over the interval [0, 1]. We
simulate 10000 responses of a population with N = 50 neurons.
The stimulus is set to 0 and the nuisance is fixed to be 1. The
brain’s decoder assumes a Gaussian prior over the nuisance vari-
ation with zero mean and variance ξ = 2. The decoding weights
follow Equation 108, and the stimulus is estimated using Equa-
tion 109. Choice correlations in this fixed-nuisance experiment
are computed by Equation 110 (vertical axis in Figure S2). The
predicted optimal choice correlation is computed by Equation
126 (horizontal axis in Figure S2). In this setting, βk ≈ 1 when
J12 = 0.
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Figure S2: Comparing choice correlations caused by internal and
external noise. (A) When estimates of nuisance variables are
independent of estimates of task-relevant signals, the optimal
choice correlations driven by internal noise, csub

Rk
, match the op-

timal pattern Copt
Rk

expected for optimal decoding under natural
nuisance variation (Equation 7). (B) When the signal and nui-
sance variables remain confounded by an estimator and decoding
is evaluated under different conditions than those for which it
was optimized, then the choice correlations need not match this
optimal prediction.

S.5 Coarse discrimination and
choice correlations

We now derive a relationship between nonlinear neural thresholds
and nonlinear choice correlations for coarse binary discrimination
tasks, choosing between stimulus s+ and s−. The main ideas are
the same as for fine discrimination, but there are a few more
subtleties involved when the statistical structure of the response
depends on the stimulus.

We assume the brain decodes neural activity r as a linear
weighted sum of nonlinear statistics R(r), using weights given
by linear regression as

w ∝ Cov(R)−1Cov(R, s) (130)

The latter factor reflects the signal strength,

Cov(R, s) = 〈Rs〉 − 〈R〉〈s〉 (131)

= 1
2
(F+ − F−)ds = 1

2
∆F ds (132)

We assume that the two values s± = s0±∆s are equally probable,
and notate the mean responses as F± = F (s±) = 〈R|s±〉. The
factor CovR includes covariability induced by both signal and
noise. Using the law of total covariance, these contributions can
be separated as

CovR = 〈Cov(R|s)〉s + Covs 〈R|s〉 (133)

= Γ̄ + 1
4
∆F∆F> (134)

where the first term is the average noise covariance across the
stimulus ensemble, Γ̄ = 〈Cov(R|s)〉s, and the second term reflects
variance along the signal direction. As for fine discrimination,
noise variance along the signal direction has no influence on the
optimal readout direction, since it cannot be removed. Using the

Sherman-Morrison formula, we find that the decoder is

w ∝ Cov(R)−1 Cov(R, s)

=
(

Γ̄ + 1
4
∆F∆F>

)−1
1
2
∆F ∆s

∝

(
Γ̄−1 −

1
4
Γ̄−1∆F∆F>Γ̄−1

1 + 1
4
∆F>Γ̄−1∆F

)
1
2
∆F

∝ Γ̄−1∆F (135)

For unbiased decoding, the proportionality is given by
1/∆F>Γ̄−1∆F .

S.5.1 Average conditional choice correla-
tions

The core desideratum for a measure of choice correlations is to
isolate the non-stimulus fluctuations that correlate with choices.
The typical way to ensure this is to measure correlations be-
tween neural responses and choices only when the stimulus is
completely ambiguous, i.e. at the decision boundary. Other stud-
ies have sought to expand the range of stimuli that can be used
for these correlations [37, 72]. Mathematically, we examine the
statistical relationship between neural responses and choices that
remains after conditioning on the stimulus, via p(R, ŝ|s). Here
we quantify this relationship through a conditional covariance,
Cov(R, ŝ|s). For coarse discrimination, the strength (and pat-
tern) of this correlation may depend on the particular stimulus
used. To account for this, we compute an average over possible
stimuli, 〈Cov(Rk, ŝ|s)〉s. If we normalize by root mean variances,
we obtain

BRk =
〈Cov(Rk, ŝ|s)〉s√

〈Var(Rk|s)〉s 〈Var(ŝ|s)〉s
(136)

This nonlinear choice correlation can be rewritten as

BRk =
(w> 〈Cov(R|s)〉s)k√
Γ̄kk w>〈Cov(R|s)〉sw

=
(∆F>Γ̄−1Γ̄)k√

Γ̄kk ∆F>Γ̄−1Γ̄Γ̄−1∆F

=
∆F k√

Γ̄kk ∆F>Γ̄−1∆F
(137)

We recognize that this expression contains the ratio of sen-
sitivities for the neural statistic Rk and the entire popula-

tion r in coarse discrimination, d′k = ∆F k/
√

Γ̄kk and d′ =√
∆F>Γ̄−1∆F . We therefore find the same result as for opti-

mal fine discrimination (Eq 18):

Bopt
Rk

=
d′k
d′

(138)
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S.5.2 Signal estimation from total correla-
tions

It is useful to express the discriminability through the total cor-
relation between the responses and the stimulus,

DRk,s = Corr(Rk, s) (139)

=
Cov(Rk, s)

σRkσs

=
1
2
∆Fk ds√

(Γ̄kk + 1
4
∆F 2

k )σ2
s

=
1√

4Γ̄kk
∆F2

k
+ 1

=
1√

4d′−2
k + 1

(140)

In these equations we used the fact that for binary discrimination,
the standard deviation of the signal is related to the difference
between the two possible signal values, σs = 1

2
(s+ − s−) = ds.

We can invert Eq 140 to find

d′k =
2√

D−2
Rk,s
− 1

(141)

This dependence is plotted in Figure S3.

Similarly, we can express the behavioral discriminability d′ in
terms of the correlation between the estimate and the stimulus,
Dŝ,s = Corr(ŝ, s):

d′ =
2√

D−2
ŝ,s − 1

(142)

The relationship between discriminability d′ and total correlation
D is linear when D is relatively small. Thus we can approximate
the optimal nonlinear choice correlation as:

Bopt
Rk
≈ DR,s
Dŝ,s

(143)

Here the total correlation is computed based on a continuous
estimate ŝ. When the behavioral outcome is a binary choice, this
relationship is more complicated. Section S.6.3 calculates the
relationship between Dŝ and Dŝ± for one particular task.

S.6 Orientation variance discrimi-
nation task

S.6.1 Coarse tasks: Continuous estimation
versus binary discrimination

The experiment of Section 2.10 defines an orientation variance
discrimination task in which the relevant statistics are quadratic
functions of the orientation. The quadratic decoding model de-
scribed in the main text could suffice for this problem. However,
in our case the variances to be distinguished are quite differ-
ent, such that the nuisance variation differs substantially be-
tween these two stimulus categories. As described in Methods
4.2.1, coarse tasks with stimulus-dependent variability generate

Discriminability d'

–1 1
Total correlation D

–3

–2

–1

1

2

3

Figure S3: Stimulus discriminability d′ for a response variable R,
versus total correlation between that variable and the stimulus,
D = Corr (R, s), according to Eq 141.

a slightly different prediction compared to fine tasks (or coarse
tasks with stimulus-independent variability).

Moreover, there are minor differences between the predictions
for continuous estimation and binary discrimination, and these
differences are more complicated for coarse tasks than fine ones.
Here we describe in detail the somewhat lengthy computation of
the ratio ζ between choice correlations for continuous quadratic
estimation and binary quadratic decoding. For coarse discrimina-
tion, the ratio ζ will depend on the input statistics and threshold,
but for fine discrimination ζ becomes a constant. Regardless, for
our cases of interest these numbers are generally near 1.

We begin by assuming that the variance estimate is the square
of the orientation estimate ŝ = ν̂2, and a binary guess about the
variance is given by ŝ± = sgn (ν̂2 − θ2) where θ is the animal’s
orientation threshold. We assume that ν̂ is an unbiased estimate
of the orientation ν, so 〈ν̂|ν〉 = ν. We denote one neuron’s mean
response to the orientation by 〈r|ν〉 = µ(ν) which we approximate
linearly as µ(ν) ≈ µ̄ + µ′ν with µ̄ = µ(0). The mean behavioral
choice is 〈ŝ±|s〉 = ms. Since the stimulus is binary, we will denote
this mean with a subscript, 〈ŝ±|s+〉 = m+ or 〈ŝ±|s−〉 = m−.

The joint distribution p(r, ν̂|s) arises from both internal noise
and nuisance variation, p(r, ν̂|s) =

∫
dν p(r, ν̂|ν)p(ν|s). For a

given orientation ν, the neural response r and orientation esti-
mate ν̂ follow a bivariate normal distribution,

p(r, ν̂|ν) = N

(
r

ν̂

∣∣∣∣∣µ(ν)

ν
;

[
Hrr|ν Hrν̂|ν

Hrν̂|ν Hν̂ν̂|ν

])
(144)

which summarizes all of the internal noise given the sensory in-
put.

By design, the nuisance variable ν is normally distributed,
p(ν|s) = N (ν|0, s), so we can write the marginal distribution
p(r, ν̂|s) as

p(r, ν̂|s) = N

(
r

ν̂

∣∣∣∣∣µ̄0;

[
Hrr|ν + µ′

2
s Hrν̂|ν + µ′s

Hrν̂|ν + µ′s Hν̂ν̂|ν + s

])
= N (µ(s),Σ(s)) (145)

For now we suppress the explicit dependence on s.

The conditional covariance between the nonlinear statistic R
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and choice is

Cov(ŝ±, R|s) (146)

=
〈
sgn (ν̂2 − θ2)r2〉

r,ν̂
−
〈
sgn (ν̂2 − θ2)

〉
ν̂

〈
r2〉

r

where R = r2 and we reiterate that we are suppressing the con-
ditioning on s. The second moment is〈

sgn (ν̂2 − θ2)r2〉
r,ν̂

=
〈

sgn (ν̂2 − θ2)
〈
r2|ν̂

〉
r|ν̂

〉
ν̂

=
〈
sgn (ν̂2 − θ2)(Σr|ν̂ + µ2

r|ν̂)
〉
ν̂

(147)

=

〈
sgn (ν̂2 − θ2)

[
Σrr −

Σ2
rν̂

Σν̂ν̂
+

(
µ+

Σrν̂
Σν̂ν̂

ν̂

)2
]〉

ν̂

where we used the conditional distribution

p(r|ν̂) = N
(
r

∣∣∣∣µ+
Σrν̂
Σν̂ν̂

ν̂, Σrr −
Σ2
rν̂

Σν̂ν̂

)
(148)

This can be written as〈
sgn (ν̂2 − θ2)(aν̂2 + bν̂ + c)

〉
ν̂

(149)

for coefficients

a =
Σ2
rν̂

Σ2
ν̂ν̂

(150)

b = 2
Σrν̂
Σν̂ν̂

µ (151)

c = Σrr −
Σ2
rν̂

Σν̂ν̂
+ µ2 (152)

Note that this is an expectation over ν̂ only. Such an expected
value can be written as a sum of integrals:〈

sgn (ν̂2 − θ2)ν̂α
〉
ν̂

=

[∫ −θ
−∞
−
∫ θ

−θ
+

∫ ∞
θ

]
ν̂αp(ν̂)dν̂

=

[∫ −θ
−∞
−
(∫ θ

−∞
−
∫ −θ
−∞

)
+

(∫ ∞
−∞
−
∫ θ

−∞

)]
ν̂αp(ν̂)dν̂

=

[
2

∫ −θ
−∞
− 2

∫ θ

−∞
+

∫ ∞
−∞

]
ν̂αp(ν̂)dν̂ (153)

These integrals can be expressed in terms of error functions,
where σ2

ν̂ is the marginal variance for p(ν̂|s):∫ θ

−∞
dν̂ ν̂0N (ν̂|0, σ2

ν̂) = 1
2

erfc
(

θ√
2σν̂

)
(154)∫ θ

−∞
dν̂ ν̂1N (ν̂|0, σ2

ν̂) = −pν̂(θ)σ2
ν̂ (155)∫ θ

−∞
dν̂ ν̂2N (ν̂|0, σ2

ν̂) = 1
2

erfc
(

θ√
2σν̂

)
σ2
ν̂ − pν̂(θ)σ2

ν̂θ (156)

Note that pν̂(θ) has units of [ν]−1, so units are consistent across
these expressions.

Combining these with Eq 153 we obtain

m =
〈
sgn (ν̂2 − θ2)

〉
= 2 erfc

(
θ√
2σ

)
− 1 (157)〈

sgn (ν̂2 − θ2)ν̂
〉

= 0 (158)〈
sgn (ν̂2 − θ2)ν̂2〉 = σ2

ν̂m+ 4θσ2
ν̂pν̂(θ) (159)

where we have used the identity erfc(−x) = 2 − erfc(x) and the
symmetry pν̂(θ) = pν̂(−θ). The first term, m, is the mean of ŝ±,
and will appear several times in the equations below.

Returning to Eq 147, we have

Cov(ŝ±, R|s)

=
〈
sgn (ν̂2 − θ2)r2〉

r,ν̂
−
〈
sgn (ν̂2 − θ2)

〉
ν̂|s

〈
r2〉

r

=
〈
sgn (ν̂2 − θ2)(aν̂2 + bν̂ + c)

〉
ν̂

−
〈
sgn (ν̂2 − θ2)

〉
ν̂

〈
r2〉

r

=a
[
σ2
ν̂m+ 4θσ2

ν̂pν̂(θ)
]
m+ cm−m(Σrr + µ2)

=4θ
Σ2
rν̂

Σν̂ν̂
pν̂(θ) (160)

Note that all of the erfc terms have canceled.

Compare that to the corresponding covariance for continuous
estimation,

Cov (ŝ, R|s) = 2Σ2
rν̂ (161)

The conditional variance of a binary output ŝ = ±1 is simply

Var(ŝ±|s) = 1− 〈ŝ±|s〉2 (162)

= 1−m2 (163)

whereas, the variance for the continuous estimator is

Var(ŝ|s) =
〈
(ν̂2 − θ2)2|s

〉
−
〈
ν̂2 − θ2|s

〉2
(164)

= 2Σ2
ν̂ν̂ (165)

The variance of r2, Var (r2|s) = 2Σ2
rr + 4Σrrµ

2, is the same
whether the behavioral estimate is continuous or binary.

Our goal here is to compute the change in our measure of
nonlinear choice correlation, namely,

ζ =
B±R
BR

=

〈Cov(ŝ±,R|s)〉s√
〈Var(ŝ±|s)〉s〈Var(R|s)〉s

〈Cov(ŝ,R|s)〉s√
〈Var(ŝ|s)〉s〈Var(R|s)〉s

(166)

where the averages over p(s) = 1/2 include equal proportions
of the binary stimuli s+ and s−. Substituting our calculations
above, and reintroducing the dependencies on s, we find

ζ =
〈Cov (ŝ±, R|s)〉s
〈Cov (ŝ, R|s)〉s

√
〈Var (ŝ|s)〉s
〈Var (ŝ±|s)〉s

(167)

=

∑
s p(s)4θ

Σ2
rν̂|s

Σν̂ν̂|s
pν̂(θ|s)∑

s p(s)2Σ2
rν̂|s

√ ∑
s p(s)2Σ2

ν̂ν̂|s∑
s p(s)(1−m2

s)
(168)

For tasks where the variability is dominated by external nuisance
variables rather than by internal noise, i.e. H � s(µ′, 1)(µ′, 1)>,
we can approximate the covariances by Σrr ≈ µ′

2
s, Σrν̂ ≈ µ′s,

and Σν̂ν̂ ≈ s. Substituting these approximations into the expres-
sion above, we obtain

ζ ≈
1
2

∑
s 4θ µ

′2s2

s
e−θ

2/2s
√

2πs
1
2

∑
s 2µ′2s2

√
1
2

∑
s 2s2

1− 1
2

∑
sm

2
s

(169)

In our task conditions, 3 =
√
s− �

√
s+ = 15, so some terms

dominate in the sums. Moreover, we assume that the threshold θ
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lies far enough between
√
s− < θ <

√
s+ that e−θ

2/2s− ≈ 0 and

e−θ
2/2s+ ≈ 1. We then find

ζ ≈
1
2
4θ
√

s+
2π

1
2
2s2

+

√
1
2
2s2

+

1− 1
2

∑
sm

2
s

(170)

=
2√
π

θ
√
s+

1√
1− 1

2

∑
sm

2
s

(171)

Empirically, we find that 1 −
〈
m2
〉
s
≈ 1

2
(Figure S4). In that

case, we obtain

ζ ≈ 2θ
√
πs+

(172)

This expression is independent of the statistics of r. Therefore
the same correction factor holds for cross-terms like rjrk, which
can be expressed as linear combination of squares, Rjk = rjrk =
1
2
(rj +rk)2− 1

2
r2
j − 1

2
r2
k. We use this correction factor ζ to adjust

our predicted quadratic choice correlations in Figure 6.
To find the behavioral threshold θ for Eq 172, we used logis-

tic regression of choice ŝ± on the absolute value of the stimulus
orientation, |ν|, and assign the threshold θ to be the orientation
where the probability of both choices was equal.
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〈Var(s±| s )〉s
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Var(s±|s–)

1.0

0

0.5

Figure S4: The average variance of ŝ± conditioned on the stimu-
lus s (red) is approximately 1/2 over a wide range of thresholds.

S.6.2 Fine tasks: Continuous estimation
versus binary discrimination

For fine discrimination, the stimulus s is effectively constant, so
we need not take averages.

ζfine =
Cov (ŝ±, R|s)
Cov (ŝ, R|s)

√
Var (ŝ|s)

Var (ŝ±|s)
(173)

=
4θ

Σ2
rν̂|s

Σν̂ν̂|s
pν̂(θ|s)

2Σ2
rν̂|s

√
2Σ2

ν̂ν̂|s

1−m2
s

(174)

After several cancelations, and using the fact that for fine dis-
crimination, θ = s ≈ s+ ≈ s−, we find

ζfine =
e−

1
2

√
2π

√
8

1− (2 erfc( 1√
2
)− 1)2

(175)

≈ 0.735 (176)

Observe that for fine discrimination, the ratio ζ is a constant,
independent of the underlying statistics.

S.6.3 Total correlation for binary and con-
tinuous estimates

We showed in Methods 4.2.1 that the discriminability is related
to the total correlation between signal and response. However,
those relationships were based on continuous estimates of the
binary stimulus. As above, when the behavioral choice is also
binary, we can adjust the calculation slightly. Here we compare
the total correlations for continuous and binary response, Dŝ,s
and Dŝ±,s.

Cov (ŝ, s) = 〈〈ŝ|s〉 s〉s − 〈ŝ〉 〈s〉

=
〈〈
ν̂2|s

〉
s
〉
s
−
〈〈
ν̂2|s

〉〉
s
s̄

=
〈
Σν̂ν̂|ss

〉
s
− 〈〈Σν̂ν̂ |s〉〉s s̄

= 〈(Hν̂ν̂ + s)s〉s − 〈(Hν̂ν̂ + s)〉s s̄

= Hν̂ν̂ s̄+
〈
s2〉

s
− (Hν̂ν̂ + s̄)s̄

= Var(s)

= 1
2
(s2

+ + s2
−)− 1

4
(s+ + s−)2

= 1
4
∆s2 (177)

In contrast, the total covariance of ŝ± is

Cov (ŝ±, s) = 〈〈ŝ±|s〉 s〉s − 〈ŝ±〉 〈s〉
= 〈mss〉s − 〈ms〉s s̄
= 1

2
(m(s+)s+ +m(s−)s−)

− 1
4

(m(s+) +m(s−)) s̄

= 1
4
∆m∆s (178)

The total variance of ŝ is

Var (ŝ) =
〈
ν̂4〉− 〈ν̂2〉2

=
〈〈
ν̂4|s

〉〉
s
−
〈〈
ν̂2|s

〉〉2
s

=
〈
3Σ2

ν̂ν̂|s
〉
s
−
〈
Σν̂ν̂|s

〉2
s

= 3
2

(
Σ2
ν̂ν̂|+ + Σ2

ν̂ν̂|−
)
−
(

1
2

(
Σν̂ν̂|+ + Σν̂ν̂|−

))2
= 1

4

(
5Σ2

ν̂ν̂|+ − 2Σν̂ν̂|+Σν̂ν̂|− + 5Σ2
ν̂ν̂|−

)
= 1

4
(5(Hν̂ν̂ + s+)2 − 2(Hν̂ν̂ + s+)(Hν̂ν̂ + s−)

+ 5(Hν̂ν̂ + s−)2)

= 1
4
(8H2

ν̂ν̂ +Hν̂ν̂ (10s+ − 2s+ − 2s− + 10s−)

+ 5s2
+ − 2s+s− + 5s2

−)

= 2H2
ν̂ν̂ + 2Hν̂ν̂(s+ + s−)

+ 1
4

(
5s2

+ − 2s+s− + 5s2
−
)

(179)

In the limit where the nuisance variability dominates the internal
variability, and s+ � s−, this simplifies to

Var (ŝ) ≈ 5
4
s2

+ (180)

The total variance of ŝ± is

Var (ŝ±) = 1− 〈ŝ±〉2 = 1− m̄2 (181)

where m̄ = 1
2
(m+ +m−).

Combining these computations, we see that ratio of total cor-
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relations for binary ŝ± and continuous ŝ is

δ =
Dŝ,s
Dŝ±,s

=
Corr(ŝ±, s)

Corr (ŝ, s)

=
Cov(ŝ±, s)

Cov (ŝ, s)

√
Var (ŝ)

Var (ŝ±)

≈
√

5
4

1

1− s−
s+

∆m√
1− m̄2

(182)

All of these quantities are measurable from data or are given by
the task.

S.6.4 Optimal binary nonlinear coarse
choice correlations

We can now combine our results above to create a prediction for
optimal binary nonlinear coarse choice correlations. From Eq 143
and Eq 166, we have

Bopt,±
R = ζ

DR,s
Dŝ,s

(183)

From Eq 182 we can adjust the

Dŝ,s = δDŝ±,s (184)

Combining these we have

Bopt,±
R =

ζ

δ

DR,s
Dŝ±,s

(185)

where ζ and δ are determined by experimentally measurable
quantities. Their precise values depends on the monkey and the
session, but the ratio is typically ζ/δ ≈ 0.62± 0.33. When plot-
ting the data in Figure 6, we apply these corrections to each
session before combining different sessions together.
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