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Abstract

Motivation

Protein-protein interactions (PPIs) play a key role in many cellular processes. Most
annotations of PPIs mix experimental and computational data. The mix optimizes
coverage, but obfuscates the annotation origin. Some resources excel at focusing on
reliable experimental data. Here, we focused on new pairs of interacting proteins for
several model organisms based solely on sequence-based prediction methods.

Results

We extracted reliable experimental data about which proteins interact (binary) for eight
diverse model organisms from public databases, namely from Escherichia coli,
Schizosaccharomyces pombe, Plasmodium falciparum, Drosophila melanogaster,
Caenorhabditis elegans, Mus musculus, Rattus norvegicus, Arabidopsis thaliana, and for
the previously used Homo sapiens and Saccharomyces cerevisiae. Those data were the
base to develop a PPI prediction method for each model organism. The method used
evolutionary information through a profile-kernel Support Vector Machine (SVM). With
the resulting eight models, we predicted all possible protein pairs in each organism and
made the top predictions available through a web application. Almost all of the PPIs
made available were predicted between proteins that have not been observed in any
interaction, in particular for less well-studied organisms. Thus, our work complements
existing resources and is particularly helpful for designing experiments because of its
uniqueness. Experimental annotations and computational predictions are strongly
influenced by the fact that some proteins have many partners and others few. To
optimize machine learning, the newly methods explicitly ignored such a
network-structure and rely either on domain knowledge or sequence-only methods. Our
approach is independent of domain-knowledge and leverages evolutionary information.
The database interface representing our results is accessible from
https://rostlab.org/services/ppipair/.

†Linh Tran is now at ICL, but did this work earlier as a TUM student.
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Introduction 1

Operational definition of physical Protein-Protein Interactions 2

(PPIs) 3

We define PPIs as interactions that bring two different proteins A and B directly into 4

’physical contact’. This ’molecular’ perspective on PPIs differs from the most frequent 5

view of both associations and permanent complexes. For us the crucial aspect of a PPI 6

is that it brings two proteins into direct physical contact (usually transiently, i.e. for a 7

limited time). Given all PPIs in an organism, the interactome comprises all PPIs in the 8

entire proteome; this network contains all non-temporal aspects of associations on the 9

network level. 10

Experimental annotations of binary PPI maps 11

Due to the importance, many experiments establish PPIs. Despite this effort, most 12

pairs of physically interacting proteins remain likely unknown [1]. Statistical models of 13

PPIs can amend the coverage of networks formed from binary PPIs (A binds B) 14

cost-effectively by enriching protein association networks [2–4] or by combining 15

heterogeneous data sources in Bayesian networks [5]. 16

Predictions important but often over-estimated 17

Numerous computational methods have been developed to predict protein-protein 18

interactions using different data sources, e.g. secondary structure, phylogenetic tree, 19

phylogenetic profile, and gene expression [6–10]. Most methods employ more than one 20

of the mentioned properties. However, their application is limited due to their specific 21

need of domain knowledge. These specific knowledge is but not universally available, 22

and limit these methods to specific (smaller) datasets. 23

Further, many methods only use sequence information, such as motifs of 24

co-occurrence on the level of domains [11–13], matching features from protein sequence, 25

structure and evolutionary conservation for binding sites alone [10,14] and for binding 26

sites and sequence/structure triads [15]. However, none of those sequence-based 27

methods restrict their method to the identification of physical non-permanent PPIs as 28

we defined them. Most of those methods used permanent complexes, the others also 29

associations. This is also true for methods pioneering the use of kernel-based 30

predictions [14,15]. Evolutionary information embedded in proteins sequence was 31

employed to improve predicting PPIs [10,14,16,17], some in combination with profile 32

kernels [18], by leveraging information available to us which are not domain specific. 33

Another set of problems with existing methods pertain to the problems in choosing 34

“negatives”, i.e. pairs of proteins known not to interact [19]. In fact, negatives have to 35

be carefully considered when setting up the cross-validation process [20]. Moreover, the 36

cross-validation protocol also needs to carefully avoid using the same proteins in training 37

and testing [21,22], and even allowing for homologues between training and testing 38

over-estimates performance [20]. Overall, it appears that every careful independent 39

review of existing methods has unraveled some substantial over-estimates [20–22]. One 40

recent method combining profile kernels with Support Vector Machines (SVM) to 41

predict pairs of physical, non-permanent PPIs has tried to avoid all known flaws [23]. 42

However, it still awaits critical assessment from independent experts. This method 43

improved particularly for proteins without experimental annotations about their 44

interactions recommending the approach for discovery of novel PPIs [23]. 45

Here, we simply apply the concept of profile-kernel SVMs [23] to the prediction of 46

the entire interactomes in eight model organisms, namely ordered by size: Escherichia 47
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coli, Schizosaccharomyces pombe (fission yeast), Plasmodium falciparum, Drosophila 48

melanogaster (fruit fly), Caenorhabditis elegans (roundworm), Mus musculus (mouse), 49

Rattus norvegicus (rat), and Arabidopsis thaliana (mouse-ear cress). The choice of 50

applying profile-kernel SVMs is due to it independence of domain knowledge and its 51

usage of evolutionary profiles. Further, in vast evaluation we chose negatives 52

interactions by avoiding using the similar proteins in training and testing. Repeated 53

cross-validation was employed to reduce additional over-estimation as stated in [20–22]. 54

We have created a database of the most reliable predictions for each organism, and 55

implemented a versatile online search interface 56

(https://rostlab.org/services/ppipair/). Our new methods and new predictions 57

at least double the number of organisms for which sequence-based PPI predictions are 58

available, and they do this in a more consistent way than other method [24]. On top, 59

our resource contributes the first-ever predictions for many un-annotated proteins. 60

Materials and Methods 61

Data Sources 62

We extracted PPIs from the following databases BioGRID [25], DIP [26], and 63

IntAct [27]. BioGRID is a public curated database that holds 553,827 physical 64

interactions from 58 species. DIP archives 795,534 PPIs from 777 organisms, curated 65

both manually by experts and through computational approaches. IntAct is also public 66

archiving 356,806 PPIs mostly from eight organisms. All PPIs originated either from 67

publications or submissions from experimentalists. 68

Data Extraction 69

We only used PPIs for which their protein identifiers mapped to the EBI reference 70

proteomes [28]. We mapped proteins of each organism to a corresponding reference 71

protein only if their sequences aligned with at least 95 % sequence identity. The fraction 72

of PPIs that could not be mapped in this simple manner accounted for about 9 % of all 73

data. We grouped the resulting PPIs by organism using taxonomy identifiers and 74

differentiated PPIs from 768 organisms. 75

To predict PPIs, we needed as much reliable training data as possible. However, we 76

also need to remove redundancy in many non-trivial ways [23]. We used an established 77

expert knowledge-scoring scheme [29] to reflect the quality of evidence for a given PPI. 78

The scheme assigned scores from one (lowest reliability) to ten (highest reliability) for 79

each experimental method used to annotate a PPI. High scores were assigned to 80

techniques such as X-ray crystallography or electron tomography, average scores of five 81

were given to, e.g. complementation-based assays and affinity-based technologies. 82

Methodologies that do not directly provide evidence for interaction, such as 83

co-localization or co-sedimentation, were scored lowest. The scores are available online 84

at our service. We applied that scheme to our PPI data and kept only PPIs with at 85

least one experimental evidence ≥ 5. For instance, the Escherichia coli PPI between 86

P0ABB0 and P0ABB4 is supported by two experimental methods: blue native page 87

(score = 3) and pull down (score = 2.5); both below 5, i.e. we discarded this PPI. In 88

contrast the PPI between P0ACF0 and P03004 established by enzyme linked 89

immunosorbent assay (score = 5) was kept. After data filtering, we redundancy reduced 90

the PPI set of each organism set such that no PPI pair was sequence-similar. A PPI 91

pair was considered similar if at least one of the two sequences reached HVAL > 20 [30] 92

to any protein already in the data set. Note that HVAL > 20 corresponds to > 40 % 93

pairwise sequence identity for alignments over 250 residues. 94
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Organism NPPIs NPPIs with NPPIs with
strong evidence strong evidence

redundancy reduced

A. thaliana 38,258 8,459 814

C. elegans 23,105 5,229 818

D. melanogaster 79,291 19,033 1,680

E. coli 27,119 8,587 998

M. musculus 30,070 6,262 734

P. falciparum 4,792 1,312 239

S. pombe 13,478 4,396 410

R. norvegicus 6,698 1,574 236

Sum over all 8 222,811 54,852 5,929

Table 1. Data sets extracted from BioGRID, DIP and IntAct. Organism:
latin name for eight model organisms sorted alphabetically; NPPIs: number of distinct
physical pairs of protein-protein interactions extracted by merging the entire BioGRID,
DIP, and IntAct; NPPIs with strong evidence: subset of previous column with reliable
experimental evidence (according to [29]);
NPPIs with strong evidence redundancy reduced: subset of previous column after
removing sequence-similar pairs (HVAL > 20).

We applied the above procedure to all 768 organisms for which we found PPIs. Only 95

8 of the 768 had at least 200 PPIs with strong experimental support. We considered 96

these our ’model organisms’. 200 PPI was the minimum number of data points we 97

assumed to be necessary to train our method. Redundancy reduction shrank our data 98

by over ten-fold for some organisms (Table 1). The most extreme attrition was for fly 99

for which we extracted almost 80k PPIs from the databases, and could use only about 100

1.6k for training/testing. 101

Negative interactions 102

Databases collect positives (A binds B), i.e. PPIs with experimental evidence. For 103

training, we also needed negatives (A does not bind B). We collected negatives as 104

described before in [20], [23]. For each PPI data set, we sampled negatives in a ratio of 105

1:10 (10 negative for each positive). The 1:10 ratio seemed appropriate to provide 106

enough negatives to sample the reality in a cell. As before in [20], [23], we obtained 107

negatives by randomly sampling from all possible combinations of proteins of an 108

organism with the restrictions that each protein in a ’negative PPI’ needed to differ in 109

sequence (HVAL < 20) to all proteins in the positive training set. 110

Profile-kernel SVM parameter optimization and cross-validation 111

Many advanced sequence-based PPI prediction methods have been developed. Park and 112

Marcotte [22] showed that PIPE2 [24], AutoCorrelation [31], and SigProd [32] 113

performed well compared to other methods. We showed a profile-kernel SVM to improve 114

over these methods for human and yeast [23]. The method is described in detail in [23]. 115

The basic concept is described in the following. Essentially, the profile-kernel finds 116

k-mers of k adjacent residues for which the conservation within a given protein family 117

exceeds some value σ and then collects the most informative such k-mers through SVMs. 118

Thus, as for each profile-kernel SVM [33], we needed to optimize two hyperparameters: 119

the k-mer length k and the evolutionary score threshold σ. Following our previous 120

experience, we sampled k = 3, 4, 5, 6 for σ = 4, ..., 11. For all organisms with more than 121

500 non-redundant PPIs, we optimized the two parameters empirically with a 122

grid-search on two-thirds of the PPI data for each organism (training set). The 123

4/18

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 28, 2018. ; https://doi.org/10.1101/332510doi: bioRxiv preprint 

https://doi.org/10.1101/332510
http://creativecommons.org/licenses/by-nc-nd/4.0/


remaining third of each data set (test set) was used to confirm generalization. Each 124

training set was split further into five parts. For every hyperparameter combination, we 125

performed a full 5-fold cross-validation using four splits for cross-validation training and 126

one for cross-validation testing. In this way, each of the five splits of the full 127

non-redundant set was used as cross-training split exactly once. We repeated each 128

5-fold cross-validation five times from the start, including splitting positives and 129

sampling negatives, in order to minimize sampling noise [34]. Finally, we used the best 130

combination of k and σ and the entire training set to train the method one last time in 131

order to predict the test set. For organisms with more than 200, but fewer than 500 132

PPIs (Table 1), we did not optimize parameters, but only evaluated their performance 133

in a five times 5-fold cross-validation on the whole data set. As hyperparameters, we 134

used the most common combination found for the larger PPI sets (k = 5, σ = 11). 135

Evolutionary profiles 136

The evolutionary profiles were taken from PredictProtein [35]. They were created by 137

PSI-BLAST-ing [36] queries against an 80 % non-redundant database combining 138

UniProt [37] and PDB [38]. Our method never used any information not available 139

through these profiles. 140

Recall-precision curves 141

Each model built from a training data set outputs a score for each prediction. We used 142

these scores to calculate precision-recall-curves. In a cross-validation, we used all 143

precisions at a particular recall to calculate the mean and the standard deviation of the 144

precisions at that point. If only one curve was available (assessment of hold-out sets for 145

organisms with > 200 PPIs), we assumed precision to follow a standard binomial 146

distribution and calculated the precision error at a particular recall as: 147

e = nPPI · p · (1 − p), (1)

where nPPI denotes the number and p denotes the precision at that particular recall. 148

In order to assess a particular parameter combination, we needed to condense the 149

associated recall-precision curve into a single point. We did this by collecting all mean 150

precision values until a recall of 20 % and then averaging over those values. The best 151

parameter combination optimized this average precision. 152

Interactome predictions 153

For predicting the entire interactomes, we used all available PPI data (training + test 154

set) our models. As the hyper-parameters values k = 5, σ = 11 yielded best 155

performance for almost all organisms, we used those parameters for our interactome 156

model for all organisms. This might not be the optimal solution, but it might provide 157

the most conservative result avoiding more over-fitting. We applied our method to all 158

pairs of proteins for which both proteins were dissimilar to any protein in the positives 159

used for training. We chose to only publish the most reliable PPIs accounting to about 160

10 PPIs per protein of an organism (numbers given in Table 2). 161
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Organism Nprot NpredPPI NpredPPI NpredPPI Nprot
(NprotPred) novel ProtPPIdb ProtPPIdb

A. thaliana 27,064 206,441,040 71,251,953 250,000 7,023
(20,320)

C. elegans 20,137 142,171,953 83,301,778 200,000 7,041
(16,863)

D. melanogaster 13,707 31,916,055 5,410,405 100,000 7,664
(7,990)

E. coli 4,306 2,729,616 332,520 40,000 1,341
(2,337)

M. musculus 22,136 131,325,321 58,790,746 200,000 4,144
(16,207)

P. falciparum 5,159 9,041,878 5,622,981 50,000 3,576
(4,253)

S. pombe 5,121 8,349,741 2,630,071 50,000 3,946
(4,087)

R. norvegicus 21,330 211,922,578 174,929,160 200,000 9,265
(20,588)

Sum over all 8 118,960 743,898,182 402,269,614 1,090,000 44,000
(92,645)

Table 2. Whole interactome predictions. For each organism investigated, we
aggregated the data we used for training and testing, trained a final model and
predicted the whole interactome of that organism. Organism: latin name for eight
model organisms sorted alphabetically; Nprot: number of proteins in proteome (values
taken from [28]); NpredPPI: subset of PPIs used for prediction in which both proteins
are dissimilar to the proteins in the positive interactions of the training set; NprotPred:
corresponding number of proteins for which NpredPPI interactions were predicted, see
Eq. 1 for calculation; NpredPPI novel: denotes the number of predicted PPIs for which
both proteins are dissimilar to any known positive interaction, including redundant and
low-quality PPIs; NpredPPI ProfPPIdb: subset with strongest predictions of previous
column contained in our resource; Nprot ProfPPIdb: number of unique proteins in the
PPIs published at https://rostlab.org/services/ppipair/.

Results and Discussion 162

Similar prediction performances between many organisms 163

Accumulating all non-redundant PPIs from the curated databases BioGRID, DIP and 164

IntAct with reliable experimental annotations left only five organisms with over 500 165

PPIs enough to develop and evaluate organism-specific new methods using profile-kernel 166

SVMs to predict PPIs from sequence: Escherichia coli, Drosophila melanogaster, 167

Caenorhabditis elegans, Mus musculus, and Arabidopsis thaliana (Table 1). For each 168

organism, two thirds of the data served for training and one-third as an independent 169

test set. Training revealed that a k-mer length of k = 5 and conservation threshold 170

σ = 11 were optimal for all organisms except Escherichia coli (Appendix A.1, Fig. 4). 171

For simplicity, we used this hyper-parameter combination for all species (Fig. 1). Three 172

other organisms (Schizosaccharomyces pombe (fission yeast), Plasmodium falciparum, 173

and Rattus norvegicus (rat)) have too few experimental PPIs to fully optimize all 174

parameters (Table 1: 236-410 PPIs). We evaluated the performance for these organisms 175

in a 5-fold cross-validation using the default parameters k = 5, σ = 11 as fixed 176

parameters (Fig. 2). 177

For three of the five organisms (Caenorhabditis elegans, Arabidopsis thaliana and 178

Mus musculus) our method performed on a similar level as our method predicting PPIs 179
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Fig 1. PPI test set for five organisms with ≥ 500 PPIs performed similar
to human. The y-axes give precision (number of PPIs correctly predicted at
threshold), the x-axes the recall (number of experimental interactions predicted at that
threshold). The precision-recall curves of each organism describe the performance of the
test data set. The model for that was trained with two-thirds of the PPI data. Bars
give the standard binomial deviation; negatives were sampled at a rate of 10:1 (ten
negatives for one positive). The gray values compare the model organisms to the PPI
prediction performance for human. H. sapiens (test) denotes the performance of the
same method described here for human PPIs.

in human (Fig. 1). For low recall (≤ 0.1), the average precision for those three 180

organisms appeared to even slightly (and significantly) exceed the values for human. 181

However, our newly developed models for Escherichia coli and Drosophila melanogaster 182

performed less well than the method for human. For Escherichia coli, changing the 183

hyperparameters to k = 3, σ = 4 improved the performance (Appendix A.1, Fig. 5). We 184

used the same hyperparameters for all eight models although we knew before using the 185

testing set that this solution was not optimal. We did this as an additional precaution 186

against over-fitting. For Drosophila melanogaster (fly) with over 1600 PPIs, we had no 187

explanation for the dip in performance. In fact, the PPI predictions for fly appeared to 188

be the worst amongst all ten organisms for which we applied our formalism (including 189

human and baker’s yeast) although we had the highest number of PPIs for training. For 190

fly we also observed by far the highest attrition from PPIs with ’some experimental 191

evidence’ to ’non-redundant PPIs with strong experimental evidence’ (Table 1: column 192

’Number of PPIs’ vs. column ’Number of PPIs with strong evidence’). However, we see 193

no reason why this attrition should impact the consistency of the PPI data left over. 194

For organism with fewer than 500 PPIs (Schizosaccharomyces pombe, Plasmodium 195

falciparum and Rattus norvegicus), we only evaluated the model performance with 196

5-fold cross-validation (Fig. 2). Our PPI prediction model for human appeared to 197

perform better than the prediction models for these three organisms. This was most 198

likely due to a lack of training data. 199

200
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Fig 2. PPI test set for three organisms with < 500 PPIs inferior to human.
The y-axes give precision (number of PPIs correctly predicted at threshold), the x-axes
the recall (number of experimental interactions predicted at that threshold). The
precision-recall curves of each organism describe the performance of the 5x5 cross
validation of train data set. Bars give the standard deviation; negatives were sampled at
a rate of 10:1 (ten negatives for one positive). The gray values compare the model
organisms to the PPI prediction performance for human. H. sapiens (train) denotes the
results of cross validation set.

Experimental evidences of novel predictions 201

We analysed our novel predictions by searching for any experimental evidences in 202

databases such as BioGRID [25], DIP [26], IntAct [27], STRING [39], MINT [40] and 203

Mentha [41]. All these databases have aggregated information of PPIs with 204

experimental evidences. STRING [39], MINT [40] and Mentha [41] also provide 205

confidence measures. Although the databases BioGRID [25], DIP [26], and IntAct [27] 206

were already used for our organism-specific models, only a small subset of the databases’ 207

PPIs was actually employed for training. The PPIs published on our online service only 208

include PPIs which have not any experimental evidence from any of these three 209

databases. In order to perform an evaluation of the quality of the predictions, we used 210

the top 1 % of all predictions (ranked according to our confidence measure) which were 211

not included in the training set. We compared these predictions against all experimental 212

from BioGRID [25], DIP [26], and IntAct [27]. Overall, we found a total number of 772 213

PPIs with evidence which results in an average 86.79 % accuracy of correctly predicted 214

PPIs. We also found evidences of PPIs for PPIs which our models did not predict any 215

direct physical interaction. However, these evidences were usually experimental 216

evidences with expert knowledge scores of lower or equal 4 [29] and thus highly likely to 217

be false positives. A more detailed description of our findings can be found in the 218

supplementary materials Appendix A.2. 219

While we have only found minor number of PPIs with evidences in MINT [40] and 220

Mentha [41], we found a significant portion of evidence in the STRING [39] database. 221

Table 3 shows the number of evidences found of our evaluation with the STRING [39] 222

database and includes numbers of evidences conforming with our predictions as well as 223

the resulting accuracy. Except for Mus musculus, Plasmodium falciparum and Rattus 224

norvegicus, we have found more than 1000 PPIs per organism with evidence in the 225

database. With a high number of correctly predicted PPIs (both our prediction and 226

STRING score indicate a PPI), we can observe a correlation between our most reliable 227

PPIs and STRING PPI score. The average accuracy of positive predicted PPIs with 228

STRING evidences is at 86.34 %, with the lowest accuracy at 75.19 % 229

(Schizosaccharomyces pombe). 230

Fig. 3 illustrates the distribution of the experimental evidences found in 231

STRING [39] plotted against their STRING scores. For Arabidopsis thaliana (Fig. 3, 232
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Organism NpredPPIs NEvidence NcorrectEvidence Accuracy

A. thaliana 250,000 1,138 1,138 100.00 %

C. elegans 200,000 1,671 1,818 91.91 %

D. melanogaster 100,000 1,763 2,049 86.04 %

E. coli 40,000 1,807 2,196 82.29 %

M. musculus 200,000 0 0 -

P. falciparum 50,000 0 0 -%

S. pombe 50,000 1,088 1,447 75.19 %

R. norvegicus 200,000 0 0 -

Sum over all 8 1,090,000 7,467 8,648 86.34 %

Table 3. Summary of experimental evidences found in STRING [39].
organism: latin name for eight model organisms sorted alphabetically; NpredPPIs:
number of PPIs of 1% ranked predictions; NEvidence: number of PPIs for which
experimental evidences was found in at least on of the three databases used for training;
NcorrectEvidence: number of PPIs with experimental evidence which were correctly
classified by our approach; Accuracy: fraction of correct predictions within the
predictions with experimental evidence.

first row, first column), evidences in STRING were found for only positive predicted 233

PPIs (1138 evidences). This results in about ≈ 70 % of the predictions having a 234

STRING confidence score between 0.4 and 0.6, and the remaining ≈ 30 % having a high 235

confidence score between 0.6 and 1.0. For Caenorhabditis elegans (Fig. 3, first row, 236

second column) and Escherichia coli (Fig. 3, second row, first column), the accuracy of 237

positive predicted PPIs found in STRING amounts to respectively 91.91 % and 82.29 %. 238

Plotting the distribution of positive and negative predicted evidences found in STRING, 239

both plots for Caenorhabditis elegans and Escherichia coli show similar distribution 240

between positive and negative predicted PPI. In both cases, we found equal distribution 241

of lower and higher STRING confidence score for both positive and negative predicted 242

PPIs. In contrast, Drosophila melanogaster (Fig. 3, first row, third column) and 243

Schizosaccharomyces pombe (Fig. 3, second row, second column) show a difference in 244

distribution between positive and negative predicted PPIs. We observe a high 245

percentage of STRING scores (below 0.5 for more than 80 % of the evidences) for 246

negative PPIs, and a high percentage of high STRING scores (above 0.7 for 50 % of the 247

evidences found). The negative predictions which were still found in STRING are likely 248

to be false positive, as according to [39]: ”A score of 0.5 would indicate that roughly 249

every second interaction might be erroneous (i.e., a false positive).” 250

Insights from novel predictions 251

The majority of PPIs predicted by our models has not been reported in any of the three 252

databases that we used at any level of reliablity (BioGRID, DIP, and IntAct). Column 4 253

of Table 2 (NpredPPI novel) summarizes the number of novel PPIs predicted for each 254

organism; novel means that they differ from all experimentally known PPIs, including 255

redundant and low-quality PPIs. Even if we assumed that only one in 20 of the positive 256

predictions were right, these large numbers demonstrated that even for the best studied 257

organisms, millions of PPIs without a close homolog from which interactions could be 258

inferred remain unknown. 259

What can be stated about those newly predicted PPIs? While there is no answer for 260

the millions, we investigated the most reliable 100 PPI predictions for Escherichia coli 261

(note ’only’ about 300k PPIs were predicted novel in Escherichia coli). 79 of these 100 262

PPIs were annotated to involve DNA-binding proteins. We are aware of very few 263

DNA-binding proteins that do not bind to other proteins. Thus, the fact that 264
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Fig 3. Percentages of predictions as a function of STRING [39]
(confidence) score. The fractions of positive and negative predicted PPIs are each
plotted against their STRING database confidence score. The plots show the plots for
evidences for Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster,
Escherichia coli and Schizosaccharomyces pombe. For Mus musculus and Rattus
norvegicus, no evidence was found.

DNA-binding proteins are involved in almost 80 % of all our top predictions of PPIs 265

that were never seen before seemed at least encouraging. However, we did not find any 266

clear evidence supporting any one of those 79 PPIs explicitly. 15 of the 100 top PPIs 267

were annotated to involve repressing molecular binding. For example, Escherichia coli 268

proteins P0ACP7 and P0ACQ0 were predicted with strong reliability 269

(probability = 0.999977). Both proteins were classified as repressors by UniProt [42]. 270

Transcriptional repression is an important aspect of gene regulation. As in most areas of 271

molecular biology, studies of Escherichia coli have provided the model for subsequent 272

investigations of transcription in different organisms, in particular in eukaryotic 273

cells [43]. We were, therefore, surprised that some of our strongest predictions of PPIs 274

never seen before involved Escherichia coli repressors. Again, we did not find any 275

explicit experimental data to support or refute these 15 novel PPI predictions. 276

Further findings include Zinc finger (ZnF) domains, which are widely distributed in 277

eukaryotic genomes. It has been estimated that around 1% of all genes encode proteins 278

containing ZnFs and those proteins often contain multiple repeats of ZnFs [44]. Their 279

functions are extraordinarily diverse and include DNA recognition, RNA packaging, 280

transcriptional activation, regulation of apoptosis, protein folding and assembly, and 281

lipid binding. Zinc finger structures are as diverse as their functions. In general, little is 282

known about these protein–protein interactions [45]. We analysed the molecular 283

function using Gene Ontology (GO, [46]). Interestingly, zinc ion binding is a molecular 284

function which 81 of the top 5000 Drosophila melanogaster protein pairs of positive 285

predicted PPIs have in common as well as 5 of the top 1000 Caenorhabditis elegans 286

PPIs. However, protein pairs both being zinc ion binding in Arabidopsis thaliana( 181 of 287

the top 5000) and in Schizosaccharomyces pombe(7 of the top 1000) are common 288
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functions of protein pairs highly unlikely to interact. Similar to our findings about 289

Escherichia coli, we did not find any explicit experimental data to support or refute 290

these interactions relating to zinc ion binding protein pairs. 291

Limitation of performance evaluation 292

Several problems were in the way to providing a completely convincing comprehensive 293

performance assessment. Specific to our problem were the rather small data sets of 294

experimentally characterized PPIs: fewer than 6,000 non-redundant PPIs for all 8 295

organisms. In order to avoid severe problems from database bias, we had to focus on 296

high-quality non-redundant PPIs [23]. As our profile-kernel based SVM requires at least 297

200 reliable PPIs, the number of acquired non-redundant PPIs reduced the set of 298

organisms to only 8. The additional challenges were not specific to our work: it remains 299

uncertain by more than an order of magnitude how many interactions are to be 300

expected in an organism. Related to this: what is the fraction of positives (PPIs) to 301

negatives (proteins that do not interact) is in a living cell? Yet another crucial problem 302

is that positives are much more reliable than negatives. For molecular biology in general 303

it is much more accurate to state that an event happens than to rule out that it does 304

not. All these issues magnify each other to render even the most careful performance 305

estimates to become speculative approximations at best. Many authors use ROC-curves 306

that relate the number of true positives (correctly predicted PPIs) to that of false 307

positives (PPIs predicted but not observed). These plots depend heavily on the 308

negatives in particular on the ratio of positives-to-negatives. Given that the truth for 309

this number remains uncertain even within an order of magnitude, we decided to focus 310

on curves that show precision-vs-recall, i.e. only values directly related to the observed 311

PPIs. Although one of the axes still is strongly influenced by the assumption that ’not 312

observed’ means ’not interacting’. AUC, the area under the ROC-curve, is another 313

simple and popular score for performance evaluation. Given the argument against 314

ROC-curve, we might still vary this and compile an analogous area under the 315

precision-recall curve. However, such a value would constitute another major problem: 316

arguably, most users of prediction methods are most interested in the most reliable 317

predictions. In other words, when predicting whether protein X interacts with any other 318

human protein, the N-strongest predictions (for some N might be 1 for others 1000) 319

matter more than all 20k scores against all 20k human proteins. But those 20k-N would 320

exactly dominate the AUC-type performance measures. 321

Database of predictions 322

Table 2 summarizes the results of the full interactome predictions. We only predicted 323

PPIs which are dissimilar to proteins in our positive training set (Table 2, column 324

NprotPred). Most proteins of the reference proteomes were dissimilar (Table 2: 325

difference between columns Nprot, number of proteins, and NprotPred, number of 326

predicted proteins). Overall, the eight new methods predicted PPIs for most of all 327

possible pairs of proteins in an organism, i.e. at least 73 % of all possible pairs (only 328

exception: Escherichia coli and Drosophila melanogaster). Even after excluding all 329

proteins previously reported in low-quality or redundant PPIs from the set of predicted 330

PPIs, millions of predicted PPIs remained (Table 2, column NpredPPI novel). Due to 331

our large mistake in the prediction of all PPIs proposed by the model at the default 332

threshold, the ProfPPIdb resource only reported the most reliably predicted, 333

non-redundant predictions (top ∼ 10 % of all predicted PPIs) as novel PPIs (Table 2, 334

column NpredPPI novel). For most of the 8 model organisms, this subset excludes most 335

proteins in the organism (Table 2, numbers in column NprotPred more than twice those 336

in column Nprot ProfPPIdb). The exceptions were Plasmodium falciparum, 337
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Schizosaccharomyces pombe and Drosophila melanogaster for which PPI predictions 338

remained for almost all proteins with predictions (Table 2, column NprotPred) after the 339

application of these filters (Table 2, column Nprot ProfPPIdb). Hence, although our 340

resource adds over one million newly predicted PPIs (sum over 8 rows of column 341

NpredPPI ProfPPIdb in Table 2: 1,090,000 PPIs), many proteins in those organisms 342

remain without annotation and without predictions. 343

Conclusions 344

We applied the concept of profile-kernel SVMs for the prediction of physical 345

protein-protein interactions (PPIs), i.e. we leverage information available for all proteins 346

for which the sequence is known. The profile-kernel SVM-based methods appeared to 347

achieve state-of-the-art performance for sequence-based PPI predictions. In fact, for 348

most model organisms, the predictions were not inferior to those for human for which 349

we had most experimental data and developed our initial approach. We put the most 350

reliable predictions into a freely available database where users can access predictions 351

for all proteins in the entire proteomes of eight different organisms (eukaryotes and 352

prokaryotes, multi-cellular and single cellular, animals and plants, mammals, fly and 353

worm). 354
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A Appendices 366

A.1 Cross validation results 367

0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

E. coli
 (train)
E. coli
 (holdout)

0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

C. elegans
 (train)
C. elegans
 (holdout)

0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

D. melanogaster
 (train)
D. melanogaster
 (holdout)

0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

A. thaliana
 (train)
A. thaliana
 (holdout)

0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

M. musculus
 (train)
M. musculus
 (holdout)

Fig 4. Cross-validation and holdout performance results for organisms with
train data size > 500 PPIs. The y-axes give precision (number of PPIs correctly
predicted at threshold), the x-axes the recall (number of experimental interactions
predicted at that threshold). Bars give the standard deviation; negatives were sampled
at a rate of 10:1 (ten negatives for one positive). Each subplot is referred as follows: A
(Escherichia coli), B (Caenorhabditis elegans), C (Drosophila melanogaster), D
(Arabidopsis thaliana), E (Mus musculus).

Similar levels of training and holdout performances Machine learning 368

applications often reach very different levels of performance for the training and the 369

testing set. We did not observe this for the organisms for which we could compile 370

comprehensive cross-validation results (Fig. 4: difference between black line and colored 371

points). Most similar were the results for mouse (Mus musculus: Fig. 4 E). For 372

Escherichia coli (Fig. 4 A), Caenorhabditis elegans (worm, Fig. 4 B), and Drosophila 373

melanogaster (fruit fly, Fig. 4 C), training and testing were less similar for high recall, 374

i.e. for the most reliable predictions. Most unusual were the results for Drosophila 375

melanogaster (Fig. 4 C) and Escherichia coli (Fig. 4 A), for which test performance was 376

even higher than training performance for a substantial fraction of highly reliable 377

predictions (toward left, i.e. low recall in Fig. 4 A, and Fig. 4 C the black curves are 378

above the dots). For Arabidopsis thaliana (water-cress, Fig. 4 D) testing performance 379

was better than training throughout the entire ROC-like curve. Typically, there is only 380

one explanation for such unexpected findings: points for which testing is better than 381

training provide estimates for the resolution of our performance estimates. This reality 382

was captured well by the estimates for standard errors: within one standard error, 383

training and testing were identical for all organisms. 384

Hyperparameter optimization for Escherichia coli Our most important 385

objective when applying machine learning typically is to reduce the risk of 386
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Fig 5. Cross-validation and hold-out performance results of Escherichia
coli. Panel (A): Precision-recall curve for cross-validation in Escherichia coliw ith
different optimization hyperparameters. All results in the paper were reported for the
version k = 5/σ = 11 which clearly was not best for Escherichia coli, instead the
combination k = 3/σ = 4 yielded the best performance (purple). Panel (B):
Comparison of cross-validation hyperparameter combinations k = 3/σ = 4 (best) with
k = 5/σ = 11 (default) and cross validation of human from earlier publication [23].
Panel (C): Cross-validation and hold-out results of hyperparameter combination
k = 3/σ = 4 (best) compared with test results for human [23].

over-optimization, i.e. to optimize generalization instead of apparent performance as 387

usually over-estimated by standard cross-validation. Therefore, we trained each 388

organism model with the same set of hyperparameters (k-mer = 5 and σ = 11). This 389

standard choice yielded the best performance for almost all organisms. One exception 390

was Escherichia coli. For the choice k-mer = 3 and σ = 4, the cross-validation 391

precision-recall values exceeded those for all other hyperparameter combinations (Fig. 5 392

A). This top choice for Escherichia coli reached higher performance than the 393

human-specific model in the realm of low recall (Fig. 5 B). This choice for Escherichia 394

coli also results in high performance for the holdout set of E.coli which exceeds the test 395

performance of Homo sapiensfrom [23] especially in the realm of low recall (Fig. 5C). 396

A.2 Evaluation of novel predictions 397

We used BioGRID [25], DIP [26], and IntAct [27] (Uniprot uses quality-filtered 398

subset of binary interactions automatically derived from the IntAct database) for 399

large-scale evaluation of our novel predictions. Although we used BioGRID [25], 400

DIP [26], and IntAct [27] as the base for our organism-specific models, it was only a 401

small subset of the databases’ PPIs actually used for training our models. 402

The PPIs published on our online service only include PPIs which have not any 403

experimental evidence from any of these three databases. In order to perform an 404

evaluation of the quality of the predictions, we used the top 1 % of all predictions 405

(ranked according to our confidence measure) which were not included in the training 406

set. We compared these top predictions against all experimental from BioGRID [25], 407

DIP [26], and IntAct [27]. The findings of experimental evidences is listed in Table 4. As 408

Table 4 shows, except for Mus musculus and Rattus norvegicus for which none or only 409

falsely predicted PPIs was found, we found between 60 and 170 PPIs with experimental 410

evidence for each organism. The accuracy of the evidences correctly predicted is at least 411

over 75 %, with half of all investigated organisms having accuracies of over 90 %. 412

Looking closer at the distribution of the evidences in terms of average, we found 413

three cases which we show in Figure 6. With E. coli (Figure 6 a), we observe a high 414

percentage of lower average expert knowledge scores (below 4 for almost 80 % of the 415
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Organism NpredPPIs NEvidence NcorrectEvidence Accuracy

A. thaliana 2,064,410 62 60 96.77 %

C. elegans 1,421,719 67 69 97.1 %

D. melanogaster 319,160 152 197 77.16 %

E. coli 27,296 82 90 91.11%

M. musculus 1,313,253 0 0 -

P. falciparum 90,418 143 174 82.18%

S. pombe 83,497 166 177 93.79%

R. norvegicus 2,119,225 3 0 0.00

Sum over all 8 6,125,724 772 670 86.79 %

Table 4. Summary of experimental evidences found in BioGRID [25],
DIP [26], and IntAct [27]. Organism: latin name for eight model organisms sorted
alphabetically; NpredPPIs:Number of PPIs of 1% ranked predictions; NEvidence:
number of PPIs for which experimental evidences was found in at least on of the three
databases used for training; NcorrectEvidence: number of PPIs with experimental
evidence which were correctly classified by our approach; Accuracy: The fraction of
correct predictions within the predictions with experimental evidence.
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Fig 6. Percentages of predictions as a function of PPI quality score
according to expert knowledge scoring scheme [29]. This scoring scheme was
also used in the manuscript to obtain high-quality PPIs for training. The positive and
negative PPIs presented in these plots are findings of experimental evidences found in
BioGRID [25], DIP [26], and IntAct [27].

evidences) for negative PPIs, and a high percentage of high average expert knowlege 416

scores (greater or equal 6 for 60 % of the evidences found). This shows that for E. coli 417

our model succeeds in predicting PPIs correctly which also has experimental evidences 418

with high average expert knowledge scores. However, for organisms A. thaliana (Figure 419

6 b), C. elegans, D.melanogaster, P. falciparum and S. Pombe we witness PPI curves 420

which almost overlaps. This indicate a similar distribution of knowledge expert scores 421

for both positive and negative PPIs. This also is a consequence of the lack of high 422

quality annotations present in the databases. The third case of distribution that we 423

observed is with M. musculus, for which we only found three experimental evidences 424

and none of them are correctly predicted by our approach. Nevertheless, the 425

experimental evidences are highly doubtful as their methods each score only 1 in the 426

expert knowledge scoring system. 427
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