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Motivation

Protein-protein interactions (PPIs) play a key role in many cellular processes. Most
annotations of PPIs mix experimental and computational data. The mix optimizes
coverage, but obfuscates the annotation origin. Some resources excel at focusing on
reliable experimental data. Here, we focused on new pairs of interacting proteins for
several model organisms based solely on sequence-based prediction methods.

Results

We extracted reliable experimental data about which proteins interact (binary) for eight
diverse model organisms from public databases, namely from FEscherichia coli,
Schizosaccharomyces pombe, Plasmodium falciparum, Drosophila melanogaster,
Caenorhabditis elegans, Mus musculus, Rattus norvegicus, Arabidopsis thaliana, and for
the previously used Homo sapiens and Saccharomyces cerevisiae. Those data were the
base to develop a PPI prediction method for each model organism. The method used
evolutionary information through a profile-kernel Support Vector Machine (SVM). With
the resulting eight models, we predicted all possible protein pairs in each organism and
made the top predictions available through a web application. Almost all of the PPIs
made available were predicted between proteins that have not been observed in any
interaction, in particular for less well-studied organisms. Thus, our work complements
existing resources and is particularly helpful for designing experiments because of its
uniqueness. Experimental annotations and computational predictions are strongly
influenced by the fact that some proteins have many partners and others few. To
optimize machine learning, recent methods explicitly ignored such a network-structure
and rely either on domain knowledge or sequence-only methods. Our approach is
independent of domain-knowledge and leverages evolutionary information. The
database interface representing our results is accessible from
https://rostlab.org/services/ppipair/} The data can also be downloaded from
https://figshare.com/collections/ProfPPI-DB/4141784.
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Introduction :
Operational definition of physical Protein-Protein Interactions 2
(PPIS) 3
We define PPIs as interactions that bring two different proteins A and B directly into 4
‘physical contact’. This 'molecular’ perspective on PPIs differs from the most frequent 5

view of both associations and permanent complexes. For us the crucial aspect of a PPI &
is that it brings two proteins into direct physical contact (usually transiently, i.e. fora -
limited time). Given all PPIs in an organism, the interactome comprises all PPIs in the s

entire proteome; this network contains all non-temporal aspects of associations on the 0
network level. 10
Experimental annotations of binary PPI maps 1
Due to the importance, many experiments establish PPIs. Despite this effort, most 12
pairs of physically interacting proteins remain likely unknown [1]. Statistical models of 1
PPIs can amend the coverage of networks formed from binary PPIs (A binds B) 1
cost-effectively by enriching protein association networks [2H4] or by combining 15
heterogeneous data sources in Bayesian networks [5]. 16
Predictions important but often over-estimated 17
Numerous computational methods have been developed to predict protein-protein 18
interactions using different data sources, e.g. secondary structure, phylogenetic tree, 19

phylogenetic profile, and gene expression [6H10]. Most methods employ more than one 2
of the mentioned properties. However, their application is limited due to their specific = =

need of domain knowledge. These specific knowledge is but not universally available, 2
and limit these methods to specific (smaller) datasets. 23
Further, many methods only use sequence information, such as motifs of 2

co-occurrence on the level of domains [11H13], matching features from protein sequence, 2
structure and evolutionary conservation for binding sites alone [10,/14] and for binding 2

sites and sequence/structure triads [15]. However, none of those sequence-based 2z
methods restrict their method to the identification of physical non-permanent PPIs as 2
we defined them. Most of those methods used permanent complexes, the others also 2
associations. This is also true for methods pioneering the use of kernel-based 30
predictions [14}/15]. Evolutionary information embedded in proteins sequence was 31
employed to improve predicting PPIs [104(14L/16}/17], some in combination with profile »
kernels [18], by leveraging information available to us which are not domain specific. 33

Another set of problems with existing methods pertain to the problems in choosing
“negatives”, i.e. pairs of proteins known not to interact [19]. In fact, negatives have to s
be carefully considered when setting up the cross-validation process [20]. Moreover, the 3
cross-validation protocol also needs to carefully avoid using the same proteins in training

and testing [21}|22], and even allowing for homologues between training and testing 38
over-estimates performance [20]. Overall, it appears that every careful independent 39
review of existing methods has unraveled some substantial over-estimates [20H22]. One 4
recent method combining profile kernels with Support Vector Machines (SVM) to a1
predict pairs of physical, non-permanent PPIs has tried to avoid all known flaws [23]. 4
However, it still awaits critical assessment from independent experts. This method 3
improved particularly for proteins without experimental annotations about their 4
interactions recommending the approach for discovery of novel PPIs [23]. a5

Here, we simply apply the concept of profile-kernel SVMs [23] to the prediction of "
the entire interactomes in eight model organisms, namely ordered by size: Escherichia — «

e
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coli, Schizosaccharomyces pombe (fission yeast), Plasmodium falciparum, Drosophila a8
melanogaster (fruit fly), Caenorhabditis elegans (roundworm), Mus musculus (mouse), 4
Rattus norvegicus (rat), and Arabidopsis thaliana (mouse-ear cress). The choice of 50

applying profile-kernel SVMs is due to its independence of domain knowledge and its 51
usage of evolutionary profiles. Further, in vast evaluation we chose negative interactions s
by avoiding using the similar proteins in training and testing. Repeated cross-validation  ss
was employed to reduce additional over-estimation as stated in [20H22]. We have created s

a database of the most reliable predictions for each organism, and implemented a 55
versatile online search interface (https://rostlab.org/services/ppipair/). Our 56
new methods and new predictions at least double the number of organisms for which 57

sequence-based PPI predictions are available, and they do this in a more consistent way  ss
than other method [24]. On top, our resource contributes the first-ever predictions for s

many un-annotated proteins. 60
Materials and Methods o
Data Sources 0
We extracted PPIs from the following databases BioGRID [25], DIP [26], and 63
IntAct [27]. BioGRID is a public curated database that holds 553,827 physical 6
interactions from 58 species. DIP archives 795,534 PPIs from 777 organisms, curated 6

both manually by experts and through computational approaches. IntAct is also public s
archiving 356,806 PPIs mostly from eight organisms. All PPIs originated either from 67

publications or submissions from experimentalists. 68
Data Extraction 60
We only used PPIs for which their protein identifiers mapped to the EBI reference 70
proteomes [28]. We mapped proteins of each organism to a corresponding reference n

protein only if their sequences aligned with at least 95 % sequence identity. The fraction 7
of PPIs that could not be mapped in this simple manner accounted for about 9 % of all 7
data. We grouped the resulting PPIs by organism using taxonomy identifiers and 74
differentiated PPIs from 768 organisms. 7

To predict PPIs, we needed as much reliable training data as possible. However, we
also need to remove redundancy in many non-trivial ways [23]. We used an established
expert knowledge-scoring scheme [29] to reflect the quality of evidence for a given PPI.
The scheme assigned scores from one (lowest reliability) to ten (highest reliability) for 7

each experimental method used to annotate a PPI. High scores were assigned to 8
techniques such as X-ray crystallography or electron tomography, average scores of five &
were given to, e.g. complementation-based assays and affinity-based technologies. 8
Methodologies that do not directly provide evidence for interaction, such as 8
co-localization or co-sedimentation, were scored lowest. The scores are available online s
at our service. We applied that scheme to our PPI data and kept only PPIs with at 8
least one experimental evidence > 5. For instance, the Escherichia coli PPI between 86

POABBO and POABB4 is supported by two experimental methods: blue native page 87
(score = 3) and pull down (score = 2.5); both below 5, i.e. we discarded this PPI. In 8

contrast the PPI between POACFO0 and P03004 established by enzyme linked 8
immunosorbent assay (score = 5) was kept. After data filtering, we redundancy reduced s
the PPI set of each organism set such that no PPI pair was sequence-similar. A PPI o1

pair was considered similar if at least one of the two sequences reached HVAL > 20 [30]
to any protein already in the data set. Note that HVAL > 20 corresponds to > 40 % 03
pairwise sequence identity for alignments over 250 residues. o



https://rostlab.org/services/ppipair/
https://doi.org/10.1101/332510
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/332510; this version posted July 16, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Table 1. Data sets extracted from BioGRID, DIP and IntAct. Organism:
latin name for eight model organisms sorted alphabetically; NPPIs: number of distinct
physical pairs of protein-protein interactions extracted by merging the entire BioGRID,
DIP, and IntAct; NPPIs with strong evidence: subset of previous column with reliable
experimental evidence (according to [29)]);

NPPIs with strong evidence redundancy reduced: subset of previous column after
removing sequence-similar pairs (HVAL > 20).

Organism NPPIs NPPIs with NPPIs with
strong evidence strong evidence

redundancy reduced

A. thaliana 38,258 8,459 814
C. elegans 23,105 5,229 818
D. melanogaster 79,291 19,033 1,680
E. coli 27,119 8,587 998
M. musculus 30,070 6,262 734
P. falciparum 4,792 1,312 239
S. pombe 13,478 4,396 410
R. norvegicus 6,698 1,574 236

| Sum over all 8 | 222,811 | 54,852 | 5,929 |

We applied the above procedure to all 768 organisms for which we found PPIs. Only o
8 of the 768 had at least 200 PPIs with strong experimental support. We considered %
these our 'model organisms’. 200 PPI was the minimum number of data points we o7
assumed to be necessary to train our method. Redundancy reduction shrank our data o
by over ten-fold for some organisms (Table . The most extreme attrition was for fly %
for which we extracted almost 80k PPIs from the databases, and could use only about 100

1.6k for training/testing. 101
Negative interactions 102
Databases collect positives (A binds B), i.e. PPIs with experimental evidence. For 103
training, we also needed negatives (A does not bind B). We collected negatives as 104
described before in [20], [23]. For each PPI data set, we sampled negatives in a ratio of 10
1:10 (10 negative for each positive). The 1:10 ratio seemed appropriate to provide 106
enough negatives to sample the reality in a cell. As before in [20] and [23], we obtained 1o
negatives by randomly sampling from all possible combinations of proteins of an 108
organism with the restrictions that each protein in a 'negative PPI’ needed to differ in 100
sequence (HVAL < 20) to all proteins in the positive training set. 110

Profile-kernel SVM parameter optimization and cross-validation

Many advanced sequence-based PPI prediction methods have been developed. Park and 12

Marcotte [22] showed that PIPE2 [24], AutoCorrelation [31], and SigProd [32] 13
performed well compared to other methods. We showed a profile-kernel SVM to improve 11
over these methods for human and yeast [23]. This method is described in detail in [23]. us
The basic concept is described in the following. Essentially, the profile-kernel finds 116

k-mers of k adjacent residues for which the conservation within a given protein family s
exceeds some value o and then collects the most informative such k-mers through SVMs. 1
Thus, as for each profile-kernel SVM (33|, we needed to optimize two hyperparameters: 1o

the k-mer length k and the evolutionary score threshold . Following our previous 120
experience, we sampled k = 3,4,5,6 for 0 = 4,...,11. For all organisms with more than 1z
500 non-redundant PPIs; we optimized the two parameters empirically with a 122
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grid-search on two-thirds of the PPI data for each organism (training set). The 123
remaining third of each data set (fest set) was used to confirm generalization. Each 124
training set was split further into five parts. For every hyperparameter combination, we 12
performed a full 5-fold cross-validation using four splits for cross-validation training and 12

one for cross-validation testing. In this way, each of the five splits of the full 127
non-redundant set was used as cross-training split exactly once. We repeated each 128
5-fold cross-validation five times from the start, including splitting positives and 129

sampling negatives, in order to minimize sampling noise [34]. Finally, we used the best 13
combination of k and ¢ and the entire training set to train the method one last time in 1=

order to predict the test set. For organisms with more than 200, but fewer than 500 132
PPIs (Table , we did not optimize parameters, but only evaluated their performance 1
in a five times 5-fold cross-validation on the whole data set. As hyperparameters, we 134
used the most common combination found for the larger PPI sets (k =5, o = 11). 135
Evolutionary profiles 136
The evolutionary profiles were taken from PredictProtein [35]. They were created by 137
PSI-BLAST-ing [36] queries against an 80 % non-redundant database combining 138
UniProt [37] and PDB [38]. Our method never used any information not available 139
through these profiles. 140
Recall-precision curves 11

Each model built from a training data set outputs a score for each prediction. We used 1
these scores to calculate precision-recall-curves. In a cross-validation, we used all 143
precisions at a particular recall to calculate the mean and the standard deviation of the 14
precisions at that point. If only one curve was available (assessment of hold-out sets for s

organisms with > 200 PPIs), we assumed precision to follow a standard binomial 146
distribution and calculated the precision error at a particular recall as: 147
e=nppr-p-(1-p), (1)

where npp; denotes the number and p denotes the precision at that particular recall. 1s
In order to assess a particular parameter combination, we needed to condense the 149
associated recall-precision curve into a single point. We did this by collecting all mean s
precision values until a recall of 20 % and then averaging over those values. The best 151

parameter combination optimized this average precision. 152
Interactome predictions 153
For predicting the entire interactomes, we used all available PPI data (training + test 15
set) our models. As the hyper-parameters values k = 5, o = 11 yielded best 155
performance for almost all organisms, we used those parameters for our interactome 156

model for all organisms. This might not be the optimal solution, but it might provide 1
the most conservative result avoiding more over-fitting. We applied our method to all 158
pairs of proteins for which both proteins were dissimilar to any protein in the positives 1so
used for training. We chose to only publish the most reliable PPIs accounting to about 160
10 PPIs per protein of an organism (numbers given in Table . 161
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Table 2. Whole interactome predictions. For each organism investigated, we
aggregated the data we used for training and testing, trained a final model and
predicted the whole interactome of that organism. Organism: latin name for eight
model organisms sorted alphabetically; Nprot: number of proteins in proteome (values
taken from [28]); NpredPPI: subset of PPIs used for prediction in which both proteins
are dissimilar to the proteins in the positive interactions of the training set; NprotPred:
corresponding number of proteins for which NpredPPI interactions were predicted, see
Eq. [1] for calculation; NpredPPI novel: denotes the number of predicted PPIs for which
both proteins are dissimilar to any known positive interaction, including redundant and
low-quality PPIs; NpredPPI ProfPPIdb: subset with strongest predictions of previous
column contained in our resource; Nprot ProfPPIdb: number of unique proteins in the
PPIs published at https://rostlab.org/services/ppipair/}, as well as
https://figshare.com/collections/ProfPPI-DB/4141784.

Organism Nprot NpredPPI | NpredPPI NpredPPI Nprot
(NprotPred) novel | ProtPPIdb | ProtPPIdb
A thaliana 27,064 206,441,040 | 71,251,953 250,000 7,023
(20,320)
C. elegans 20,137 142,171,953 | 83,301,778 200,000 7,041
(16,863)
D. melanogaster | 13,707 31,916,055 5,410,405 100,000 7,664
(7,990)
E. coli 4,306 2,729,616 332,520 40,000 1,341
(2,337)
M. musculus 22,136 131,325,321 | 58,790,746 200,000 4,144
(16,207)
P. falciparum 5,159 9,041,878 5,622,981 50,000 3,576
(4,253)
S. pombe 5,121 8,349,741 2,630,071 50,000 3,046
(4,087)
R. norvegicus 21,330 211,922,578 | 174,929,160 200,000 9,265
(20,588)
Sum over all 8 | 118,960 743,898,182 | 402,269,614 1,090,000 44,000
(92,645)
Results and Discussion e
Similar prediction performances between many organisms 163
Accumulating all non-redundant PPIs from the curated databases BioGRID, DIP and 1
IntAct with reliable experimental annotations left only five organisms with over 500 165
PPIs enough to develop and evaluate organism-specific new methods using profile-kernel 166
SVMs to predict PPIs from sequence: Escherichia coli, Drosophila melanogaster, 167
Caenorhabditis elegans, Mus musculus, and Arabidopsis thaliana (Table . For each 168
organism, two thirds of the data served for training and one-third as an independent 160
test set. Training revealed that a k-mer length of £ = 5 and conservation threshold 170
o = 11 were optimal for all organisms except Escherichia coli (Fig. . For simplicity,
we used this hyper-parameter combination for all species (Fig. . Three other 172
organisms (Schizosaccharomyces pombe (fission yeast), Plasmodium falciparum, and 173

Rattus norvegicus (rat)) have too few experimental PPIs to fully optimize all parameters 17
(Table |1} 236-410 PPIs). We evaluated the performance for these organisms in a 5-fold s
cross-validation using the default parameters k = 5, o = 11 as fixed parameters (Fig. . 176

For three of the five organisms (Caenorhabditis elegans, Arabidopsis thaliana and 177
Mus musculus) our method performed on a similar level as our method predicting PPIs 1

NE
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Fig 1. PPI test set for five organisms with > 500 PPIs performed similar
to human. The y-axes give precision (number of PPIs correctly predicted at
threshold), the x-axes the recall (number of experimental interactions predicted at that
threshold). The precision-recall curves of each organism describe the performance of the
test data set. The model for that was trained with two-thirds of the PPI data. Bars
give the standard binomial deviation; negatives were sampled at a rate of 10:1 (ten
negatives for one positive). The gray values compare the model organisms to the PPI
prediction performance for human. H. sapiens (test) denotes the performance of the
same method described here for human PPIs.
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in human (Fig. [1f). For low recall (< 0.1), the average precision for those three 179
organisms appeared to even slightly (and significantly) exceed the values for human. 180
However, our newly developed models for Escherichia coli and Drosophila melanogaster 1
performed less well than the method for human. For Escherichia coli, changing the 182

hyperparameters to k = 3, o = 4 improved the performance (Fig. . We used the same 13
hyperparameters for all eight models although we knew before using the testing set that s
this solution was not optimal. We did this as an additional precaution against 185
over-fitting. For Drosophila melanogaster (fly) with over 1600 PPIs, we had no 186
explanation for the dip in performance. In fact, the PPI predictions for fly appeared to 1
be the worst amongst all ten organisms for which we applied our formalism (including  1ss
human and baker’s yeast) although we had the highest number of PPIs for training. For s
fly we also observed by far the highest attrition from PPIs with ’some experimental 190
evidence’ to 'non-redundant PPIs with strong experimental evidence’ (Table|l} column 1
‘Number of PPIs’ vs. column 'Number of PPIs with strong evidence’). However, we see 10

no reason why this attrition should impact the consistency of the PPI data left over. 193

For organism with fewer than 500 PPIs (Schizosaccharomyces pombe, Plasmodium 10
falciparum and Rattus norvegicus), we only evaluated the model performance with 195
5-fold cross-validation (Fig. . Our PPI prediction model for human appeared to 196
perform better than the prediction models for these three organisms. This was most 197
likely due to a lack of training data. 198
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Fig 2. PPI test set for three organisms with < 500 PPIs inferior to human.
The y-axes give precision (number of PPIs correctly predicted at threshold), the x-axes
the recall (number of experimental interactions predicted at that threshold). The
precision-recall curves of each organism describe the performance of the 5x5 cross
validation of train data set. Bars give the standard deviation; negatives were sampled at
a rate of 10:1 (ten negatives for one positive). The gray values compare the model
organisms to the PPI prediction performance for human. H. sapiens (train) denotes the
results of cross validation set.
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Experimental evidences of novel predictions

We analysed our novel predictions by searching for any experimental evidence in
databases such as BioGRID [25], DIP [26], IntAct [27], STRING [39], MINT [40] and
Mentha [41]. All these databases have aggregated information of PPIs with
experimental evidences. STRING [39], MINT [40] and Mentha [41] also provide
confidence measures. Although the databases BioGRID [25], DIP [26], and IntAct [27]
were already used for our organism-specific models, only a small subset of the databases
PPIs was employed for training. The PPIs published on our online service only include
PPIs which have not any experimental evidence from any of these three databases. In
order to perform an evaluation of the quality of the predictions, we used the top 1 % of
all predictions (ranked according to our confidence measure) which were not included in
the training set. We compared these predictions against all experimental from
BioGRID [25], DIP [26], and IntAct |27]. Overall, we found a total number of 772 PPIs

)

with evidence which results in an average 86.79 % accuracy of correctly predicted PPIs.

We also found evidences of PPIs for PPIs which our models did not predict any direct
physical interaction. However, these evidences were usually experimental evidences with
expert knowledge scores of lower or equal 4 |29] and thus highly likely to be false
positives. A more detailed description of our findings can be found in the
supplementary materials (Section .

While we have only found minor number of PPIs with evidences in MINT [40] and
Mentha [41], we found a significant portion of evidence in the STRING [39] database.
Table [3| shows the number of evidences found of our evaluation with the STRING [39]
database and includes numbers of evidences conforming with our predictions as well as
the resulting accuracy. Except for Mus musculus, Plasmodium falciparum and Rattus
norvegicus, we have found more than 1000 PPIs per organism with evidence in the
database. With a high number of correctly predicted PPIs (both our prediction and
STRING score indicate a PPI), we can observe a correlation between our most reliable
PPIs and STRING PPI score. The average accuracy of positive predicted PPIs with
STRING evidences is at 86.34 %, with the lowest accuracy at 75.19 %
(Schizosaccharomyces pombe).

Fig. 3| illustrates the distribution of the experimental evidences found in
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Table 3. Summary of experimental evidences found in STRING [39)].
organism: latin name for eight model organisms sorted alphabetically; NpredPPIs:
number of PPIs of 1% ranked predictions; NEvidence: number of PPIs for which
experimental evidences was found in at least on of the three databases used for training;
NcorrectEvidence: number of PPIs with experimental evidence which were correctly
classified by our approach; Accuracy: fraction of correct predictions within the
predictions with experimental evidence.

| Organism [ NpredPPIs [ NEvidence [ NcorrectEvidence [ Accuracy ‘
A. thaliana 250,000 1,138 1,138 100.00 %
C. elegans 200,000 1,671 1,818 91.91 %
D. melanogaster 100,000 1,763 2,049 86.04 %
E. coli 40,000 1,807 2,196 82.29 %
M. musculus 200,000 0 0 -
P. falciparum 50,000 0 0 -%
S. pombe 50,000 1,088 1,447 75.19 %
R. norvegicus 200,000 0 0 -

| Sum over all 8 | 1,090,000 [ 7467 | 8,648 | 8634 % |

STRING [39)] plotted against their STRING scores. For Arabidopsis thaliana (Fig.
first row, first column), evidences in STRING were found for only positive predicted
PPIs (1138 evidences). This results in about ~ 70 % of the predictions having a
STRING confidence score between 0.4 and 0.6, and the remaining ~ 30 % having a high
confidence score between 0.6 and 1.0. For Caenorhabditis elegans (Fig. 3} first row,
second column) and Escherichia coli (Fig. 3] second row, first column), the accuracy of

positive predicted PPIs found in STRING amounts to respectively 91.91 % and 82.29 %.

Plotting the distribution of positive and negative predicted evidences found in STRING,
both plots for Caenorhabditis elegans and Escherichia coli show similar distribution
between positive and negative predicted PPI. In both cases, we found equal distribution
of lower and higher STRING confidence score for both positive and negative predicted
PPIs. In contrast, Drosophila melanogaster (Fig. (3] first row, third column) and
Schizosaccharomyces pombe (Fig. [3] second row, second column) show a difference in
distribution between positive and negative predicted PPIs. We observe a high
percentage of STRING scores (below 0.5 for more than 80 % of the evidences) for
negative PPIs, and a high percentage of high STRING scores (above 0.7 for 50 % of the
evidences found). The negative predictions which were still found in STRING are likely
to be false positive, as according to [39]: ” A score of 0.5 would indicate that roughly
every second interaction might be erroneous (i.e., a false positive).”

Insights from novel predictions

The majority of PPIs predicted by our models has not been reported in any of the three
databases that we used at any level of reliablity (BioGRID, DIP, and IntAct). Column 4
of Table [2| (NpredPPI novel) summarizes the number of novel PPIs predicted for each
organism; novel means that they differ from all experimentally known PPIs, including
redundant and low-quality PPIs. Even if we assumed that only one in 20 of the positive
predictions were right, these large numbers demonstrated that even for the best studied
organisms, millions of PPIs without a close homolog from which interactions could be
inferred remain unknown.

What can be stated about those newly predicted PPIs? While there is no answer for
the millions, we investigated the most reliable 100 PPI predictions for Escherichia coli
(note ’only’ about 300k PPIs were predicted novel in Escherichia coli). 79 of these 100
PPIs were annotated to involve DNA-binding proteins. We are aware of very few
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Fig 3. Percentages of predictions as a function of STRING [39]
(confidence) score. The fractions of positive and negative predicted PPIs are each
plotted against their STRING database confidence score. The plots show the plots for
evidences for Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster,
Escherichia coli and Schizosaccharomyces pombe. For Mus musculus and Rattus
norvegicus, no evidence was found.
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DNA-binding proteins that do not bind to other proteins. Thus, the fact that
DNA-binding proteins are involved in almost 80 % of all our top predictions of PPIs
that were never seen before seemed at least encouraging. However, we did not find any
clear evidence supporting any one of those 79 PPIs explicitly. 15 of the 100 top PPIs
were annotated to involve repressing molecular binding. For example, FEscherichia coli
proteins POACP7 and POACQO were predicted with strong reliability
(probability = 0.999977). Both proteins were classified as repressors by UniProt [42].
Transcriptional repression is an important aspect of gene regulation. As in most areas of
molecular biology, studies of Escherichia coli have provided the model for subsequent
investigations of transcription in different organisms, in particular in eukaryotic
cells [43]. We were, therefore, surprised that some of our strongest predictions of PPIs
never seen before involved Escherichia coli repressors. Again, we did not find any
explicit experimental data to support or refute these 15 novel PPI predictions.
Further findings include Zinc finger (ZnF) domains, which are widely distributed in
eukaryotic genomes. It has been estimated that around 1% of all genes encode proteins
containing ZnFs and those proteins often contain multiple repeats of ZnFs [44]. Their
functions are extraordinarily diverse and include DNA recognition, RNA packaging,
transcriptional activation, regulation of apoptosis, protein folding and assembly, and
lipid binding. Zinc finger structures are as diverse as their functions. In general, little is
known about these protein—protein interactions [45]. We analysed the molecular
function using Gene Ontology (GO, [46]). Interestingly, zinc ion binding is a molecular
function which 81 of the top 5000 Drosophila melanogaster protein pairs of positive
predicted PPIs have in common as well as 5 of the top 1000 Caenorhabditis elegans
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PPIs. However, protein pairs both being zinc ion binding in Arabidopsis thaliana(181 of
the top 5000) and in Schizosaccharomyces pombe(7 of the top 1000) are common
functions of protein pairs highly unlikely to interact. Similar to our findings about
Escherichia coli, we did not find any explicit experimental data to support or refute
these interactions relating to zinc ion binding protein pairs.

Limitation of performance evaluation

Several problems were in the way to providing a completely convincing comprehensive
performance assessment. Specific to our problem were the rather small data sets of
experimentally characterized PPIs: fewer than 6,000 non-redundant PPIs for all 8
organisms. In order to avoid severe problems from database bias, we had to focus on
high-quality non-redundant PPIs [23]. As our profile-kernel based SVM requires at least
200 reliable PPIs, the number of acquired non-redundant PPIs reduced the set of
organisms to only 8. The additional challenges were not specific to our work: it remains
uncertain by more than an order of magnitude how many interactions are to be
expected in an organism. Related to this: what is the fraction of positives (PPIs) to
negatives (proteins that do not interact) is in a living cell? Yet another crucial problem
is that positives are much more reliable than negatives. For molecular biology in general
it is much more accurate to state that an event happens than to rule out that it does
not. All these issues magnify each other to render even the most careful performance
estimates to become speculative approximations at best. Many authors use ROC-curves
that relate the number of true positives (correctly predicted PPIs) to that of false
positives (PPIs predicted but not observed). These plots depend heavily on the
negatives in particular on the ratio of positives-to-negatives. Given that the truth for
this number remains uncertain even within an order of magnitude, we decided to focus
on curves that show precision-vs-recall, i.e. only values directly related to the observed
PPIs. Although one of the axes still is strongly influenced by the assumption that not
observed’ means 'not interacting’. AUC, the area under the ROC-curve, is another
simple and popular score for performance evaluation. Given the argument against
ROC-curve, we might still vary this and compile an analogous area under the
precision-recall curve. However, such a value would constitute another major problem:
arguably, most users of prediction methods are most interested in the most reliable
predictions. In other words, when predicting whether protein X interacts with any other
human protein, the N-strongest predictions (for some N might be 1 for others 1000)
matter more than all 20k scores against all 20k human proteins. But those 20k-N would
exactly dominate the AUC-type performance measures.

Database of predictions

Table [2[ summarizes the results of the full interactome predictions. We only predicted
PPIs which are dissimilar to proteins in our positive training set (Table [2] column
NprotPred). Most proteins of the reference proteomes were dissimilar (Table
difference between columns Nprot, number of proteins, and NprotPred, number of
predicted proteins). Overall, the eight new methods predicted PPIs for most of all
possible pairs of proteins in an organism, i.e. at least 73 % of all possible pairs (only
exception: FEscherichia coli and Drosophila melanogaster). Even after excluding all
proteins previously reported in low-quality or redundant PPIs from the set of predicted
PPIs, millions of predicted PPIs remained (Table |2} column NpredPPI novel). Due to
our large mistake in the prediction of all PPIs proposed by the model at the default
threshold, the ProfPPIdb resource only reported the most reliably predicted,
non-redundant predictions (top ~ 10 % of all predicted PPIs) as novel PPIs (Table
column NpredPPI novel). For most of the 8 model organisms, this subset excludes most
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proteins in the organism (Table [2] numbers in column NprotPred more than twice those
in column Nprot ProfPPIdb). The exceptions were Plasmodium falciparum,
Schizosaccharomyces pombe and Drosophila melanogaster for which PPI predictions
remained for almost all proteins with predictions (Table [2| column NprotPred) after the
application of these filters (Table [2], column Nprot ProfPPIdb). Hence, although our
resource adds over one million newly predicted PPIs (sum over 8 rows of column
NpredPPI ProfPPIdb in Table [2} 1,090,000 PPIs), many proteins in those organisms
remain without annotation and without predictions.

Conclusions

We applied the concept of profile-kernel SVMs for the prediction of physical
protein-protein interactions (PPIs), i.e. we leverage information available for all proteins
for which the sequence is known. The profile-kernel SVM-based methods appeared to
achieve state-of-the-art performance for sequence-based PPI predictions. In fact, for
most model organisms, the predictions were not inferior to those for human for which
we had most experimental data and developed our initial approach. We put the most
reliable predictions into a freely available database where users can access predictions
for all proteins in the entire proteomes of eight different organisms (eukaryotes and
prokaryotes, multi-cellular and single cellular, animals and plants, mammals, fly and
worm).
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A Supporting Information

A.1 Cross validation results

Fig 4. Cross-validation and holdout performance results for organisms with
train data size > 500 PPIs. The y-axes give precision (number of PPIs correctly
predicted at threshold), the x-axes the recall (number of experimental interactions
predicted at that threshold). Bars give the standard deviation; negatives were sampled
at a rate of 10:1 (ten negatives for one positive). Each subplot is referred as follows: A
(Escherichia coli), B (Caenorhabditis elegans), C (Drosophila melanogaster), D
(Arabidopsis thaliana), E (Mus musculus).
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c E. coli c iy C. elegans c D. melanogaster
©0.6 (holdout) ©0.6 ¢ (holdout) ©20.6 (holdout)
(%] (%] %]
‘S ‘S ‘S d
0.4 204 204
o a a 6]
@)
0.2 0.2 0.2
0'00000(
0.0 0.0 0.0
0.2 04 06 08 1.0 0.2 04 06 08 1.0 0.2 04 06 08 1.0
Recall Recall Recall
1.0 1.0
e A. thaliana o.. M. musculus
0.8 (train) 0.8 (train)
- A. thaliana c M. musculus
2 0.6 (holdout) ©20.6 (holdout)
(%] wn
‘S ‘S
204 204
[« 1 [« W
0.2 0.2 %%%%obb‘
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Similar levels of training and holdout performances Machine learning
applications often reach very different levels of performance for the training and the
testing set. We did not observe this for the organisms for which we could compile
comprehensive cross-validation results (Fig. |4} difference between black line and colored
points). Most similar were the results for mouse (Mus musculus: Fig. |4/ E). For
FEscherichia coli (Fig. 4| A), Caenorhabditis elegans (worm, Fig. 4| B), and Drosophila
melanogaster (fruit fly, Fig. [4] C), training and testing were less similar for high recall,
i.e. for the most reliable predictions. Most unusual were the results for Drosophila
melanogaster (Fig. 4| C) and Escherichia coli (Fig. 4| A), for which test performance was
even higher than training performance for a substantial fraction of highly reliable
predictions (toward left, i.e. low recall in Fig. [4| A, and Fig. 4| C the black curves are
above the dots). For Arabidopsis thaliana (water-cress, Fig. 4| D) testing performance
was better than training throughout the entire ROC-like curve. Typically, there is only
one explanation for such unexpected findings: points for which testing is better than
training provide estimates for the resolution of our performance estimates. This reality
was captured well by the estimates for standard errors: within one standard error,
training and testing were identical for all organisms.
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Fig 5. Cross-validation and hold-out performance results of Escherichia
coli. Panel (A): Precision-recall curve for cross-validation in Escherichia coliwith
different optimization hyperparameters. All results in the paper were reported for the
version k = 5/ = 11 which clearly was not best for Escherichia coli, instead the
combination k = 3/0 = 4 yielded the best performance (purple). Panel (B):
Comparison of cross-validation hyperparameter combinations k = 3/0 = 4 (best) with
k =5/0 =11 (default) and cross validation of human from earlier publication [23].
Panel (C): Cross-validation and hold-out results of hyperparameter combination

k =3/o =4 (best) compared with test results for human [23].
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Hyperparameter optimization for Escherichia coli Our most important
objective when applying machine learning typically is to reduce the risk of
over-optimization, i.e. to optimize generalization instead of apparent performance as
usually over-estimated by standard cross-validation. Therefore, we trained each
organism model with the same set of hyperparameters (k-mer = 5 and ¢ = 11). This
standard choice yielded the best performance for almost all organisms. One exception
was HEscherichia coli. For the choice k-mer = 3 and o = 4, the cross-validation
precision-recall values exceeded those for all other hyperparameter combinations (Fig.
A). This top choice for Escherichia coli reached higher performance than the
human-specific model in the realm of low recall (Fig. [5| B). This choice for Escherichia
coli also results in high performance for the holdout set of E.coli which exceeds the test
performance of Homo sapiensfrom [23] especially in the realm of low recall (Fig. [5IC).

A.2 Evaluation of novel predictions

We used BioGRID [25], DIP [26], and IntAct [27] (Uniprot uses quality-filtered
subset of binary interactions automatically derived from the IntAct database) for
large-scale evaluation of our novel predictions. Although we used BioGRID [25],
DIP [26], and IntAct [27] as the base for our organism-specific models, it was only a
small subset of the databases’ PPIs actually used for training our models.

The PPIs published on our online service only include PPIs which have not any
experimental evidence from any of these three databases. In order to perform an
evaluation of the quality of the predictions, we used the top 1 % of all predictions
(ranked according to our confidence measure) which were not included in the training
set. We compared these top predictions against all experimental from BioGRID [25],
DIP [26], and IntAct |27]. The findings of experimental evidences is listed in Table 4] As
Table (4] shows, except for Mus musculus and Rattus norvegicus for which none or only
falsely predicted PPIs was found, we found between 60 and 170 PPIs with experimental
evidence for each organism. The accuracy of the evidences correctly predicted is at least
over 75 %, with half of all investigated organisms having accuracies of over 90 %.
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l Organism NpredPPIs | NEvidence | NcorrectEvidence | Accuracy ‘
A. thaliana 2,064,410 62 60 96.77 %
C. elegans 1,421,719 67 69 97.1 %
D. melanogaster 319,160 152 197 77.16 %
E. coli 27,296 82 90 91.11%
M. musculus 1,313,253 0 0 -
P. falciparum 90,418 143 174 82.18%
S. pombe 83,497 166 177 93.79%
R. norvegicus 2,119,225 3 0 0.00
| Sum over all 8 [ 6,125,724 | 772 [ 670 | 86.79% |

Table 4. Summary of experimental evidences found in BioGRID [25],

DIP [26], and IntAct [27]. Organism: latin name for eight model organisms sorted
alphabetically; NpredPPIs:Number of PPIs of 1% ranked predictions; NEvidence:
number of PPIs for which experimental evidences was found in at least on of the three
databases used for training; NcorrectEvidence: number of PPIs with experimental
evidence which were correctly classified by our approach; Accuracy: The fraction of
correct predictions within the predictions with experimental evidence.

E. Coli A. thaliana M. musculus

1.0 1.0 1.0
oo 08 oo 08 Tao 08
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PPI quality score according to PPI quality score according to PPI quality score according to
expert knowledge-scoring scheme expert knowledge-scoring scheme expert knowledge-scoring scheme

Fig 6. Percentages of predictions as a function of PPI quality score
according to expert knowledge scoring scheme [29]. This scoring scheme was
also used in the manuscript to obtain high-quality PPIs for training. The positive and
negative PPIs presented in these plots are findings of experimental evidences found in
BioGRID 25|, DIP |26], and IntAct [27].

Looking closer at the distribution of the evidences in terms of average, we found
three cases which we show in Figure [f] With E. coli (Figure[6]a), we observe a high
percentage of lower average expert knowledge scores (below 4 for almost 80 % of the
evidences) for negative PPIs, and a high percentage of high average expert knowlege
scores (greater or equal 6 for 60 % of the evidences found). This shows that for E. coli
our model succeeds in predicting PPIs correctly which also has experimental evidences
with high average expert knowledge scores. However, for organisms A. thaliana (Figure
@ b), C. elegans, D.melanogaster, P. falciparum and S. Pombe we witness PPI curves
which almost overlaps. This indicate a similar distribution of knowledge expert scores
for both positive and negative PPIs. This also is a consequence of the lack of high
quality annotations present in the databases. The third case of distribution that we
observed is with M. musculus, for which we only found three experimental evidences
and none of them are correctly predicted by our approach. Nevertheless, the
experimental evidences are highly doubtful as their methods each score only 1 in the
expert knowledge scoring system.
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