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Linköping, Sweden
2 Department of Ecology
P.O. Box 7044
Swedish University of Agricultural Sciences
SE-750 07 Uppsala, Sweden
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Abstract

Descriptions of ecological networks typically assume that the same interspecific interactions

occur each time a community is observed. This contrasts with the known stochasticity of

ecological communities: community composition, species abundances, and link structure all

vary in space and time. Moreover, finite sampling generates variation in the set of

interactions actually observed. Here we develop the conceptual and analytical tools needed

to capture uncertainty in the estimation of pairwise interactions. To define the problem, we

identify the different contributions to the uncertainty of an interaction and its implications

for the estimation of network properties. We then outline a framework to quantify the

uncertainty around each interaction. We illustrate this framework using the most

extensively sampled network to date. We found significant uncertainty in estimates for the

probability of most pairwise interactions which we could, however, limit with informative

priors. Through these efforts, we demonstrate the utility of our approach and the

importance of acknowledging the uncertainty inherent in network studies. Most

importantly, we stress that networks are best thought of as systems constructed from

random variables, the stochastic nature of which must be acknowledged for an accurate

representation. Doing so will fundamentally change networks analyses and yield greater

realism.
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Introduction1

Representing an assemblage of species as a network offers a convenient summary of how2

the community is constructed as networks simultaneously describe species composition and3

interactions between species. A tabulation of the nodes (species) and their relative4

abundances forms the basis for traditional metrics of community composition such as alpha5

diversity. To move from these simpler metrics to a network framework, the tabulation of6

nodes is combined with interactions (links between nodes) so that networks provide7

additional, higher-order information on community structure. While this additional8

information is useful (as, for example, interactions can affect changes in species abundances9

over time), empirical descriptions of ecological networks are still limited because they are10

usually considered to be static representations of the communities and interactions they11

describe. That is, whether the network is assembled based on aggregated data, a single12

intensive “snapshot” sample, or expert knowledge, interactions are assumed to occur13

deterministically wherever and whenever the community is observed (Olesen et al., 2011).14

The assumption of static communities contrasts significantly with the widely recognised15

stochasticity of ecological communities (Gotelli, 2000). Community composition and16

species abundances vary from site to site (Baiser et al., 2012) and over time within a17

site (Olesen et al., 2011). Likewise, interactions vary over space (Kitching & Kitching,18

1987; Baiser et al., 2012), time (Kitching & Kitching, 1987; Olesen et al., 2011), and19

between individuals of a given species (Pires et al., 2011a; Fodrie et al., 2015;20

Novak & Tinker, 2015). We emphasise that variability in community composition and21

interactions may or may not be closely related. The removal of a species from a site will22
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obviously also remove its interactions but, conversely, the co-occurrence of potentially23

interacting species does not in itself guarantee that they will interact at a given place and24

time. Interactions can be lost if the interaction partners remain present but are separated25

in time or are too rare to detect each other (Tylianakis et al., 2010). Interactions can also26

fail to occur because of environmental contingencies (Poisot et al., 2015), or through27

changes to individual preferences (Fodrie et al., 2015).28

Beyond “true” variation in network structure, several researchers have pointed to the29

importance of sampling intensity for the assessment of network structure30

(e.g., Martinez et al., 1999; Blüthgen et al., 2006, 2007). An assessment of the31

accumulation of interactions with increasing sampling effort suggests that it is even more32

challenging to document interactions than species (Poisot et al., 2012). As a result, it has33

been proposed that interactions should be described probabilistically and network metrics34

computed accordingly (Poisot et al., 2016). Early work in this vein includes food-web35

models using likelihood-based approaches (Allesina et al., 2008) or36

Gaussian (Williams et al., 2010) or binomial (Rohr et al., 2016) probability functions for37

each possible interaction. These models may include information about species’38

traits (Rohr et al., 2016) or may attempt to reproduce empirical network structures using a39

set of simple rules (Allesina et al., 2008; Williams et al., 2010).40

Despite these preliminary efforts, to date we lack the quantitative methodology to deal41

with the uncertainty generated by spatiotemporal variation in ecological interactions and42

by sampling. Even in extremely well-sampled networks, uneven sampling across species (or43

pairs of species) can lead to the erroneous inference that some species do not interact44

because they co-occur rarely or have not yet been observed together - even if they do45

4

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 28, 2018. ; https://doi.org/10.1101/332536doi: bioRxiv preprint 

https://doi.org/10.1101/332536
http://creativecommons.org/licenses/by-nd/4.0/


interact when they do co-occur (see Box 1 for an example). Nearly all network studies will46

thus neglect some interactions, necessitating an approach that acknowledges this47

uncertainty.48

In this study, we formalise the description of interactions between species as49

probabilities and develop analytical tools to capture the uncertainty in the estimation of50

these interactions. We focus on binary interactions as a first step, but the framework could51

be expanded to deal with interaction frequencies and strength. To define the problem, we52

first identify the different contributions to the uncertainty of an interaction and discuss the53

implications of each source of uncertainty for the properties of ecological networks. Next,54

we develop an analytical framework to quantify the uncertainty around interactions in an55

empirical web. We illustrate this framework using the most extensively sampled network to56

date (Box 1). Finally, we offer tangible recommendations for improved descriptors of57

ecological interactions. Through these efforts, we demonstrate both the utility of our58

approach and the importance of acknowledging the uncertainty inherent in network studies.59

Why do some interactions not occur?60

To define the problems associated with quantifying ecological interaction networks, we will61

start from the perspective of an empirical community ecologist faced with the task of62

describing a previously unknown interaction network. This ecologist will be interested in63

generating a description of the species/nodes present and the links between64

them (Roslin & Majaneva, 2016). Importantly, the information sought is conveyed by both65

the presence and absence of links. Presences and absences are not, however, equally66
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certain. An observed link will always remain an observed link but there are multiple67

reasons why a given link may not be observed. Thus, the detection of any interaction is a68

stochastic process. We define three nested levels of uncertainty contributing to this69

stochasticity: interaction uncertainty, process uncertainty, and detection uncertainty.70

Interaction uncertainty71

First, and most fundamentally, we do not know whether or not a pair of species have the72

appropriate characteristics (or traits) to interact. We define the probability of an73

interaction L given those characteristics T as P (L|T) = λ. Obviously, if k (the number of74

observed interactions) is 0, it is possible that the two species would not interact even if75

there were no external constraints (e.g., temporal or environmental separation) preventing76

the interaction from co-occurring. As a simple example, a prey species may be too large to77

be consumed by a particular predator. In such cases, λ would take a value of 0 and there78

would be no uncertainty.79

Nevertheless, it is also possible that the interaction is a rare phenomenon with λ > 080

that has not yet been documented. This source of uncertainty is the one documented by81

trait-matching models (Bartomeus et al., 2016). It arises because every model is imperfect82

and lacks information (i.e. about traits) that could be used to define constraints on the83

interaction (Dormann et al., 2017). Further study may, however, eventually reveal the84

traits of interest and allow us to reduce interaction uncertainty. In other words, with85

sufficient sampling and all information accessible, this interaction probability λ should86

either tend to 0 or to 1.87
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Process uncertainty88

Even when an interaction is feasible, i.e. L = 1, it may not occur at a given location or89

moment in time because of local constraints such as inclement weather or the lack of90

suitable habitat. We define the realisation of the interaction process with the variable X ,91

given that the interaction is feasible, as a stochastic process with associated probability92

P (X|L = 1) = χ. This phenomenon of interaction contingencies is usually not considered in93

network studies, but there is a rich literature in community ecology about the contingencies94

of interactions. Phenological matching (Miller-Rushing et al., 2010; Gezon et al., 2016),95

species preferences (Pires et al., 2011b; Novak & Tinker, 2015; Coux et al., 2016), and fear96

effects of other species (Luttbeg & Kerby, 2005; Wirsing & Heithaus, 2008) are just some97

of the factors contributing to variation in the frequency of interactions between a given pair98

of species. Although some of the factors leading to process uncertainty can be addressed in99

mesocosm studies of networks (e.g., environmental conditions can be held stable), process100

uncertainty is likely inevitable in the field.101

Detection uncertainty102

Lastly, measurement errors are a pervasive source of uncertainty in the observation of103

ecological processes. Given that an interaction is feasible and occurs under the local104

conditions (L=1 and X=1), we may define the detection of an interaction, D, as a105

stochastic process with the associated probability P (D|X = 1, L = 1) = δ. Detection106

failure could happen for several reasons including failure to rear a parasitoid, species107

mis-identification, or because the interaction is very rare (see Wirta et al. (2014) for108
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examples of some of these difficulties and partial solutions to them). Some sources of109

detection error can be minimised with appropriate sampling effort (δ will converge to one110

with increasing number of samples), but other sources are often difficult to reduce (e.g. the111

occurrence of cryptic species might require molecular analysis for appropriate taxonomic112

identification as in Wirta et al. 2014; Frost et al. 2016).113

Estimating detection and process uncertainty114

Together, the combination of these three sources of uncertainty –interaction uncertainty,115

process uncertainty, and detection uncertainty– results in a range of potential explanations116

for the observation of an absence of interaction (D, X , and/or L = 0). The ecologist117

wanting to describe the network, however, is specifically interested in the situation where118

L = 0 (i.e., in true absences). Thus, while there is no difficulty interpreting the observation119

of an interaction, the observation of an absence of an interaction offers more of a challenge120

since it must be decomposed into different quantities. It is particularly important to rule121

out the situations where D = 0 ∪X = 1 ∪ L = 1, i.e. where the interaction occurred at the122

location but was not observed, and D = 1 ∪X = 0 ∪ L = 1, i.e., where the interaction is123

feasible and would have been detected but did not occur at the local site. The occurrence124

of a true absence, our quantity of interest, corresponds to the joint event125

L = 0 ∪X = 1 ∪D = 1 but in reality an empirical ecologist will measure the marginal126

probability P (L) = k/n where k is again the number of observed interactions and n the127

number of observed co-occurrences.128

The considerations above raise a major challenge: when faced with empirical data, how129
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may we infer whether unobserved interactions went undetected due to sampling or whether130

they truly do not occur? How then may we refine our sampling approaches to reduce131

uncertainties, and do we gain insights into the impact of multiple processes on field132

observations? Importantly, some sources of uncertainty can be minimised with appropriate133

sampling design and efforts while other sources are difficult or impossible to reduce since134

they are generated by chance variation created by the very process in which we are135

interested. Given this multifaceted problem of uncertainty, what can we do to separate the136

different types of variation and reduce those that can be reduced?137

The obvious rule of thumb is to “sample more” (see Fig. 2 for a demonstration of the138

power of increasing sample size). Sampling more will clearly reduce uncertainty regarding139

the upper bound of the probability of interaction and it will also increase the probability of140

detecting unlikely interactions (e.g.,. interactions where L=1 but process uncertainty is141

high). Despite these benefits, we note that there are limits to the utility of increased142

sampling. Since the probability of observing the co-occurrence of two species will always be143

higher than the probability of observing their interaction (since the probability of144

interaction is conditional on both interaction partners being present; see Fig. 1E-F), we145

will accumulate observations of co-occurrences faster than we will accumulate observations146

of interactions. Thus, the more we sample, the more zeros will appear in our interaction147

matrix.148

In one endeavour to determine whether unobserved interactions were undetected due to149

sampling, or whether they truly do not occur, Weinstein & Graham (2017) used repeated150

sampling rounds to estimate the daily probability of detecting a hummingbird interaction,151

and to thereby model detection and process uncertainty. While conceptually attractive,152
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this approach is unsuitable for interactions occurring over longer time scales (e.g.,153

associations between hosts and parasitoids with a single generation per year), or very rare154

interactions which might not occur on any of the sampling days or might involve155

individuals of a species that is not under observation. What is worse, the problem persists156

that the absence of an interaction of a given day could either be because it was impossible157

on that day despite being otherwise feasible [P (X|D = 1, L = 1) = 0], because interaction158

did occur but could not be observed [P (D|X = 1, L = 1) = 0], or any combination of the159

two. From a conceptual perspective, this approach therefore fails to satisfactorily160

distinguish between sources of uncertainty. Most importantly, if two species are never161

observed co-occurring during several days of sampling then we have learned nothing about162

their probability of interacting if they should ever co-occur. In other words, there is no163

information about interactions without co-occurrence.164

An added complication is that not all sources of uncertainty are proportional to sample165

size. To record an interaction between A and B, we need to identify both partners correctly166

(a non-trivial problem in many food webs; e.g. Kaartinen & Roslin, 2011;167

Roslin & Majaneva, 2016) and be able to resolve all interactions with a similar likelihood.168

For both molecular and rearing techniques, certain types of interactions may go unnoticed169

due to technical challenges (Wirta et al., 2014). This can bias the set of recorded170

interactions. The bottom line is that separating different sources of uncertainty is difficult171

indeed. As an alternative to abandoning empirical networks or continuing to ignore the172

uncertainty inherent in undetected observations, we propose that some insight regarding173

the detectability of interactions between species not found co-occurring in a focal system174

may be gained from data on other species pairs in the same or a similar system.175
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A naive quantification of uncertainty176

To progressively dissect the different contributions to uncertainty, we will start by177

considering how we could naively quantify interaction probability and its associated178

uncertainty for an interaction that has not yet been observed. We consider the case where a179

pair of species have been observed co-occurring n times, of which they have been observed180

to interact in k = 0 cases. We now aim to evaluate the uncertainty of this interaction. We181

consider the occurrence of an interaction as a Bernoulli trial. Consequently, the number of182

successes k over n trials will follow a binomial distribution:183

X ∼ Bin(n, λ), (1)

P (X = k|λ, n) =

(
n

k

)

λk(1− λ)n−k. (2)

The parameter λ, the probability of observing an interaction over an infinite time interval184

and area, is the quantity we want to estimate from empirical data. The maximal likelihood185

estimate (MLE) of λ is straightforward to find given k and n:186

λMLE =
k

n
. (3)

The variance of a Bernoulli experiment is nλ(1-λ). It is important to remember that187

this variance describes the variability of the number of successes k for n trials and is not188

the variance associated with the estimation of λ. Given this variance, it is possible to189

compute the confidence interval for the MLE of λ using any of several methods, including190
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the Wilson score interval, the Clopper-Pearson interval, and the Agresti-Coull interval (for191

details, see [Brown et al., 2001]). Finding this estimate is therefore quite straightforward,192

but it nonetheless has two drawbacks. First, λ is not a single point estimate but rather a193

random variable with an unknown distribution. This means that if k = 0 in a given194

sample, this does not necessarily imply that the two species will never interact. Rather,195

k = 0 implies that ‘no interaction’ is the most likely outcome when the species do co-occur196

but there is nonetheless a substantial chance that the two species could interact. In the197

situation where k > 0, in contrast, we are sure that the interaction is feasible (L = 1) but198

still cannot be sure of the cause if the interaction is not observed at some sites/times (i.e.,199

we cannot say why k < n). There may be local constraints (X = 0) or we might simply not200

observe the interaction in every sample (D < 1).201

Second, where the number of samples n is very low (some pairs of species may never202

have been documented as co-occurring), there will be considerable uncertainty around our203

estimate of λ. In Fig. 2 and Box 2, we derive the Clopper-Pearson interval to explore how204

the estimate of λ varies with sample size. At a small sample size, the 95% confidence205

interval spans all values of λ. To establish that species are not interacting with any206

acceptable certainty requires tens of observations of the two species co-occurring but not207

interacting. As most data sets will lack such extensive sampling across all species pairs, we208

can use a Bayesian approach to supplement what data we do have with other sources of209

information.210
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Bayesian approach to infer interaction probabilities211

Posterior distribution of the interaction probability212

Here we adopt a Bayesian approach to estimate the posterior distribution of the parameter213

λ :214

P (λ|k, n)
︸ ︷︷ ︸

Posterior

=

Likelihood
︷ ︸︸ ︷

P (k|λ, n)

Prior
︷ ︸︸ ︷

P (λ)

P (k|N)
︸ ︷︷ ︸

Normaliser

. (4)

According to the above description, the likelihood is simply the binomial distribution215

(Eq. 2). Since λ is a probability, it is bounded between 0 and 1 and the most appropriate216

prior distribution is the beta:217

λ ∼ Beta(α, β), (5)

which has two shape parameters, α and β.218

The beta-binomial distribution is a conjugate distribution of the binomial distribution.219

This allows us to analytically compute the posterior distribution of a binomial model with220

a beta prior distribution. We can re-write the posterior distribution of λ as:221

P (λ|k, n) =
λα+k−1(1− λ)β+n−k−1

B(α + k, β + n− k)
, (6)

where the function B is the beta function. The posterior distribution of λ therefore follows222

the beta distribution with new parameters α′ = α+ k and β ′ = β + n− k. The weight of223

the prior on the posterior distribution can be understood from these parameter definitions:224

13

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 28, 2018. ; https://doi.org/10.1101/332536doi: bioRxiv preprint 

https://doi.org/10.1101/332536
http://creativecommons.org/licenses/by-nd/4.0/


the difference between the posterior and the prior will increase with k and n− k. In other225

words, the distribution of λ for better-sampled pairs of species will rely less on the226

information used to build the prior distribution and depend more on the observed data.227

When plotted, we find the shape of the distribution gets narrower with k and n (Fig. 3).228

Moments and other properties229

It is common to preform analyses that require calculating higher-order network properties230

in interaction networks. The fact that the posterior distribution of λ follows a beta231

distribution makes it straightforward to compute moments and other properties needed for232

this.233

The average of λ is:234

λ̄ =
α + k

α+ β + n
, (7)

and its variance is:235

V ar(λ|k) =
(α + k)(β + n− k)

(α + β + n)2(α + β + n+ 1)
(8)

The mode of the distribution is:236

λ̂ =
α + k − 1

α + β + n− 2
. (9)

14
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The prior distribution237

Parameters α and β determine the shape of the prior distribution, which follows a beta238

distribution. These are called hyper parameters. Below we identify four ways to formulate239

the prior distribution of λ.240

Uninformative prior241

In the absence of any external information, an uninformative prior is the most conservative242

hypothesis for the distribution of λ. The beta distribution is in this case a uniform243

distribution, specified with hyper parameters α = 1 and β = 1.244

Distribution of connectance245

The ecological network literature boasts a collection of networks for which connectance has246

been calculated and for which we can thus define the connectance distribution.247

Connectance is measured as C = L/S2, where L is the number of interactions and S is the248

number of species. It measures the filling of an interaction matrix and thereby expresses249

the average probability that any two species interact with each other. If we know only the250

mean C and the variance σ2
C of the distribution of C, then the beta parameters could be251

computed as follows using the method of moments:252

α = C(
C(1− C)

σ2
C

− 1), (10)

β = (1− C)(
C(1− C)

σ2
C

− 1). (11)
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Degree distribution or interaction probabilities253

The degree of a node in a network is defined as its number of connections to other nodes.254

The degree distribution of a network is then the probability distribution of these degrees255

over the whole network and the standardised degree could therefore be interpreted as an256

interaction probability. It is consequently possible to use the degree distribution to inform257

the prior distribution. The degree distribution could come from several networks, from a258

similar network (e.g. a known network at slightly different location) or from the network of259

interest if interaction probabilities for some species are already documented. The latter260

approach allows researchers to apply information from known, abundant species to the261

rarest species for which interactions are less frequently documented.262

If our focal network describes a system similar to that in a known network, we can use263

the distribution of interaction probabilities in that network to inform our prior. The264

probability of any interaction Lij depends on the degrees of species i and j. Using265

normalised degrees ∆i and ∆j (i.e., degrees divided by the number of species in the266

network), we can obtain the probability of interaction Lij=∆i ×∆j . Similar to the267

procedure for degree distribution, the distribution of these interaction probabilities can be268

used to establish a prior distribution before any data from the focal network are collected.269

For distributions of either degrees or interaction probabilities, the procedure for the270

estimation of the hyper parameters follows the same approach as described above for271

connectance except that each measurement is at the individual interaction level instead of272

the network level.273
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Trait-matching function274

As a fourth and final approach, it may be possible to obtain the prior distribution of λ275

using the outcome of a trait-matching model, provided such a model has been276

parameterised using external data and relevant traits are available. In such a case, the277

prior distribution would follow the function P (λ|T) = f(T) based on a set of traits for278

both species T. There are several techniques available to perform this inference of279

interaction probability, some of which are Bayesian, and we refer to Bartomeus et al.280

(2016) and Weinstein & Graham (2017) for recent reviews about this topic. Note that in281

this case the prior might not be beta-distributed and numerical methods might be required282

to compute the posterior distribution.283

A quantitative example284

The Bayesian framework can be illustrated with a simple quantitative example. Suppose285

we have n = 10 observations of co-occurrence between species i and species j in a given286

time interval and area, and k = 3 observations of interactions. The maximum likelihood287

estimate of the interaction probability is simply λMLE = 3/10 = 0.3.288

Now consider we know that species i is known to interact with 10 species (other than289

species j), which have the following degrees:290

degree=c(14, 4, 2, 3, 17, 6, 2, 15, 1, 1) .291

If the network has 20 species total, this gives the normalised degrees:292

17

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 28, 2018. ; https://doi.org/10.1101/332536doi: bioRxiv preprint 

https://doi.org/10.1101/332536
http://creativecommons.org/licenses/by-nd/4.0/


norm degree=c(0.65, 0.20, 0.10, 0.15, 0.85, 0.30, 0.10, 0.75, 0.05, 0.05).293

Species i has a normalised degree of 0.55 (it interacts with species j and 10 other294

species). We can combine the normalised degree of i with the normalised degrees of its295

interaction partners to obtain the following set of interaction probabilities for species i and296

each of its interaction partners:297

int probs = c(0.358, 0.110, 0.055, 0.082, 0.468, 0.165, 0.055, 0.412, 0.028, 0.028) .298

The mean of these interaction probabilities is 0.176, approximately two-thirds the λMLE299

obtained from the observed data. We can use the distribution of these interaction300

probabilities as our prior distribution and estimate the uncertainty surrounding our λMLE.301

With some simple R code (function “calculate parameters”, Appendix S1 ), we obtain prior302

parameters α=0.998 and β=4.63. Using these priors in equations 7 and 8 above (or in the303

R function “calculate distribution” in Appendix S1 ), we find a prior λ̄=0.177 and304

var(λ)=0.026. Adding the observed data (n = 10, k = 3) and using the same code, we305

obtain posterior parameters α′=4.00 and β ′=11.6 and a posterior λ̄=0.256 and306

var(λ)=0.012. Comparing the posterior distribution to the prior, we see that the posterior307

is closer to the observed data and that the additional data about interactions between308

species i and j has reduced the variance. We may also wish to calculate a credible interval309

(analogous to the frequentist confidence interval). This is also quite straightforward in R310

(see function “credible interval” in Appendix S1 ). In this case, a 95% credible interval for λ̄311

is (0.080, 0.491).312

Now, consider the case where the two species have never been observed interacting313
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across n trials, i-e. k = 0. The question is then “what is the probability that these two314

species do not interact”? Since it is not possible to prove that the two species could never315

interact (strictly speaking, in a Bayesian approach λ = 0 is impossible), we must fix a316

threshold below which we consider that there is no interaction (λ ∼ 0). We call this317

threshold probability λ∗. We then use the cumulative distribution function to estimate318

P (λ < λ ∗ |L = 0, n) for different n. The function “samples for threshold” in Appendix S1319

calculates distribution function for λ∗ with an increasing number of trials. This yields a320

surprising result: it requires >24 observations of no interactions to be 95% sure that the321

interaction probability is smaller than λ∗=0.1 (recall Fig. 2, Box 2). Note the special case322

where there is no observation of the two species co-occurring, n = 0. In this situation, the323

posterior distribution converges to the prior distribution since the data include no324

information on the probability with which species might interact should they co-occur.325

Scaling up to networks - an empirical example326

In the following section, we will provide an empirical example based on the well-sampled327

system of Salix plants, herbivorous gallers, and their natural enemies described328

by Kopelke et al. (2017); see Box 1 or Appendix S2 for a description). Using this dataset,329

we will demonstrate the derivation of prior distributions for the Salix -galler and330

galler-natural enemy components of these networks and the differences between these331

priors and posterior distributions which include all information available in this332

dataset (Kopelke et al., 2017). Finally, we will calculate network properties using a suite of333

networks sampled from these posterior distributions and show how the uncertainty around334
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interactions that have not been observed impact these metrics.335

Computing the posterior distribution336

In a strict Bayesian framework, we wish to use a prior distribution that does not rely on337

any information from the study at hand. Network data for a similar study system may,338

however, not be available. In that case, one might use the first sub-network collected as339

“training data” to guide future sampling. To simulate this situation, we created priors340

using a single sub-network from the middle of the geographical distribution of341

the Kopelke et al. (2017) dataset. To demonstrate how the use of data from a different342

system can affect the prior distribution and conclusions based on it, we repeated our343

analyses using priors derived from a much smaller Salix -galler-natural enemy344

system (Barbour et al., 2016, Data available from the Dryad Digital Repository:345

https://doi.org/10.5061/dryad.g7805). This smaller system was much more346

densely-connected than that described in Kopelke et al. (2017) and provided unreasonable347

distributions for interaction probabilities (Appendix S4 ).348

To obtain the priors based on the Zillis sub-network, we estimated frequencies of349

Salix -galler interactions based on the normalised degree of each species in each network350

component (see Appendix S3 for details and code). Specifically, we obtained prior351

parameters of α=8.72, β=305 for the Salix -galler component and α=0.700, β=8.49 for the352

galler-natural enemy components of the network. After calculating these prior parameters,353

we were then able to estimate the posterior distribution of interaction probabilities given354

the additional information in our dataset.355
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For species where no co-occurrences were observed (n = 0), we can calculate the356

estimates for the mean and variance of λij directly from the prior parameters following357

equations 7 and 8 (see Appendix S1 for R implementation). For the Salix -galler network,358

the prior distribution was: λ̄=0.028, var(λ)=8.60×10−5. The prior distribution for the359

galler-natural enemy network was: λ̄=0.076, var(λ)=0.008. The posterior interaction360

probabilities obtained based on the Zillis sub-network were much lower than those obtained361

based on Barbour et al. (2016, Data available from the Dryad Digital Repository:362

https://doi.org/10.5061/dryad.g7805); this emphasises the importance of using an363

appropriate study system when constructing a prior (Appendix S4 ).364

For a pair of species with some observed co-occurrences (n > 0), we can update the365

prior distribution with these data. If we consider only pairs of species which were observed366

to co-occur but not to interact, kij is always 0 and only nij will vary between species pairs,367

giving α′=α and β ′=β + nij . As the most extreme case, consider a pair of species which368

co-occurred at all 374 sites and was never observed to interact. Using the priors described369

above, our distribution for the Salix -galler network would become λ̄ij=1.27 × 10−2,370

var(λij)=1.82 × 10−5 while our distribution for the galler-natural enemy network would371

become λ̄ij=1.83 × 10−3, var(λij)=4.76. Distributions for both network components were372

very close to 0 with small variance about our estimate of λ; species i and j are extremely373

unlikely to interact at sites or times not included in our sample.374

For most pairs of species i and j, however, nij was much less than 374 and our posterior375

mean and variance therefore retain more of the influence of the prior. We can see this in376

the increasing means and variances as we decrease nij (Fig. 3). The change in distribution377

as nij decreases can also be shown by calculating 95% credible intervals for λ (see the378

21

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 28, 2018. ; https://doi.org/10.1101/332536doi: bioRxiv preprint 

https://doi.org/10.1101/332536
http://creativecommons.org/licenses/by-nd/4.0/


function “credible interval” in Appendix S2 ). The 95% credible interval around the379

estimate of λ also widens as nij decreases from (0.001, 0.017) and (<0.001, 0.11) for380

hypothetical Salix -galler and galler-natural enemy pairs that might be observed381

co-occurring at all 374 sites without any observed interaction to (0.152, 0.931) and (0.008,382

0.364) for Salix -galler and galler-natural enemy pairs that were never observed383

co-occurring. The 95% credible interval for hypothetical Salix -galler pairs widened from384

(0.006, 0.022) if the pair co-occurred at all sites to (0.013, 0.049) if they co-occurred at385

none. The 95% credible interval for hypothetical galler-natural enemy pairs, meanwhile,386

widened from (0.00001, 0.008) to (0.0005, 0.304).387

How many samples are required to reach a minimal precision388

Rather than calculating credible intervals for a posterior distribution after collecting data,389

we may wish to know how many data points are necessary to obtain a given level of390

confidence that two co-occurring species do not interact. The number of samples needed391

will depend on both our desired level of confidence and the threshold below which we392

assume that two species are unlikely to ever interact (Fig. 4; see function393

samples for threshold in Appendix S1 ). In our dataset, the entire 95% credible interval was394

(0.013, 0.049). We may therefore be 95% confident that the interaction probability for395

Salix and galler species that have not been observed co-occurring is below 0.05. As the396

peak of the prior distribution for the probability of interaction between Salix and galler397

probabilities is around 0.02 (Fig. 3), to be 95% confident that the interaction probability398

for these species is below 0.01 would require 1029 observed co-occurrences with no399
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interaction - far more than the number of sites in the (Kopelke et al., 2017) dataset.400

The number of samples required to be 95% confident that the interaction probability401

between galler and natural enemy species is below a threshold also increases quickly as the402

threshold decreases. The 95% credible interval is (<0.001, 0.303) for the probability of403

interaction between two species observed to co-occur but never interact. To be 95%404

confident that the probability of interaction is below 0.1, 0.05, or 0.01 would require 15, 39,405

and 229 observed co-occurrences, respectively.406

Given the low levels of replication in most network studies, this implies that we should407

have fairly low confidence in many “non-interacting” pairs of species. Even in the408

extensively replicated Salix -galler-natural enemy dataset, very few species pairs were409

observed co-occurring frequently enough to reach these thresholds. Regardless of our choice410

of prior, no species pairs were observed to co-occur frequently enough to reach the411

threshold for an interaction probability of 0.01. Discounting potential interactions, then,412

requires either a stronger prior expectation of no interaction (e.g. for forbidden413

interactions) or very extensive sampling. For all we know, most links absent from current414

descriptions of network structure may be so not because the species do not interact, but415

because we have not sampled deeply enough to detect them.416

Scaling up to network metrics417

It is fairly straightforward to compute most network metrics when the different λ of the418

adjacency matrix are known and assumed not to vary without variance (Poisot et al.,419

2016). Several of these metrics derive directly from quantitative indices of network420
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structure which are equivalent to λ. The remainder, originally defined for binary networks,421

can be adjusted to account for interaction probabilities between zero and one. It is not as422

easy, however, to understand how the uncertainty in these estimated interaction423

probabilities influences network metrics. Computation of these metrics involves non-linear424

functions. Since Jensen’s inequality states that the average of a non-linear function of a425

stochastic variable differs from the function of the average of that variable, any uncertainty426

in the values of λ could bias both the mean and variance of a network metric. One way to427

avoid potentially biased analytical calculation of network properties is to calculate the428

properties of a suite of simulated networks.429

Using the prior distributions and procedures described above, we calculated posterior430

probability distributions for Salix -galler or galler-natural enemy pairs that were not431

observed interacting. Using these posterior distributions and assuming probabilities of 1 for432

pairs of species that were observed interacting, we created a suite of 100 webs of each433

network type by randomly sampling from each posterior distribution. After obtaining these434

posterior networks, we calculated the connectance of each web, as well as the number of435

links per resource (Salix in the Salix -galler networks or galler in the galler-natural enemy436

networks) and links per consumer. To demonstrate how these network metrics will be437

affected by detection uncertainty, we then created a suite of filtered networks for each438

posterior network. Networks were filtered by randomly sampling 99%, 95%, 90%, 80%,439

70%, 60%, and 50% of the interactions included in each posterior network. This gradient is440

akin to a gradient of sampling effort. For each level of detection accuracy, we created 100441

randomly-sampled networks per posterior-probability network (giving 100 posterior442

networks and 1000 detection-filtered networks each for the Salix -galler and galler-natural443
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enemy networks). We then calculated the same network properties as described above.444

We find, perhaps not surprisingly, that the posterior webs for the Salix-galler network445

had higher connectances than the original, observed web (C=0.028 for the observed web446

and 0.082 ≤ C ≤ 0.096 for the posterior webs; Fig. 5A). The number of links per Salix447

species in the observed web (LSalix=2.71) was similar to those in the posterior webs (2.53448

≤ LSalix ≤ 3.19; Fig 5C). The number of links per galler, however, was lower in the449

observed web (Lgaller=1.47) than in the posterior webs, accounting for the increased450

connectance (4.67 ≤ Lgaller ≤ 5.88; Fig. 5E). There was a more substantial difference in the451

nestedness of the observed and posterior webs: the observed network had NODF=0.560452

while the posterior networks were more nested (1.39 ≤ NODF ≤ 1.94). Even the networks453

sampled with a detection filter of 50% had non-zero nestedness (Fig. 5G). This last result454

highlights the potential for the possibility for network structure to vary when considering455

the possibility that unobserved species pairs may interact.456

Considering the galler-natural enemy networks, the connectance, mean links per galler,457

and mean links per natural enemy were also much lower in the observed web (C=0.078,458

Lgaller=9.99, and Lnaturalenemy=7.45, respectively) than in the posterior webs (0.186 ≤ C ≤459

0.198, 13.4 ≤ Lgaller ≤ 14.6, and 23.4 ≤ Lnaturalenemy ≤ 25.0). When the detection460

probability was relatively low (i.e., 50%), however, the properties of randomised networks461

became similar to those in the observed webs (Fig. 5B,D,F). Nestedness was higher in the462

observed network (NODF=6.85) than in the posterior webs (6.31 ≤ NODF ≤ 6.82;463

Fig. 5H); in this case, the stronger the detection filter the farther apart were the observed464

and posterior webs.465
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Conclusions/recommendations466

Real interaction networks vary over several dimensions (Kitching & Kitching, 1987;467

Olesen et al., 2011; Pires et al., 2011a; Baiser et al., 2012; Fodrie et al., 2015;468

Novak & Tinker, 2015) and to capture this variation we must turn from static descriptions469

of network structure to probabilistic descriptions. In this study, we have developed the470

analytical tools to capture the uncertainty in the estimation of pairwise interactions and a471

conceptual framework for its individual components: interaction uncertainty, process472

uncertainty, and detection uncertainty. Using this framework leads us to offer tangible473

recommendations for improved descriptors of ecological interactions. First, our analyses474

point to detection uncertainty as a major contributor to overall uncertainty of is475

establishing the absence of interaction. To counter this and establish true absences of476

interactions requires comparatively large sample size on the order of 30-50 observations477

per species pair. Second, where such extensive sampling is not feasible, researchers should478

still acknowledge the varying levels of confidence surrounding the presence or absence of479

interactions between different pairs of species. Including the n and k values for each480

interaction will clearly indicate which unobserved interactions are most likely to be481

observed with further sampling and which estimates are more reliable. Third, the482

uncertainty around interactions (especially interactions that were not observed) should be483

incorporated in calculations of network properties like connectance or nestedness.484

Re-sampling networks based on a probabilistic understanding of networks is485

straightforward and gives distributions for network properties rather than point estimates.486

This not only acknowledges the fact that interactions vary over time and space but will487
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also facilitate comparisons between networks. With confidence intervals around network488

metrics, we can not only say that one network is more connected than another but also489

whether the networks are more different than we would expect based on imperfect490

sampling of interactions. To facilitate these recommendations, we provide all code used in491

this paper in the supplementary material.492
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We also thank Kévin Cazalles for providing feedback on the manuscript. The authors also495

appreciate support from the Swedish Research Council (VR) for grant #2016-06872 (to496

TR). Additional funding was provided by a Formas grant (#942-2015-1262) to AE.497

27

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 28, 2018. ; https://doi.org/10.1101/332536doi: bioRxiv preprint 

https://doi.org/10.1101/332536
http://creativecommons.org/licenses/by-nd/4.0/


Boxes and figures

Box 1: Salix -galler-natural enemy dataset.
As a case study, we use an extensively sampled Salix -galler-natural enemy meta-

network. This dataset consists of a single community type sampled across Europe:
willow (Salix ) species, willow-galling sawflies, and their natural enemies. The data were
collected over 29 years at 374 unique locations across Europe with a total of 641 site
visits. Each site visit or each unique site can be considered as a network in its own
right or as an independent sample from which to build the meta-network. Here we take
the more conservative approach and pool visits to the same site for a sample size of
374 sub-networks. The meta-network consists of 1,173 different interactions between 52
Salix nodes, 92 herbivore nodes, and 126 natural enemy nodes. The high spatiotem-
poral resolution of this network and the unusually high sampling effort implemented at
the site level makes this dataset particularly well suited for illustrating the difficulties
in completely sampling a network and testing Bayesian approaches to overcome these
difficulties.

We may begin by comparing the frequency of co-occurrences for pairs of species in
each part of the network to reveal the challenge of having sufficient sampling to be con-
fident that an interaction does not occur. Most pairs of species (3,986/4,992 Salix -galler
pairs and 9,794/12,096 galler-natural enemy pairs) are never found co-occurring and, for
species that did occur together, the total number of co-occurrences was generally low
(mean=4.24, variance=36.3 for Salix -galler pairs; mean=3.87, variance=28.8 for galler-
natural enemy pairs; Fig. 1A-B). The bulk of these co-occurring species pairs were never
observed to interact: only 2.82% of Salix -galler pairs and 7.76% of galler-natural enemy
pairs were observed interacting at one or more sites. Of those pairs that did interact, the
incidence of interaction was also low (mean=12.0, variance=155 for Salix -galler pairs;
mean=4.04, variance=29.3 for galler-natural enemy pairs; Fig. 1C-D). Thus, even in the
most extensive data set that we could find, there was very little empirical data for each
species pair. This suggests that limited sampling is a major source of uncertainty in all
empirical networks. This dataset also illustrates the potential for increased sampling to
not necessarily reveal more interactions as a pair of species that is able to interact may
not be observed interacting in all samples where the pair co-occurs (Fig. 1E-F).
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Box 2: Calculating the credible interval around a probability estimate
Here we describe the derivation of the Clopper-Pearson credible interval for the es-

timated probability of interaction λ of a pair of species observed co-occurring n times
and interacting k times. As we are most interested in the probability of interaction
between species pairs that have never been observed co-occurring, we consider only the
case where k = 0 over a variety of n. This is straightforward to do in R (see the function
“credible interval” in Appendix S1 ).

First, we must obtain the α and β parameters for the prior distribution. In this
study we obtained these parameters using the R (R Core Team, 2016) function fitdist
from the package fitdistrplus (Delignette-Muller & Dutang, 2015). Once α and β are
known, we can update them using our observed data. Specifically, we are interested in
α′ = α+k and β ′ = β+n−k. These parameters can then be used to calculate a credible
interval using the R (R Core Team, 2016) function qbeta. In the table below, we present
the 95% credible intervals for Salix -galler and galler-natural enemy pairs with different
numbers of observed co-occurrences (n) and no observed interactions (k = 0), calculated
using prior information derived from the Zillis sub-network (Kopelke et al., 2017).

Table 1: Here we give the lower and upper bounds of 95% credible intervals for the
probability of interaction λ between Salix -galler or galler-natural enemy pairs that have
been observed co-occurring n times but have never been observed interacting.

n
Salix -galler galler-natural enemy

Lower bound Upper bound Lower bound Upper bound
0 0.013 0.049 5.39 ×10−4 0.304
1 0.013 0.048 4.82 ×10−4 0.276
2 0.013 0.048 4.35 ×10−4 0.253
5 0.012 0.048 3.37 ×10−4 0.203
10 0.012 0.047 2.45 ×10−4 0.152
15 0.012 0.046 1.93 ×10−4 0.121
20 0.012 0.046 1.59 ×10−4 0.101
25 0.012 0.045 1.35 ×10−4 0.087
50 0.011 0.042 7.72 ×10−5 0.050
100 0.010 0.037 4.16 ×10−5 0.027
150 0.009 0.033 2.84 ×10−5 0.019
200 0.008 0.030 2.16 ×10−5 0.014
374 0.006 0.022 1.18 ×10−5 0.008
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Figure 1: A-B) Most pairs of Salix and gallers or gallers and natural enemies were never
observed co-occurring despite the high levels of replication in our example dataset. For
those pairs that were observed together at least once (nij > 0), the number of observed
co-occurrences was generally small (<10). Here we show a histogram of the number of pairs
of species observed co-occurring at least once. 3986 Salix -galler and 9794 galler-enemy pairs
were never observed co-occurring: these pairs are omitted from the histogram. C-D) Most
pairs of species that were observed at the same site were never observed interacting. Here
we show a histogram of the number of observed interactions within pairs of co-occurring
species. Species which co-occurred but never interacted are included in these histograms.
E-F) Here we show, for each species pair, the number of observed interactions plotted
against the number of observed co-occurrences. Salix -galler pairs either are never observed
interacting or interact almost every time they co-occur, while galler-enemy pairs had more
variable frequencies of interaction. In panels E and F the red, dashed line indicates a 1:1
relationship between interactions and co-occurrences.
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Figure 2: A simple example will illustrate the problem of imperfect detection of interactions.
Assume that we want to infer the probability of an interaction between two species, i and j.
Now assume that in reality, interaction between i and j is completely impossible (i.e. the true
λ = 0) but the observer does not know this and seeks to estimate this interaction probability
(λ). The number of observed interactions will follow a binomial distribution with number of
interactions k and number of observations n. Using this distribution, we can compute the
credible interval of the estimated probability λ. Even assuming no added detection error
in observing the incidence of the interaction, a single observation of species co-occurrence
reveals very little regarding the probability of the interaction as the credible interval for a
pair of species with one observation essentially spans from 0 to 1. Only with 35 observations
will the upper limit of the credible interval be lowered to 0.1. Thus, adding more observations
is certainly useful in controlling uncertainty, but the number of observations added needs to
be very high. Here we show the upper bound (solid black line) of a 95% Clopper-Pearson
true credible interval for λ when k = 0 (i and j have not been observed interacting) for
a variety of n (observed co-occurrences of i and j). Using a Bayesian approach with an
informative prior can reduce the confidence interval about λ for a given sample size. A
threshold interaction probability of 0.1 is indicated by the dashed red line.
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Figure 3: Using prior distributions based on the Salix -galler and galler-natural enemy
networks sampled at a single site in Kopelke et al. (2017), we can calculate posterior dis-
tributions for the probability of interaction (λ) between two species that have not yet been
observed interacting. Here we show posterior distributions for λ in each network component
ranging from the prior distribution (n = 0 observed co-occurrence) to the distribution ob-
tained when the pair of species has been observed co-occurring 100 times. The distribution
narrows and approaches zero as the sample size increases. Likewise, the maximum likelihood
estimator for the mean probability of interaction (diamonds at top of each panel) approaches
zero and the 95% credible interval (lines at top of each panel) narrows as sample size in-
creases. A) The posterior distributions for λ in the Salix -galler component are narrower at
low n but shrink less with increased sampling than those for B) the distributions of λ in the
galler-natural enemy component.
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Figure 4: The number of samples required to achieve a given level of confidence that an
interaction probability λij is below a given threshold varies with both parameters. With a
low threshold, our confidence that λij is below the threshold increases rapidly with repeated
observation of co-occurrence without interaction. Here we show the cumulative density
functions for threshold probabilities of 0.5 (solid line), 0.25 (dashed line), 0.1 (dash-dot
line), and 0.05 (dotted line) as well as the points at which the cdf reaches 0.90 (orange
square), 0.95 (red circle), and 0.975 (blue diamond) for each threshold value. The large ticks
along the x-axis indicate the number of samples associated with each of these points. A) In
the Salix -galler network component, the 95% credible interval for λij when n=0 was (0.013,
0.049). We can therefore be at least 95% confident that λij is below thresholds of 0.1 or
0.05 without any observed co-occurrence of species i and j. To be confident that λij is less
than 0.01, however, would require more observed co-occurrences than there are sites in our
dataset. B) In the galler-parasitoid network component, the 95% credible interval for λij

was substantially broader and many observed co-occurrences (≈ 15-35) are required to be
95% confident that λij is below thresholds of 0.1 or 0.05.
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Figure 5: Here we show the mean connectance, links per resource (Salix in the Salix -
galler networks and gallers in the galler-natural enemy networks), links per consumer, and
nestedness (NODF) for networks assembled using posterior distributions based on a sin-
gle sub-network in the Kopelke et al. (2017) dataset (Zillis). We created 100 “posterior-
sampling” networks and then, for each of these, created 100 “detection-filter” networks by
randomly sampling 50%-99% of the interactions included in the posterior-sampling network.
This simulates imperfect detection of interactions in the field. Each point represents the
mean network property (e.g., connectance) obtained from a set of 100 detection-filter net-
works, plotted against the value of the network property in the posterior-sampling network
used to create the detection-filter networks. For each property and both network types, the
posterior-sampling networks cover a relatively small range of network properties than the
range covered by networks with varying detection probabilities. The value of each property
decreases with the proportion of links included in the detection-filter networks.
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