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Abstract 
Traditional 16S ribosomal RNA sequencing and whole-genome shotgun 
metagenomics can determine the composition of bacterial communities on genus 
level and species level but high-resolution inference on the strain level is 
challenging due to close relatedness between strain genomes. We present the 
mSWEEP pipeline for identifying and estimating relative abundances of bacterial 
strains from plate sweeps of enrichment cultures. mSWEEP uses a database of 
biologically grouped sequence assemblies as a reference and achieves ultra-fast 
mapping and accurate inference using pseudoalignment, Bayesian probabilistic 
modeling, and a control for false positive results. We use sequencing data from the 
major human pathogens Campylobacter jejuni, Campylobacter coli, Klebsiella 
pneumoniae and Staphylococcus epidermidis to demonstrate that mSWEEP 
significantly outperforms previous state-of-the-art in strain quantification and 
detection accuracy. The introduction of mSWEEP opens up a new field of plate 
sweep metagenomics and facilitates investigation of bacterial cultures composed 
of mixtures of organisms at differing levels of variation. 

Introduction 
High-throughput sequencing technologies have enabled researchers to study 
bacterial populations in unprecedented detail using whole-genome sequencing 
(WGS) of single pure bacterial colonies. Sequencing of single isolates has revealed 
complex ecology behind antibiotic resistance and the spread of antibiotic resistant 
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isolates across the globe. The application of community profiling metagenomics, in 
which the 16S rRNA gene is sequenced from multi-species samples, can provide 
information about the composition and dynamics of highly diverse bacterial 
populations, but the resolution is limited because assignment beyond the level of 
genus is often not possible due to insufficient nucleotide variation to distinguish 
species or strains1. Whole-genome shotgun metagenomics delivers much higher 
resolution2 but widespread application is hindered by costs associated with 
sequencing the sample to sufficient depth to capture the typically diverse set of 
organisms present in a sample3. 
 
We address these challenges by leveraging a solution from a combination of 
targeted enrichment of the organisms of interest with powerful probabilistic 
algorithms. Our solution places itself between single colony WGS and culture-
independent metagenomics, reaching unprecedented level of biological resolution. 
Our method, called mSWEEP, identifies and quantifies the presence of bacterial 
strains from short read sequencing data obtained from plate sweeps of any type of 
enrichment cultures. These are made by harvesting a mixture of colonies from a 
plate culture by sweeping the whole plate in contrast to picking a single colony. 
The generality of the method stems from its applicability to DNA sequenced en 
massé from arbitrary culturing medium, which may target biological variation 
ranging from family level to species and strain levels using desired markers. 
mSWEEP uses a database of biologically grouped sequence assemblies as a 
reference to which sequencing reads are pseudoaligned4 and an efficient Bayesian 
inference engine5, 6 to estimate the relative group abundances. mSWEEP provides 
statistical confidence scores for group and co-occurrence detections, enabling 
reliable detection of co-existing strains in the plate sweep samples, which provides 
the means to address a range of novel biological questions related to within-host 
variation, transmission and the effect of ecological factors on the microbial 
diversity present in samples. 

Results 

Strain identification method overview 

Abundance estimation with mSWEEP is performed in two phases: reference 
preparation and analysis (Figure 1). Reference preparation consist of defining the 
reference database and grouping them according to biological criteria such as  
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sequence types (ST), clonal complexes, or by using a clustering algorithm for 
bacterial genomes. Grouping related reference sequences is essential in enabling 
identification of the taxonomic origin of each read6, and accuracy of the mSWEEP 
abundance estimates is consequently reliant on an expansive reference database 
and an accurate grouping. 
 
Reference preparation also includes constructing detection thresholds on the groups 
by resampling sequencing reads from the reads used to assemble the reference 
sequences. We randomly select references from each group within a species, and 
resample reads from one reference at a time to produce new samples containing 
reads belonging to only one group. The detection threshold is determined by 
examining errors observed in the new samples with a known source and 
maximizing over all possible sources. By determining the minimum relative 
abundance estimate required for a group to be considered reliably identified, the 
detection thresholds help avoid incorrectly calling the presence of a group and 
provide a statistical confidence score for the estimates exceeding the threshold, 
corresponding to a level of error deemed acceptable in abundance estimates from 
the resampled sequencing reads. The three steps in reference preparation need to 
be performed once for a set of reference sequences. 
 
Pseudoalignment4 in the analysis phase uses the reference sequences to produce 
binary compatibility vectors indicating which reference sequences a read 

 
Figure 1 Flowchart of the mSWEEP 
pipeline describing a typical workflow 
for relative abundance estimation. The 
input portion refers to the input data, 
reference preparation to the operations 
that need to be performed once per 
each set of reference sequences, and 
analysis contains the steps to run for 
every sample.  

Reference sequences Sequencing reads

Reference sequence grouping

Read pseudoalignment

Abundance estimation

Abundance filtering by detection threshold

Detection threshold
construction

Input Reference
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pseudoaligns with. The compatibility vectors are the basis for estimating the 
relative abundances of the groups. 
 
Based on the compatibility vectors and the grouping, we define a likelihood for 
each read to have originated from each of the groups. The likelihood is based on 
the number of pseudoalignments to each group. We assume that if multiple groups 
have the same total number of reference sequences in them, then groups with a 
higher fraction of pseudoalignments are always better candidates for having 
originated the read. By basing the likelihood on the number of pseudoalignments 
to each group, we define an extension of the Bayesian model applied to RNA-
sequencing5, 7 and bacterial data6 that uses multiple reference sequences from each 
group. Representing the groups with multiple sequences better captures the 
variation within the groups and enables abundance estimation for species that are 
difficult to identify with existing methods. 
 
We obtain the relative abundances of the groups by considering a sample as the 
product of mixing sequencing reads from the groups according to some unknown 
mixing proportions, corresponding to a mixture model formulation. The model is 
fitted using a variational Bayesian approach5 which estimates the mixing 
proportions (relative abundances) of the groups. 

Assigning single-strain isolates to source 

We compared the performance of mSWEEP against the existing method for 
estimating the relative abundances of bacterial groups, BIB6. We used 2279 
assemblies from three studies8-10 as the reference set sequences for mSWEEP. 
mSWEEP outperformed BIB in all five sets of test isolates containing single strains 
of bacteria.  
 
The reference contained 462 C. jejuni and 120 C. coli assemblies10 grouped by 
sequence type complex (ST complex), 181 S. aureus assemblies8 considered a single 
group, 143 S. epidermidis assemblies8 grouped by BAPS clustering11 into a 3-cluster 
and a 11-cluster grouping, and 1373 K. pneumoniae assemblies9 grouped in ST 
complexes defined by a central sequence type and its single locus variants. We 
removed 135 K. pneumoniae isolates and one S. epidermidis, C. jejuni, or C. coli 
isolate at a time, for a total of 81, 73, and 27 test isolates from each species, to 
obtain within-reference test samples where the true group of origin is known. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 5, 2018. ; https://doi.org/10.1101/332544doi: bioRxiv preprint 

https://doi.org/10.1101/332544
http://creativecommons.org/licenses/by/4.0/


5 

 
To assess accuracy when the test samples have not been sequenced in the same 
location or do not originate from the same part of the world as the samples used to 
assemble the reference sequences, we used 61 out-of-reference K. pneumoniae 
isolates from Thailand12 where the true ST complex is still contained in our 
reference. Since the K. pneumoniae reference sequences originate from Houston, 
Texas, the isolates from Thailand should be different from the 135 within-
reference test samples. 
 
mSWEEP significantly outperformed BIB in all examined cases (Figure 2; p < 10-6, 
in all comparisons, Wilcoxon signed-rank test) when measured by accuracy of the 
abundance estimates in the true source group and the highest incorrect estimate in 
each isolate. Both mSWEEP and BIB correctly identified the true ST complex in all 
100 C. jejuni and C. coli isolates and the correct BAPS cluster using the 3-cluster 
grouping for the 81 S. epidermidis isolates. Compared to the abundance estimates 
from mSWEEP, BIB exhibited considerable uncertainty in both cases. 

 

Figure 2 Error of abundance estimates in single-strain isolates (lower is better). True 
positives represent the relative abundance estimates in the group that is the true source 
for the isolate. Highest true negatives contain the highest estimate in an incorrect group 
for the isolates. The absolute error is deviation from an abundance of one (True 
positives) or zero (Highest true negatives.) mSWEEP significantly outperformed BIB in all 
examined cases when measured by either type of error. The three outliers in the K. 
pneumoniae isolates are cases where the supposed single-strain isolate in fact contained 
a mixture or a novel sequence type. 

True positives Highest true negatives

                   C. jejuni / C. coli    K. pneumoniae                   S. epidermidis
                       14 groups     82 groups      82 groups      3 groups      11 groups
                      100 isolates  135 isolates  61 isolates    81 isolates    81 isolates
                        within−ref*    within−ref*    out−of−ref*    within−ref*    within−ref*

                                                                             C. jejuni / C. coli    K. pneumoniae                   S. epidermidis
                                                                                          14 groups     82 groups      82 groups      3 groups      11 groups

                                                                                          100 isolates  135 isolates  61 isolates    81 isolates    81 isolates
                                                                                            within−ref*    within−ref*    out−of−ref*    within−ref*    within−ref*
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The 135 K. pneumoniae within-reference isolates were identified with a similar 
accuracy with mSWEEP identifying the true group in 132 isolates and BIB in 123. 
Compared to mSWEEP, the abundance estimates from BIB again contained 
significant uncertainties. The three K. pneumoniae isolates misidentified by 
mSWEEP were found to contain a novel sequence type or mixtures of K. 
pneumoniae groups and E. coli (Supplementary Figure 1). 
 
The least accurate estimates for both BIB and mSWEEP were obtained when the 81 
S. epidermidis isolates are split into 11 BAPS clusters (Figure 2) with mSWEEP 
identifying the true group in 78 and BIB in 80 isolates. Neither of the methods 
reached the level of accuracy observed in the other cases. The inaccuracies are 
explained by the reference S. epidermidis population not exhibiting a clear cluster 
structure (Supplementary figure 2a) beyond the initial BAPS clustering into three  
groups, causing the abundance estimates to spread across the new groups defined 
within the three-cluster split (Supplementary figure 3). The observed behaviour 
emphasises the need for a reference set that both adequately captures wide 
variation within the species and has a meaningful grouping. 
 
Abundance estimates from the 61 out-of-reference K. pneumoniae isolates resulted 
in a loss in accuracy for both methods when compared to the 135 within-reference 
isolates. mSWEEP identified the true origin in all 61 out-of-reference isolates and 
BIB in 53. The accuracy of mSWEEP and BIB in true positive estimates fell 
compared to the within-reference isolates but the the errors in true negative cases 
remained relatively small. 
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We examined the grouping of the reference sequences by producing t-SNE plots of 
31-mer distances between the reference sequences including the test isolates 
(Figure 3, Supplementary figures 2a and 2b). The C. jejuni and C. coli reference 
conforms to the ST complex grouping while the S. epidermidis population only 
conforms to the first 3-group BAPS clustering. The t-SNE plots correctly place the  
assemblies to the true groups but the method does not preserve the distances 
between the points or the clusters13 and is unsuited to analyzing mixed isolates. 
 
Processing the 377 single-strain isolates with mSWEEP took an average of 2 
minutes and 21 seconds per sample. BIB took over ten times longer with an average 
of 30 minutes and 42 seconds per sample using the same reference data. Both 
timings were obtained with eight processor cores, with mSWEEP having 2143 
reference sequences in 100 groups and BIB one from each group. 

Quantifying synthetic strain mixtures 

We investigated the performance of mSWEEP in quantifying mixture samples by 
constructing 161 C. jejuni and C. coli, 584 K. pneumoniae, and 100 S. epidermidis 
synthetic mixture samples from the single-strain reads used to compare mSWEEP 
and BIB. Groups included in each mixture sample were determined according to a 
balanced incomplete block design, ensuring that all groups appear at least 13 times 

Figure 3 C. jejuni and C. coli 
reference 31-mer embedding. t-SNE 
embedding of the 31-mer distances 
between the reference isolates shows 
that the reference population conforms 
relatively well to the defined ST 
complex grouping. The test cases, 
indicated by circles, are all correctly 
identified by mSWEEP and t-SNE also 
places them within or near the true 
source group. 

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●

●

●

●

●

●

●

−40

−20

0

20

−20 0 20 40
t−SNE dimension 1

t−
SN

E 
di

m
en

si
on

 2
Real group

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ST−21
ST−45
ST−48
ST−52
ST−257
ST−353
ST−354
ST−443
ST−464
ST−574
ST−607
ST−661
ST−702
ST−828

Isolate
●

●

Reference
Test

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 5, 2018. ; https://doi.org/10.1101/332544doi: bioRxiv preprint 

https://doi.org/10.1101/332544
http://creativecommons.org/licenses/by/4.0/


8 

and each isolate appears at least once. Each sample was set to contain a total of 
one million reads from three single-strain isolates of a single species with 
randomly assigned proportions. We examine the distribution of the highest false 
positive estimates in each mixture sample and compare it to the results from the 
single-strain isolates. 
 
Abundance estimates obtained from the synthetic mixture samples using the C. 
jejuni and C. coli ST complex grouping, the K. pneumoniae ST complex grouping, 
and the 3 BAPS-clusters S. epidermidis grouping show that the presence of 
sequencing reads from multiple groups in a synthetic mixture sample results in an 
error distribution resembling what was observed in the single-strain isolates 
(Figure 4, Supplementary Figure 4). Estimates from the synthetic S. epidermidis 
mixture samples using the 11 BAPS-clusters grouping produce an error distribution 
that differs from the single-strain error distribution more than what was observed 
with the other groupings. 
 
Comparing the empirical distributions of relative abundance estimation errors 
from the synthetic mixtures and the single-strain isolates (Supplementary Figures 
4 and 5) shows that for estimates exceeding a threshold of 0.016, the accuracy of 
estimates from the mixture samples stochastically dominates the accuracy 
observed in the single-strain samples, except in the S. epidermidis 11-cluster case 
where stochastic dominance is observed only above a threshold of 0.17. Stochastic 

Figure 4 False positives in single-
strain samples versus synthetic 
mixtures. Abundance estimates from 
synthetic mixtures containing 
sequencing reads from three groups of 
a species do not result in higher false 
positive estimates than what is 
obtained from isolates from a single 
group when measured by the largest 
estimate for a group that does not 
contribute any sequencing data to the 
sample. The only different case is S. 
epidermidis using the 11-cluster 
grouping, which cannot be accurately 
identified even in the single-strain 
case. 
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dominance establishes a partial ordering between two random variables and, in 
this case, implies that estimates from the mixture samples are more accurate (in a 
probabilistic sense) than estimates from the single-strain samples when the 
estimates are large enough. In the S. epidermidis 11-cluster case we do not 
establish the mixture estimates as more accurate since the distribution 
(Supplementary Figure 4) and the observed threshold differ considerably from the 
other cases. 
 
The results indicate that above this relatively low background noise level of 0.016, 
quantifying mixture samples is not expected to produce more false positive results 
than what would be obtained from single-strain samples, allowing us to simplify 
the problem of determining detection thresholds for the groups in mixture samples 
to determining them from the single-strain isolates. Due to the requirement that 
the abundance estimates must be large enough for this assumption to hold, we 
incorporate the threshold observed in comparing the estimates into the detection 
thresholds by using it as the minimum threshold regardless of the results from the 
resampling procedure. 

Mixture data from Campylobacter jejuni and Klebsiella pneumoniae isolates 

We applied the mSWEEP pipeline to two datasets containing sequencing reads 
from 116 C. jejuni and 179 K. pneumoniae mixture samples. Both datasets were 
originally supposed to contain pure cultures but were flagged in assembly as 
potential mixtures. Reference data from the previous experiments was expanded 
with 1509 E. coli assemblies14 and 27 single representative sequences from 
additional species that were identified in the mixture samples by MetaPhlAn15. We 
constructed detection thresholds on the reference groups using the 
aforementioned procedure and filtered the relative abundance estimates from the 
mixture samples by them. 
 
The network diagram (Figure 5a) shows ST-clonal complex (CC) (nodes) of the 
isolate genomes with the thickness of edges representing the number of times that 
isolates from these CCs are found together in a single plate sweep sample, and the 
size of the node the total number of observations. The overall amount of co-
occurrence between CCs (Figure 5b) provides basic information about the 
frequency that CC’s are found together in nature populations. C. jejuni CCs 45, 661, 
607, 353, 48, and C. coli CC828 are all found in samples with 4 or more other CCs  
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Figure 5 C. jejuni clonal complex coexistence in 116 mixture samples. Coexistence 
network was constructed from the relative abundances that has been filtered by the 
detection thresholds. The displayed edges (panel a) show groups that were observed to 
coexist at least two times. Edge and node sizes are proportional to times observed. 
Dashed edges are present only when using the less strict 0.90 confidence threshold, solid 
edges when using the 0.90 or the max threshold. Panel b contains a visualization of the 
unfiltered relative abundance estimates in all reference groups. The tree was constructed 
by first calculating average 31-mer distance from sequences assigned to a group to all 
other sequences, then averaging the resulting distances to the other groups, and last 
hierarchically clustering the results with the average linkage method. 

and there is evidence that isolates from some CC’s cohabit with other species 
including Campylobacter lari and Bacillus subtilis. While the sample set in this study 
was deliberately selected to include mixed isolate samples, quantifying the co-
occurrence of species and strains can provide information about different ecologies 
or strain interactions, particularly when CCs are known to have varied sources, 
such as different hosts. 
 
There is some preliminary evidence that common clinical strains CC45 and CC21 
are rarely found together in a single sample (plate sweep) while other lineages, 
such as the chicken associated CC353, are frequently isolated from samples 
containing multiple strains. From an evolutionary perspective, it is unlikely that 
closely related strains can stably occupy identical niches because competition 
would be expected to lead one to prevail. The results demonstrate co-occurrence of 
strains within individual host animals and multi-strain infections in humans and 
provide information about the complex ecology of co-occurring interacting species 
that leads to the observed community structure in a given sample. 
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Figure 6 K. pneumoniae strain group coexistence in 179 mixture samples. 
Coexistence network was constructed from the relative abundance estimates remaining 
after filtering by detection threshold. Edges shown are observed at least three times. Edge 
and node size is proportional to number of times observed. Dashed edges represent 
coexistence that is observed only when using the 0.90 confidence detection thresholds. 

The coexistence network for the 179 human clinical samples of K. pneumoniae 
(Figure 6, Supplementary Figure 6) demonstrates common co-occurrence of K. 
pneumoniae with a wide variety of E. coli strain groups, as well as occasional co-
occurrence with Acinetobacter baumanii and other species. Both E. coli and A. 
baumanii grow on the media used for culture of K. pneumoniae. Clonal complexes of 
K. pneumoniae associated with high levels of multi-drug resistance (e.g. ST258, 
ST147 and ST101) were frequently observed co-existing with a variety of other K. 
pneumoniae strains as well as with each other, and with other important Gram-
negative pathogens. Developing a deeper understanding of these community 
structures and interactions will be critical for monitoring horizontal transfer of 
anti-microbial resistance genes between taxa. 

Discussion 

Metagenomics using high-throughput sequencing has become common practice 
when investigating bacterial composition in different environments or changes 
introduced by interventions to e.g. the human gut microbiome. In most 
epidemiological applications the relevant target organisms are culturable using 
established media which offers a clear advantage to obtain high sequencing depths 
in a cost-effective manner. To enable high-resolution inference about the strains 
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present in plate sweeps of enrichment cultures, we have developed the mSWEEP 
pipeline. mSWEEP can be used to infer high-resolution population structure of 
single species or diverse populations of bacteria. Our pipeline also gives estimates 
of the relative abundance of strains and estimate reliability cut-offs. mSWEEP has 
been designed to have minimal execution time using the latest advances in RNA-
seq analysis and having minimal memory footprint so that most typical analyses 
can be run on a regular laptop, and we have demonstrated significant 
improvements in accuracy over previous state-of-the-art method. 
 
mSWEEP has considerable power for improving our understanding of infection by 
recovering a true representation of bacteria in a sample. Genotyping studies have 
shown that C. jejuni and C. coli strains colonizing the primary host (birds and 
mammals) form clusters of related isolates that are host-associated16 which can be 
used to identify the reservoir for human infection17. However, multiple strains can 
be isolated from the same sources18, 19. The co-occurrence of multiple strains could 
be a snapshot in time of a wider process of lineage succession20 in which the 
resident microbiota might resist new colonizations or be displaced by incoming 
bacteria21, 22 or indicate complex interactions between strains that occupy different 
microniches23 and are not in direct competition24, 25. mSWEEP provides means to 
investigate the nature of polymicrobial infections which could improve 
understanding of the spread of a strain between hosts and transmission to humans 
in addition to enabling characterization of physical and temporal variation in the 
distribution of lineages among multi-strain samples. 
  
Because of limitations in the initial culture and DNA isolation processes, we can 
only infer relative abundances, not absolute. However, this is not a significant 
limitation as even the absolute abundances of target organisms are subject to large 
biological and technical variation. Large reference collections of over 1 000 
genomes or simultaneous analysis of multiple samples increase the memory 
requirement and may require a dedicated computer cluster to run, but these are 
still at the level available at most bioinformatics centres, which makes the method 
widely applicable by biologists. As with any method targeting to identify sequence 
variation, the target species need to be relatively well known to allow building 
sufficiently informative reference databases. Similarly, to allow for sensible and 
easily interpretable inferences, the biological clustering of the reference database 
should be based on well-established biological entities, such as multi-locus 
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sequence types (STs) or clonal complexes (CCs) which are frequently employed as 
labels of strains. As a by-product, mSWEEP can also be used to estimate the quality 
of the reference collection and to discard contaminated or mis-identified genomes. 
 
Strain identification from metagenomic data has been recently suggested by the 
StrainPhlAn method26. mSWEEP is complementary to StrainPhlAn as the two 
methods analyse similar data from different directions. mSWEEP assigns strains 
present in the sample to biologically established genetically separated clades or 
clusters and estimates the relative abundance of these, whereas StrainPhlAn infers 
SNPs and phylogenetic relations of the whole sample. Given the flexibility and 
generality of the mSWEEP approach, we anticipate that it paves way for numerous 
novel applications of plate sweep metagenomics in many fields of microbiology. 

Online Methods 

Reference construction 

The reference sequences (Supplementary Table 1) are the genomic assemblies of a 
number of strains or species that represent the organisms of interest in a sample. 
We use a collection of assemblies from various studies8-10, 14. 

Grouping the reference sequences 

We grouped the C. jejuni and K. pneumoniae reference sequences into clonal 
complexes defined by a central sequence type and its single locus variants. The S. 
epidermidis and E. coli sequences were clustered using the BAPS software11 (version 
6.0). We split the S. epidermidis and E. coli populations according to the first 
clustering level produced by BAPS. 

Pseudoalignment 

We used kallisto4 (version 0.44) with default settings to perform pseudoalignment. 
Pseudoalignment produces binary compatibility vectors which summarize the 
observations of the reads 𝑟" = (𝑟",&, … , 𝑟",() as numbers of compatible sequences 
(observed pseudoalignments) in each group 𝑟",( for a read 𝑟". 

Abundance estimation model 

The reads 𝑟" are modelled by 𝐾-dimensional count vectors containing the count of 
pseudoalignments to reference sequences in each of the 𝐾 groups. We assume that 
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the reads 𝑟"are conditionally independent given the mixing proportions of the 
groups 𝜃 = (𝜃&, … , 𝜃,), and augment the model with the latent indicator variables 
𝐼 = 𝐼&, … , 𝐼. which denote the true source group of each read. The joint distribution 
of the collection of reads	𝑅 = 𝑟&, … , 𝑟., the indicator variables 𝐼 = 𝐼&, … , 𝐼. for the 
source group, and the mixing proportions of the groups 𝜃 = (𝜃&, … , 𝜃,) is 

𝑝(𝑅, 𝐼, 𝜃) = 𝑝(𝜃)2	
.

"31

	2 	𝑝(𝑟"	|	𝐼" = 𝑘)	𝑝(𝐼" = 𝑘	|	𝜃)
,

(31

	

( 1 ) 

The formulation in Equation (1) corresponds to a mixture model with observations 
𝑟", categorically distributed latent variables 𝐼" and their parameters 𝜃.	

Likelihood 

Given a pseudoalignment count vector 𝑟", whose components 𝑟",( denote the count 
of observed pseudoalignments to reference sequences in each group 𝑘, and the 
total number of reference sequences in the group, |𝑘|,	we define the likelihood 
𝑝(𝑟"	|	𝐼" = 𝑘) of the read that produced the count vector 𝑟" originating from the 
𝑘:th group as 

𝑝(𝑟"	|	𝐼" = 𝑘) ∝ 	 7
|𝑘|
𝑛
9
𝐵(𝛼( + 𝑟",(, |𝑘| − 𝑟",( +	𝛽()

𝐵(𝛼(, 𝛽()
𝐵(𝛼(, 𝛽()

𝐵(𝛼( + |𝑘|, 𝛽()
,	

( 2 ) 

where 𝐵(𝛼, 𝛽) is	the	beta	function, when the group 𝑘 contains at least two reference 
sequences |𝑘| > 1 and at least one reference sequence in group 𝑘 is compatible 
with the read 𝑟", 0 < 𝑟"( ≤ 	 |𝑘|. When the group contains only one reference 
sequence and that sequence is compatible with the read 𝑟", the likelihood is set to 
𝑝(𝑟"|	𝐼" = 𝑘) ∝ 1. In both cases, when the group contains no compatible sequences, 
regardless of the total number, the likelihood is set to 𝑝(𝑟"	|	𝐼" = 𝑘) ∝ 0.01/0.99. 
 
Equation (2) is based on the beta-binomial model, but the likelihoods are 

renormalized by the factor D(EF,GF)
D(EFH|(|,GF)

, which represents the likelihood of a read 

given compatibility with all sequences in the group. The renormalization causes 
groups where 𝑟",( 	= 	 |𝑘|	in	at	least	two	groups, that is all reference sequences in at 
least two groups are compatible with the read, to have equal likelihoods and also 
reduces the effect of the likelihoods being flattened in groups with large numbers 
of assigned reference sequences when compared to small groups, allowing the 
model to better compare group that differ largely in size. 
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Reads with identical pseudoalignment count vectors 𝑟" have the same likelihoods 
and can be assigned into equivalence classes defined by the count of compatible 
sequences in each group. The likelihoods need only be calculated for the observed 
equivalence classes.  

Model hyperparameters 

Instead of using the parametrization (𝛼(, 𝛽()	of Equation (2), we reparametrize the 
likelihood as 

𝜋( = 	
𝛼(

𝛼( +	𝛽(
, 𝜙( =

1
𝛼( +	𝛽(

	

	

( 3 ) 

where the first parameter 𝜋( corresponds to the mean of the beta distribution 
compounded with a binomial distribution to obtain the beta-binomial distribution 
part in Equation (2), and the second parameter 𝜙( represents a measure of 
variation in the success probability of each observation27. 
 
We constrain the mean success rate 𝜋(	to 𝜋( ∈ 	 (0.5, 1), producing only 
distributions with an increasing probability mass function28, fulfilling our 
assumption that of two equally sized groups with different number of compatible 
reference sequences, the one with more compatible sequences is always a better 
candidate for being the true source. The values of the parameters (𝜋(, 𝜙() are set to 
𝜋( = 0.65, and 𝜙(O& = 1 −	𝜋( + 0.01|𝑘|O&. 

Inference 

Obtaining the posterior distribution over the mixing proportions 𝜃 of the different 
groups is done by fitting an approximate posterior distribution over the indicator 
variables 𝐼	 using variational inference. The same variational Bayesian method is 
also used in BitSeqVB5 to obtain transcript expression levels and has been applied 
to estimate mixing proportions in bacterial sequencing data in BIB6. The prior 
distribution on the mixing proportions 𝜃 is set to be Dirichlet(𝛼, … , 𝛼) with 𝛼 = 1. 
The same prior was also used by BIB. Since reads originating from the same 
equivalence class have the same likelihood, variational inference will yield 
identical posterior inferences for them. This allows us to perform the inference on 
the smaller number of equivalence classes rather than all reads, leading to faster 
inference.  
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Detection thresholds 

Detection thresholds define the minimum relative abundance estimate in each 
group to be considered a reliable identification. Relative abundance estimates that 
fall under the corresponding detection threshold are set to zero. To obtain 
detection thresholds on the groups within a species, we generate 100 samples from 
each group by resampling one million sequencing reads from the reads used to 
assemble the reference sequences. Each sample contains resampled sequencing 
reads from only one reference sequence. The reads are sampled with replacement 
and each read has the same probability of being included. Reference sequences 
used in the resampling are chosen at random such that the number of reference 
sequences from each group corresponds to the square root of the total size of the 
group and each group is represented at least once. The resampled sequencing reads 
are put through mSWEEP abundance estimation. Reference sequences used in 
resampling are not included in the set of reference sequences used when 
performing estimation on the resampled sequencing reads. Species in the reference 
represented by a single sequence were not resampled from and the detection 
threshold fixed at 0.05. 
 
The relative abundance estimates obtained from the resampled sequencing reads 
are represented by 𝜃QR,S,T, where 𝑖	 = 	1, . . . ,100 indicates samples that were sampled 
from the reference group 𝑗	 = 	1, . . . , 𝐾, and 𝑘	 = 	1, . . . , 𝐾 denotes the reference 
group that the abundance estimate was observed for. To obtain the detection 
thresholds, we first define source-specific thresholds 𝑞X,( that give a threshold on 
the reference groups 𝑘 assuming that the true group 𝑗 in the sample is known. The 
source-specific threshold 𝑞X,( on group 𝑘	 ≠ 	𝑗 is defined by ordering the relative 
abundance estimates for the cluster 𝑘, 𝜃QR,S,T, where 𝑖	 = 	1, . . . ,100, in an ascending 
order and determining the cutoff point where 100𝑝, 𝑝	 ∈ 	 (0,1), relative abundance 
estimates fall below the cutoff. Using the source-specific thresholds 𝑞X,(, we define 
the detection threshold 𝑞X on group 𝑗 as 𝑞X 	= 	𝑚𝑎𝑥	 {	𝑚𝑎𝑥

	
{	𝑘 ∶ 	 𝑞X,(}, 𝜖},	where	𝜖 is 

the constant minimum threshold for the species that was observed when 
comparing the empirical cumulative distribution functions in Supplementary 
Figure 5. We recommend that 𝜖 be determined for new species by a synthetic 
mixing procedure similar to what was used to compare the accuracy of mixture 
estimates to their single-strain counterparts. 
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The quantile p, used to determine the cutoff points for the source-specific 
thresholds provides a statistical confidence score for the abundance estimates that 
exceed the detection thresholds 𝑞X. Values of p closer to one result in stricter 
detection thresholds and more confidence in the remaining abundance estimates. 

Software and data availability 

mSWEEP software is available in GitHub: https://github.com/PROBIC/mSWEEP. 
Accession numbers for the reference data can be found in Supplementary Table 1. 
Accession numbers for the K. pneumoniae mixture samples and 39 Campylobacter 
mixture samples are available in Supplementary Table 2. The remaining 77 
Campylobacter mixture samples have been submitted to figshare under DOIs 
10.6084/m9.figshare.6445136 and 10.6084/m9.figshare.6445190. 
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